Skip to main content

Screening Issues in Exposed Subjects and Early Diagnosis

  • Chapter
  • First Online:
Mesothelioma

Abstract

Asbestos is a natural fibrous mineral. It has been increasingly used for a variety of applications around the world, especially heavy industry and construction activities. WHO estimates that 125 million workers are exposed to asbestos. Domestic tools or products are responsible for a nonoccupational exposure as well. So hundreds of millions of people are at risk of developing an asbestos-caused disease because of occupational, environmental, or domestic exposure. Malignant mesothelioma (MM), pleural, peritoneal, testicular, and pericardial is the most lethal one. Early MM detection could allow therapeutic interventions at a potentially treatable stage. There is a great interest in blood biomarkers and on their potential use in screening for the early detection of MM. Nevertheless, so far, the studies on this topic have led to variable results.

We review the most promising biomarkers in MM to date: HMGB1, microRNAs (miRNAs), proteomic signature, soluble mesothelin-related peptides (SMRPs) and mesothelin, megakaryocyte-potentiating factor (MPF), osteopontin (OPN), and fibulin-3.

There are no satisfactory results, and no marker seems to be eligible in surveillance of subject at risk of MM when used alone. In the future the combination of different markers might help to distinguish mesothelioma from benign asbestos-related diseases and asbestos-exposed subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marsili D, Terracini B, Santana VS, et al. Prevention of asbestos-related disease in countries currently using asbestos. Int J Environ Res Public Health. 2016;13:494. https://doi.org/10.3390/ijerph13050494.

    Article  CAS  PubMed Central  Google Scholar 

  2. Carbone M, Ly BH, Dodson RF, et al. Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol. 2012;227:44–58. https://doi.org/10.1002/jcp.22724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qi F, Okimoto G, Jube S, et al. Continuous exposure to chrysotile asbestos can cause transformation of human mesothelial cells via HMGB1 and TNF-alpha signaling. Am J Pathol. 2013;183:1654–66. https://doi.org/10.1016/j.ajpath.2013.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gazdar AF, Carbone M. Molecular pathogenesis of malignant mesothelioma and its relationship to simian virus 40. Clin Lung Cancer. 2003;5:177–81. https://doi.org/10.3816/CLC.2003.n.031.

    Article  PubMed  Google Scholar 

  5. Carbone M, Rizzo P, Pass H. Simian virus 40: the link with human malignant mesothelioma is well established. Anticancer Res. 2000;20:875–7.

    CAS  PubMed  Google Scholar 

  6. Carbone M. Simian virus 40 and human tumors: it is time to study mechanisms. J Cell Biochem. 1999;76:189–93. https://doi.org/10.1002/(SICI)1097-4644(20000201)76:2<189::AID-JCB3>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  7. Baumann F, Ambrosi JP, Carbone M. Asbestos is not just asbestos: an unrecognised health hazard. Lancet Oncol. 2013;14:576–8. https://doi.org/10.1016/S1470-2045(13)70257-2.

    Article  PubMed  Google Scholar 

  8. Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43:1022–5. https://doi.org/10.1038/ng.912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carbone M, Yang H, Pass HI, et al. BAP1 and cancer. Nat Rev Cancer. 2013;13:153–9. https://doi.org/10.1038/nrc3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pass HI, Carbone M, Krug LM, et al. Benign and malignant mesothelioma. In: De Vita VT, Hellmann S, Rosemberg SA, editors. Cancer, principles & practice of oncology. 10th ed. Baltimore: Lippincott Williams & Wilkins; 2014. p. 1738–60.

    Google Scholar 

  11. Hulka BS, Wilcosky TC, Griffith JD. Biological markers in epidemiology. New York: Oxford University Press; 1990.

    Google Scholar 

  12. Naglova H, Bucova M. HMGB1and its physiologicaland pathological roles. Bratisl Lek Listy. 2012;113(3):163–71.

    CAS  PubMed  Google Scholar 

  13. Kang R, Zhang Q, Zeh HJ III, Lotze MT, Tang D. HMGB1 in cancer: good, bad, or both? Clin Cancer Res. 2013;19(15):4046–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88.

    Article  CAS  PubMed  Google Scholar 

  15. Lu B, Antoine DJ, Kwan K, et al. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A. 2014;111:3068–73. https://doi.org/10.1073/pnas.1316925111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carneiro VC, de Moraes Maciel R, de Abreu da Silva IC, et al. The extracellular release of Schistosoma mansoni HMGB1 nuclear protein is mediated by acetylation. Biochem Biophys Res Commun. 2009;390:1245–9. https://doi.org/10.1016/j.bbrc.2009.10.129.

    Article  CAS  PubMed  Google Scholar 

  17. Jube S, Rivera ZS, Bianchi ME, et al. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012;72:3290–301. https://doi.org/10.1158/0008-5472.CAN11-3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tabata C, Kanemura S, Tabata R, et al. Serum HMGB1 as a diagnostic marker for malignant peritoneal mesothelioma. J Clin Gastroenterol. 2013;47(8):684–8.

    Article  CAS  PubMed  Google Scholar 

  19. Tabata C, Shibata E, Tabata R, et al. Serum HMGB1 as a prognostic marker for malignant pleural mesothelioma. BMC Cancer. 2013;13:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ying S, Jiang Z, He X, Yu M, Chen R, Chen J, Ru G, Chen Y, Chen W, Zhu L, Li T, Zhang Y, Guo X, Yin X, Zhang X, Lou J. Serum HMGB1 as a potential biomarker for patients with asbestos-related diseases. Dis Markers. 2017;2017:5756102. https://doi.org/10.1155/2017/5756102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen Z, Gaudino G, Pass HI, Carbone M, Yan H. Diagnostic and prognostic biomarkers for malignant mesothelioma: an update. Transl Lung Cancer Res. 2017;6(3):259–69. https://doi.org/10.21037/tlcr.2017.05.06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang H, Pellegrini L, Napolitano A, Giorgi C, Jube S, Preti A, Jennings CJ, De Marchis F, Flores EG, Larson D, Pagano I, Tanji M, Powers A, Kanodia S, Gaudino G, Pastorino S, Pass HI, Pinton P, Bianchi ME, Carbone M. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death Dis. 2015;6:e1786. https://doi.org/10.1038/cddis.2015.153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Micolucci L, Akhtar MM, Olivieri F, Rippo MR, Procopio AD. Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta-analysis. Oncotarget. 2016;7(36):58606–37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003;301:336–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.

    Article  CAS  PubMed  Google Scholar 

  26. Suárez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ Res. 2009;104:442–54.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Olivieri F, Rippo MR, Prattichizzo F, Babini L, Graciotti L, Recchioni R, Procopio AD. Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing. 2013;10:11.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Olivieri F, Rippo MR, Procopio AD, Fazioli F. Circulating inflamma-miRs in aging and age-related diseases. Front Genet. 2013;4:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol. 2014;56:154–63.

    Article  CAS  PubMed  Google Scholar 

  30. Häusler SFM, Keller A, Chandran PA, Ziegler K, Zipp K, Heuer S, Krockenberger M, Engel JB, Hönig A, Scheffler M, Dietl J, Wischhusen J. Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br J Cancer. 2010;103:693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weber DG, Johnen G, Bryk O, Jöckel K-H, Brüning T. Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma—a pilot study. PLoS One. 2012;7:e30221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirschner MB, Cheng YY, Badrian B, Kao SC, Creaney J, Edelman JJB, Armstrong NJ, Vallely MP, Musk AW, Robinson BWS, McCaughan BC, Klebe S, Mutsaers SE, et al. Increased circulating miR-625-3p: a potential biomarker for patients with malignant pleural mesothelioma. J Thorac Oncol. 2012;7:1184–91.

    Article  CAS  PubMed  Google Scholar 

  33. Lamberti M, Capasso R, Lombardi A, Di Domenico M, Fiorelli A, Feola A, Perna AF, Santini M, Caraglia M, Ingrosso D. Two different serum MiRNA signatures correlate with the clinical outcome and histological subtype in pleural malignant mesothelioma patients. PLoS One. 2015;10:e0135331.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tanaka N, Toyooka S, Soh J, Tsukuda K, Shien K, Furukawa M, Muraoka T, Maki Y, Ueno T, Yamamoto H, Asano H, Otsuki T, Miyoshi S. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. 2013;29:2169–74.

    Article  PubMed  Google Scholar 

  35. Ueno T, Toyooka S, Fukazawa T, Kubo T, Soh J, Asano H, Muraoka T, Tanaka N, Maki Y, Shien K, Furukawa M, Sakaguchi M, Yamamoto H, et al. Preclinical evaluation of microRNA-34b/c delivery for malignant pleural mesothelioma. Acta Med Okayama. 2014;68:23–6.

    CAS  PubMed  Google Scholar 

  36. Ostroff RM, Mehan MR, Stewart A, Ayers D, Brody EN, Williams SA, Levin S, Black B, Harbut M, Carbone M, Goparaju C, Pass HI. Early detection of malignant pleural mesothelioma in asbestos-exposed individuals with a noninvasive proteomics-based surveillance tool. PLoS One. 2012;7(10):e46091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cerciello F, Choi M, Nicastri A, et al. Identification of a seven glycopeptide signature for malignant pleural mesothelioma in human serum by selected reaction monitoring. Clin Proteomics. 2013;10:16. https://doi.org/10.1186/1559-0275-10-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hassan R, Bera T, Pastan I. Mesothelin: a new target for immunotherapy. Clin Cancer Res. 2004;10:3937–42.

    Article  CAS  PubMed  Google Scholar 

  39. Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci U S A. 1996;93:136–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Robinson BWS, Creaney J, Lake R, Nowak A, Musk AW, de Klerk N, Winzell P, Hellstrom KE, Hellstrom I. Mesothelin-family proteins and diagnosis of mesothelioma. Lancet. 2003;362:1612–6.

    Article  CAS  PubMed  Google Scholar 

  41. Scherpereel A, Grigoriu B, Conti M, Gey T, Grégoire M, Copin MC, Devos P, Chahine B, Porte H, Lassalle P. Soluble mesothelin-related peptides in the diagnosis of malignant pleural mesothelioma. Am J Respir Crit Care Med. 2006;173:1155–60.

    Article  CAS  PubMed  Google Scholar 

  42. Weber DG, Taeger D, Pesch B, Kraus T, Brüning T, Johnen G. Soluble mesothelin-related peptides (SMRP) - high stability of a potential tumor marker for mesothelioma. Cancer Biomark. 2007;3:287–2927.

    Article  CAS  PubMed  Google Scholar 

  43. Hollevoet K, Reitsma JB, Creaney J, Grigoriu BD, Robinson BW, Scherpereel A, Cristaudo A, Pass HI, Nackaerts K, Rodríguez Portal JA, Schneider J, Muley T, Di Serio F, Baas P, Tomasetti M, Rai AJ, van Meerbeeck JP. Serum mesothelin for diagnosing malignant pleural mesothelioma: an individual patient data meta-analysis. J Clin Oncol. 2012;30:1541–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Park EK, Sandrini A, Yates DH, Creaney J, Robinson BW, Thomas PS, Johnson AR. Soluble mesothelin-related protein in an asbestos-exposed population: the dust diseases board cohort study. Am J Respir Crit Care Med. 2008;178:832–7.

    Article  CAS  PubMed  Google Scholar 

  45. Creaney J, Olsen NJ, Brims F, Dick IM, Musk AW, de Klerk NH, Skates SJ, Robinson BW. Serum mesothelin for early detection of asbestos-induced cancer malignant mesothelioma. Cancer Epidemiol Biomark Prev. 2010;19:2238–46.

    Article  CAS  Google Scholar 

  46. Felten MK, Khatab K, Knoll L, Schettgen T, Muller-Berndorff H, Kraus T. Changes of mesothelin and osteopontin levels over time in formerly asbestos-exposed power industry workers. Int Arch Occup Environ Health. 2014;87(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  47. Filiberti R, Marroni P, Spigno F, Merlo DF, Mortara V, Caruso P, Cioè A, Michelazzi L, Bruzzone A, Bobbio B, Simonassi C, Del Corso L, Galli R, Racchi O, Dini G, Linares R, Mencoboni M. Is soluble mesothelin-related protein an upfront predictive marker of pleural mesothelioma? A prospective study on Italian workers exposed to asbestos. Oncology. 2014;86:33–43.

    Article  CAS  PubMed  Google Scholar 

  48. Beyer HL, Geschwindt RD, Glover CL, Tran L, Hellstrom I, Hellstrom KE, Miller MC, Verch T, Allard WJ, Pass HI, Sardesai NY. MESOMARK: a potential test for malignant pleural mesothelioma. Clin Chem. 2007;53:666–72.

    Article  CAS  PubMed  Google Scholar 

  49. Gube M, Taeger D, Weber DG, Pesch B, Brand P, Johnen G, Müller-Lux A, Gross IM, Wiethege T, Weber A, Raithel HJ, Kraus T, Brüning T. Performance of biomarkers SMRP, CA125, and CYFRA 21-1 as potential tumor markers for malignant mesothelioma and lung cancer in a cohort of workers formerly exposed to asbestos. Arch Toxicol. 2011;85:185–92.

    Article  CAS  PubMed  Google Scholar 

  50. Gube M, Taeger D, Weber DG, et al. Performance of biomarkers SMRP, CA125, and CYFRA 21-1 as potential tumor markers for malignant mesothelioma and lung cancer in a cohort of workers formerly exposed to asbestos. Arch Toxicol. 2011;85:185–92.

    Article  CAS  PubMed  Google Scholar 

  51. Roe OD, Creaney J, Lundgren S, Larsson E, Sandeck H, Boffetta P, Nilsen TI, Robinson B, Kjaerheim K. Mesothelin-related predictive and prognostic factors in malignant mesothelioma: a nested case-control study. Lung Cancer. 2008;61:235–43.

    Article  PubMed  Google Scholar 

  52. Boudville N, Paul R, Robinson BW, et al. Mesothelin and kidney function—analysis of relationship and implications for mesothelioma screening. Lung Cancer. 2011;73:320–4.

    Article  PubMed  Google Scholar 

  53. Filiberti R, Marroni P, Mencoboni M, Mortara V, Caruso P, Cioè A, Michelazzi L, Merlo DF, Bruzzone A, Bobbio B, Delcorso L, Galli R, Taveggia P, Dini G, Spigno F. Individual predictors of increased serum mesothelin in asbestos-exposed workers. Med Oncol. 2013;30:422.

    Article  PubMed  Google Scholar 

  54. Hollevoet K, Van Cleemput J, Thimpont J, De Vuyst P, Bosquée L, Nackaerts K, Germonpré P, Vansteelandt S, Kishi Y, Delanghe JR, van Meerbeeck JP. Serial measurements of mesothelioma serum biomarkers in asbestos-exposed individuals: a prospective longitudinal cohort study. J Thorac Oncol. 2011;6:889–95.

    Article  PubMed  Google Scholar 

  55. Hollevoet K, Nackaerts K, Thimpont J, et al. Diagnostic performance of soluble mesothelin and megakaryocyte potentiating factor in mesothelioma. Am J Respir Crit Care Med. 2010;181:620–514.

    Article  CAS  PubMed  Google Scholar 

  56. Sato T, Suzuki Y, Mori T, et al. Newly established ELISA for N-ERC/mesothelin improves diagnostic accuracy in patients with suspected pleural mesothelioma. Cancer Med. 2014;3:1377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Creaney J, Sneddon S, Dick IM, et al. Comparison of the diagnostic accuracy of the MSLN gene products, mesothelin and megakaryocyte potentiating factor, as biomarkers for mesothelioma in pleural effusions and serum. Dis Markers. 2013;35:119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shiomi K, Miyamoto H, Segawa T, et al. Novel ELISA system for detection of N-ERC/mesothelin in the sera of mesothelioma patients. Cancer Sci. 2006;97:928–32.

    Article  CAS  PubMed  Google Scholar 

  59. Onda M, Nagata S, Ho M, et al. Megakaryocyte potentiation factor cleaved from mesothelin precursor is a useful tumor marker in the serum of patients with mesothelioma. Clin Cancer Res. 2006;12:4225–31.

    Article  CAS  PubMed  Google Scholar 

  60. Creaney J, Yeoman D, Demelker Y, et al. Comparison of osteopontin, megakaryocyte potentiating factor, and mesothelin proteins as markers in the serum of patients with malignant mesothelioma. J Thorac Oncol. 2008;3:851–7.

    Article  PubMed  Google Scholar 

  61. Coppola D, Szabo M, Boulware D, et al. Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res. 2004;10:184–9024.

    Article  CAS  PubMed  Google Scholar 

  62. Pass HI, Lott D, Lonardo F, et al. Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N Engl J Med. 2005;353:1564–73.

    Article  CAS  PubMed  Google Scholar 

  63. Cristaudo A, Bonotti A, Simonini S, et al. Combined serum mesothelin and plasma osteopontin measurements in malignant pleural mesothelioma. J Thorac Oncol. 2011;6:1587–93.

    Article  PubMed  Google Scholar 

  64. Cristaudo A, Foddis R, Bonotti A, et al. Comparison between plasma and serum osteopontin levels: usefulness in diagnosis of epithelial malignant pleural mesothelioma. Int J Biol Markers. 2010;25:164–70.

    Article  CAS  PubMed  Google Scholar 

  65. Rai AJ, Flores RM, Mathew A, et al. Soluble mesothelin related peptides (SMRP) and osteopontin as protein biomarkers for malignant mesothelioma: analytical validation of ELISA based assays and characterization at mRNA and protein levels. Clin Chem Lab Med. 2010;48:271–825.

    Article  CAS  PubMed  Google Scholar 

  66. Grigoriu BD, Scherpereel A, Devos P, et al. Utility of osteopontin and serum mesothelin in malignant pleural mesothelioma diagnosis and prognosis assessment. Clin Cancer Res. 2007;13:2928–35.

    Article  CAS  PubMed  Google Scholar 

  67. Paleari L, Rotolo N, Imperatori A, et al. Osteopontin is not a specific marker in malignant pleural mesothelioma. Int J Biol Markers. 2009;24:112–710.

    Article  CAS  PubMed  Google Scholar 

  68. Hu ZD, Liu XF, Liu XC, et al. Diagnostic accuracy of osteopontin for malignant pleural mesothelioma: a systematic review and meta-analysis. Clin Chim Acta. 2014;433:44–8.

    Article  CAS  PubMed  Google Scholar 

  69. Park EK, Thomas PS, Johnson AR, Yates DH. Osteopontin levels in an asbestos-exposed population. Clin Cancer Res. 2009;15(15):1362–9.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Marmorstein LY. Focus on molecules: fibulin-3 (EFEMP1). Exp Eye Res. 2010;90:374–5.

    Article  CAS  PubMed  Google Scholar 

  71. Pei D, Li Y, Liu X, et al. Diagnostic and prognostic utilities of humoral fibulin-3 in malignant pleural mesothelioma: evidence from a meta-analysis. Oncotarget. 2017;8:13030–8.

    PubMed  PubMed Central  Google Scholar 

  72. Pass HI, Levin SM, Harbut MR, et al. Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med. 2012;367:1417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Creaney J, Dick IM, Meniawy TM, et al. Comparison of fibulin-3 and mesothelin as markers in malignant mesothelioma. Thorax. 2014;69:895–902.

    Article  PubMed  Google Scholar 

  74. Kirschner MB, Pulford E, Hoda MA, et al. Fibulin-3 levels in malignant pleural mesothelioma are associated with prognosis but not diagnosis. Br J Cancer. 2015;113:963–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manlio Mencoboni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mencoboni, M., Taveggia, P., Simonassi, C.F., Filiberti, R.A. (2019). Screening Issues in Exposed Subjects and Early Diagnosis. In: Ceresoli, G., Bombardieri, E., D'Incalci, M. (eds) Mesothelioma. Springer, Cham. https://doi.org/10.1007/978-3-030-16884-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16884-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16883-4

  • Online ISBN: 978-3-030-16884-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics