Skip to main content

Unmet Needs and Future Outlook of Mesothelioma Management

  • Chapter
  • First Online:
Mesothelioma
  • 515 Accesses

Abstract

Despite all of the research efforts during the last one and a half decades, mesothelioma remains a cancer lacking effective therapy after first-line treatment. This is clearly a huge unmet need. This chapter will discuss how this problem is being currently addressed and some of the key clinical research trajectories being taken to meet this challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shepherd FA, et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18:2095–103. https://doi.org/10.1200/JCO.2000.18.10.2095.

    Article  CAS  Google Scholar 

  2. Shepherd FA, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32. https://doi.org/10.1056/NEJMoa050753.

    Article  CAS  PubMed  Google Scholar 

  3. Farzin M, et al. Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology. 2015;47:302–7. https://doi.org/10.1097/PAT.0000000000000250.

    Article  CAS  PubMed  Google Scholar 

  4. Bueno R, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407–16. https://doi.org/10.1038/ng.3520.

    Article  CAS  PubMed  Google Scholar 

  5. Bott M, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43:668–72. https://doi.org/10.1038/ng.855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Testa JR, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43:1022–5. https://doi.org/10.1038/ng.912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu J, et al. Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Res. 2014;74:4388–97. https://doi.org/10.1158/0008-5472.CAN-14-1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Altomare DA, et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res. 2005;65:8090–5. https://doi.org/10.1158/0008-5472.CAN-05-2312.

    Article  CAS  PubMed  Google Scholar 

  9. Jongsma J, et al. A conditional mouse model for malignant mesothelioma. Cancer Cell. 2008;13:261–71. https://doi.org/10.1016/j.ccr.2008.01.030.

    Article  CAS  PubMed  Google Scholar 

  10. Walts AE, et al. BAP1 immunostain and CDKN2A (p16) FISH analysis: clinical applicability for the diagnosis of malignant mesothelioma in effusions. Diagn Cytopathol. 2016;44:599–606. https://doi.org/10.1002/dc.23491.

    Article  PubMed  Google Scholar 

  11. Hida T, et al. BAP1 immunohistochemistry and p16 FISH results in combination provide higher confidence in malignant pleural mesothelioma diagnosis: ROC analysis of the two tests. Pathol Int. 2016;66:563–70. https://doi.org/10.1111/pin.12453.

    Article  CAS  PubMed  Google Scholar 

  12. Hida T, et al. Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer. 2017;104:98–105. https://doi.org/10.1016/j.lungcan.2016.12.017.

    Article  PubMed  Google Scholar 

  13. Cheng JQ, et al. Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer. 1999;24:238–42.

    Article  CAS  PubMed  Google Scholar 

  14. Miyanaga A, et al. Hippo pathway gene mutations in malignant mesothelioma: revealed by RNA and targeted exon sequencing. J Thorac Oncol. 2015;10:844–51. https://doi.org/10.1097/JTO.0000000000000493.

    Article  CAS  PubMed  Google Scholar 

  15. Bonneville R, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precision Oncol. 2017;2017:1–15. https://doi.org/10.1200/PO.17.00073.

    Article  Google Scholar 

  16. Arulananda S, et al. Mismatch repair protein defects and microsatellite instability in malignant pleural mesothelioma. J Thorac Oncol. 2018;13:1588–94. https://doi.org/10.1016/j.jtho.2018.07.015.

    Article  PubMed  Google Scholar 

  17. Farmer H, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21. https://doi.org/10.1038/nature03445.

    Article  CAS  PubMed  Google Scholar 

  18. Fong PC, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34. https://doi.org/10.1056/NEJMoa0900212.

    Article  CAS  PubMed  Google Scholar 

  19. Busacca S, et al. BRCA1 is an essential mediator of vinorelbine-induced apoptosis in mesothelioma. J Pathol. 2012;227:200–8. https://doi.org/10.1002/path.3979.

    Article  CAS  PubMed  Google Scholar 

  20. Knijnenburg TA, et al. Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep. 2018;23:239–254 e236. https://doi.org/10.1016/j.celrep.2018.03.076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hakiri S, et al. Functional differences between wild-type and mutant-type BRCA1-associated protein 1 tumor suppressor against malignant mesothelioma cells. Cancer Sci. 2015;106:990–9. https://doi.org/10.1111/cas.12698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martincorena I, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2018;173:1823. https://doi.org/10.1016/j.cell.2018.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Von Hoff DD, et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009;361:1164–72. https://doi.org/10.1056/NEJMoa0905360.

    Article  Google Scholar 

  24. Rudin CM, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361:1173–8. https://doi.org/10.1056/NEJMoa0902903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meerang M, et al. Antagonizing the hedgehog pathway with Vismodegib impairs malignant pleural mesothelioma growth in vivo by affecting Stroma. Mol Cancer Ther. 2016;15:1095–105. https://doi.org/10.1158/1535-7163.MCT-15-0583.

    Article  CAS  PubMed  Google Scholar 

  26. You M, et al. Targeting of the hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg. 2014;147:508–16. https://doi.org/10.1016/j.jtcvs.2013.08.035.

    Article  CAS  PubMed  Google Scholar 

  27. Shi Y, et al. Role of hedgehog signaling in malignant pleural mesothelioma. Clin Cancer Res. 2012;18:4646–56. https://doi.org/10.1158/1078-0432.CCR-12-0599.

    Article  CAS  PubMed  Google Scholar 

  28. Lim CB, et al. Mutational analysis of hedgehog signaling pathway genes in human malignant mesothelioma. PLoS One. 2013;8:e66685. https://doi.org/10.1371/journal.pone.0066685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mok TS, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57. https://doi.org/10.1056/NEJMoa0810699.

    Article  CAS  PubMed  Google Scholar 

  30. Paez JG, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500. https://doi.org/10.1126/science.1099314.

    Article  CAS  PubMed  Google Scholar 

  31. Enomoto Y, et al. Epidermal growth factor receptor mutations in malignant pleural and peritoneal mesothelioma. J Clin Pathol. 2012;65:522–7. https://doi.org/10.1136/jclinpath-2011-200631.

    Article  CAS  PubMed  Google Scholar 

  32. Kim JE, et al. Mutational profiling of malignant mesothelioma revealed potential therapeutic targets in EGFR and NRAS. Transl Oncol. 2018;11:268–74. https://doi.org/10.1016/j.tranon.2018.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schildgen V, et al. Low frequency of EGFR mutations in pleural mesothelioma patients, Cologne, Germany. Appl Immunohistochem Mol Morphol. 2015;23:118–25. https://doi.org/10.1097/PDM.0b013e3182a3645e.

    Article  CAS  PubMed  Google Scholar 

  34. Butrynski JE, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363:1727–33. https://doi.org/10.1056/NEJMoa1007056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwak EL, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703. https://doi.org/10.1056/NEJMoa1006448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peters S, et al. Alectinib versus Crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377:829–38. https://doi.org/10.1056/NEJMoa1704795.

    Article  CAS  PubMed  Google Scholar 

  37. Soda M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6. https://doi.org/10.1038/nature05945.

    Article  CAS  PubMed  Google Scholar 

  38. Hung YP, et al. Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 2018;4:235–8. https://doi.org/10.1001/jamaoncol.2017.2918.

    Article  PubMed  Google Scholar 

  39. McGranahan N, et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med. 2015;7:283ra254. https://doi.org/10.1126/scitranslmed.aaa1408.

    Article  Google Scholar 

  40. Jamal-Hanjani M, et al. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol. 2014;12:e1001906. https://doi.org/10.1371/journal.pbio.1001906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jamal-Hanjani M, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376:2109–21. https://doi.org/10.1056/NEJMoa1616288.

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell TJ, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173:611–623 e617. https://doi.org/10.1016/j.cell.2018.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turajlic S, et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell. 2018;173:595–610 e511. https://doi.org/10.1016/j.cell.2018.03.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Szlosarek PW, et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res. 2006;12:7126–31. https://doi.org/10.1158/1078-0432.CCR-06-1101.

    Article  CAS  PubMed  Google Scholar 

  45. Szlosarek PW, et al. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol. 2017;3:58–66. https://doi.org/10.1001/jamaoncol.2016.3049.

    Article  PubMed  Google Scholar 

  46. Szlosarek PW, et al. Metabolic response to pegylated arginine deiminase in mesothelioma with promoter methylation of argininosuccinate synthetase. J Clin Oncol. 2013;31:e111–3. https://doi.org/10.1200/JCO.2012.42.1784.

    Article  PubMed  Google Scholar 

  47. Nicholson LJ, et al. Epigenetic silencing of argininosuccinate synthetase confers resistance to platinum-induced cell death but collateral sensitivity to arginine auxotrophy in ovarian cancer. Int J Cancer. 2009;125:1454–63. https://doi.org/10.1002/ijc.24546.

    Article  CAS  PubMed  Google Scholar 

  48. Beddowes E, et al. Phase 1 dose-escalation study of pegylated arginine Deiminase, Cisplatin, and Pemetrexed in patients with argininosuccinate synthetase 1-deficient thoracic cancers. J Clin Oncol. 2017;35:1778–85. https://doi.org/10.1200/JCO.2016.71.3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Locke M, et al. Inhibition of the polyamine synthesis pathway is synthetically lethal with loss of Argininosuccinate synthase 1. Cell Rep. 2016;16:1604–13. https://doi.org/10.1016/j.celrep.2016.06.097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. LaFave LM, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 2015;21:1344–9. https://doi.org/10.1038/nm.3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garnett MJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5. https://doi.org/10.1038/nature11005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iorio F, et al. A landscape of pharmacogenomic interactions in cancer. Cell. 2016;166:740–54. https://doi.org/10.1016/j.cell.2016.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsherniak A, et al. Defining a cancer dependency map. Cell. 2017;170:564–576 e516. https://doi.org/10.1016/j.cell.2017.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boehm JS, Golub TR. An ecosystem of cancer cell line factories to support a cancer dependency map. Nat Rev Genet. 2015;16:373–4. https://doi.org/10.1038/nrg3967.

    Article  CAS  PubMed  Google Scholar 

  55. Marjon K, et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 Axis. Cell Rep. 2016;15:574–87. https://doi.org/10.1016/j.celrep.2016.03.043.

    Article  CAS  PubMed  Google Scholar 

  56. Mavrakis KJ, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science. 2016;351:1208–13. https://doi.org/10.1126/science.aad5944.

    Article  CAS  PubMed  Google Scholar 

  57. Kryukov GV, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science. 2016;351:1214–8. https://doi.org/10.1126/science.aad5214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Illei PB, Rusch VW, Zakowski MF, Ladanyi M. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res. 2003;9:2108–13.

    CAS  PubMed  Google Scholar 

  59. Kindler HL, Burris HA 3rd, Sandler AB, Oliff IA. A phase II multicenter study of L-alanosine, a potent inhibitor of adenine biosynthesis, in patients with MTAP-deficient cancer. Investig New Drugs. 2009;27:75–81. https://doi.org/10.1007/s10637-008-9160-1.

    Article  CAS  Google Scholar 

  60. Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature. 1998;395:237–43. https://doi.org/10.1038/26155.

    Article  CAS  PubMed  Google Scholar 

  61. Lopez-Rios F, et al. Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res. 2006;66:2970–9. https://doi.org/10.1158/0008-5472.CAN-05-3907.

    Article  CAS  PubMed  Google Scholar 

  62. Dacic S, et al. Prognostic significance of p16/cdkn2a loss in pleural malignant mesotheliomas. Virchows Arch. 2008;453:627–35. https://doi.org/10.1007/s00428-008-0689-3.

    Article  PubMed  Google Scholar 

  63. Kolluri KK, et al. Loss of functional BAP1 augments sensitivity to TRAIL in cancer cells. elife. 2018;7:e30224. https://doi.org/10.7554/eLife.30224.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Quispel-Janssen JM, et al. Comprehensive pharmacogenomic profiling of malignant pleural mesothelioma identifies a subgroup sensitive to FGFR inhibition. Clin Cancer Res. 2018;24:84–94. https://doi.org/10.1158/1078-0432.CCR-17-1172.

    Article  CAS  PubMed  Google Scholar 

  65. Billingham L, Malottki K, Steven N. Research methods to change clinical practice for patients with rare cancers. Lancet Oncol. 2016;17:e70–80. https://doi.org/10.1016/S1470-2045(15)00396-4.

    Article  PubMed  Google Scholar 

  66. Middleton G, et al. The National Lung Matrix Trial: translating the biology of stratification in advanced non-small-cell lung cancer. Ann Oncol. 2015;26:2464–9. https://doi.org/10.1093/annonc/mdv394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yap TA, Aerts JG, Popat S, Fennell DA. Novel insights into mesothelioma biology and implications for therapy. Nat Rev Cancer. 2017;17:475–88. https://doi.org/10.1038/nrc.2017.42.

    Article  CAS  PubMed  Google Scholar 

  68. Reck M, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33. https://doi.org/10.1056/NEJMoa1606774.

    Article  CAS  PubMed  Google Scholar 

  69. Brahmer J, et al. Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35. https://doi.org/10.1056/NEJMoa1504627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Langer CJ, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17:1497–508. https://doi.org/10.1016/S1470-2045(16)30498-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garon EB, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28. https://doi.org/10.1056/NEJMoa1501824.

    Article  PubMed  Google Scholar 

  72. Gandhi L, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92. https://doi.org/10.1056/NEJMoa1801005.

    Article  CAS  PubMed  Google Scholar 

  73. Soria JC, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378:113–25. https://doi.org/10.1056/NEJMoa1713137.

    Article  CAS  PubMed  Google Scholar 

  74. Forde PM, et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med. 2018;378:1976–86. https://doi.org/10.1056/NEJMoa1716078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alley EW, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017;18:623–30. https://doi.org/10.1016/S1470-2045(17)30169-9.

    Article  CAS  PubMed  Google Scholar 

  76. Quispel-Janssen J, et al. Programmed death 1 blockade with Nivolumab in patients with recurrent malignant pleural mesothelioma. J Thorac Oncol. 2018;13:1436–7. https://doi.org/10.1016/j.jtho.2018.05.038.

    Article  Google Scholar 

  77. Mansfield AS, et al. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J Thorac Oncol. 2014;9:1036–40. https://doi.org/10.1097/JTO.0000000000000177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fennell DA, et al. CONFIRM: a double-blind, placebo-controlled phase III clinical trial investigating the effect of nivolumab in patients with relapsed mesothelioma: study protocol for a randomised controlled trial. Trials. 2018;19:233. https://doi.org/10.1186/s13063-018-2602-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Larkin J, et al. Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34. https://doi.org/10.1056/NEJMoa1504030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Socinski MA, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378:2288–301. https://doi.org/10.1056/NEJMoa1716948.

    Article  CAS  PubMed  Google Scholar 

  81. Hellmann MD, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104. https://doi.org/10.1056/NEJMoa1801946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maio M, et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017;18:1261–73. https://doi.org/10.1016/S1470-2045(17)30446-1.

    Article  CAS  PubMed  Google Scholar 

  83. Calabro L, et al. Tremelimumab combined with durvalumab in patients with mesothelioma (NIBIT-MESO-1): an open-label, non-randomised, phase 2 study. Lancet Respir Med. 2018;6:451–60. https://doi.org/10.1016/S2213-2600(18)30151-6.

    Article  CAS  PubMed  Google Scholar 

  84. Dual checkpoint blockade takes aim at relapsed mesothelioma. Cancer Discov. 2017;7:OF7. https://doi.org/10.1158/2159-8290.CD-NB2017-087.

  85. Manegold C, et al. The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J Thorac Oncol. 2017;12:194–207. https://doi.org/10.1016/j.jtho.2016.10.003.

    Article  PubMed  Google Scholar 

  86. Serrels A, et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell. 2015;163:160–73. https://doi.org/10.1016/j.cell.2015.09.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiang H, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22:851–60. https://doi.org/10.1038/nm.4123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean A. Fennell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fennell, D.A. (2019). Unmet Needs and Future Outlook of Mesothelioma Management. In: Ceresoli, G., Bombardieri, E., D'Incalci, M. (eds) Mesothelioma. Springer, Cham. https://doi.org/10.1007/978-3-030-16884-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16884-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16883-4

  • Online ISBN: 978-3-030-16884-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics