Skip to main content

Asbestos and the Pathophysiology of Mesothelioma

  • Chapter
  • First Online:
Book cover Mesothelioma

Abstract

Asbestos is the term used for a family of naturally occurring minerals with fire-retarding and insulating properties that are strong and highly durable. These characteristics and a relatively low price have contributed to the popularity of mining these inorganic substances at various locations in the world. In the beginning of the 1900s, a surge of asbestos use was noted in Europe, gradually followed by the rest of the world. The link between asbestos exposure and the occurrence of mesothelioma recognized by Wagner in 1960 marks the starting point of an intensive research journey into the aetiology, epidemiology and biology of malignant mesothelioma, one of the most lethal solid tumours in humans. The mesothelioma diagnosis is commonly made several years after the date of first asbestos exposure making asbestos ‘A time bomb with a long fuse’. It is therefore not surprising that mesothelioma incidence is following the major rise of asbestos consumption with some delay. The grim lessons from cancer epidemiology have translated into universal asbestos bans in Europe, Australia, Japan and Korea. However, the rest of the world has been slow to take heed of the growing medical insight and the numerous reports describing the carcinogenic potential of all forms of asbestos. Outside the countries that have fully banned asbestos and its products, consumption of these minerals continues on a massive scale, directly contributing to the health problems of tomorrow. This chapter summarizes the history of the discovery of mesothelioma and discusses novel epidemiological insight including the chrysotile controversy as well as translational studies elucidating the biology and pathogenesis of mesothelioma. The asbestos history is a lesson that should not be repeated, and it is hoped that this chapter will contribute to awareness of the dangers of a most prominent occupational and environmental carcinogen and will lead to a pro-active attitude of regulatory bodies in countries that have failed so far to take the necessary steps to curtail the ‘man-made’ epidemic of mesothelioma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960;17:260–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Attanoos RL, Churg A, Galateau-Salle F, Gibbs AR, Roggli VL. Malignant mesothelioma and its non-Asbestos causes. Arch Pathol Lab Med. 2018;142(6):753–60.

    Article  PubMed  Google Scholar 

  3. Bianchi C, Giarelli L, Grandi G, Brollo A, Ramani L, Zuch C. Latency periods in asbestos-related mesothelioma of the pleura. Eur J Cancer Prev. 1997;6(2):162–6.

    CAS  PubMed  Google Scholar 

  4. Linton A, Vardy J, Clarke S, van Zandwijk N. The ticking time-bomb of asbestos: its insidious role in the development of malignant mesothelioma. Crit Rev Oncol Hematol. 2012;84(2):200–12.

    Article  PubMed  Google Scholar 

  5. Ferrante D, Mirabelli D, Tunesi S, Terracini B, Magnani C. Pleural mesothelioma and asbestos exposure: a case-control study with quantitative risk assessment-response to Marsh and Benson’s letter. Occup Environ Med. 2017;74(2):157–8.

    Article  PubMed  Google Scholar 

  6. Pira E, Romano C, Violante FS, Farioli A, Spatari G, La Vecchia C, et al. Updated mortality study of a cohort of asbestos textile workers. Cancer Med. 2016;5(9):2623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ndlovu N, Rees D, Murray J, Vorajee N, Richards G, teWaterNaude J. Asbestos-related diseases in mineworkers: a clinicopathological study. ERJ Open Res. 2017;3(3):00022-2017.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pairon JC, Andujar P, Rinaldo M, Ameille J, Brochard P, Chamming’s S, et al. Asbestos exposure, pleural plaques, and the risk of death from lung cancer. Am J Respir Crit Care Med. 2014;190(12):1413–20.

    Article  PubMed  Google Scholar 

  9. Ngamwong Y, Tangamornsuksan W, Lohitnavy O, Chaiyakunapruk N, Scholfield CN, Reisfeld B, et al. Additive synergism between asbestos and smoking in lung cancer risk: a systematic review and meta-analysis. PLoS One. 2015;10(8):e0135798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Roe OD, Stella GM. Malignant pleural mesothelioma: history, controversy and future of a manmade epidemic. Eur Respir Rev. 2015;24(135):115–31.

    Article  PubMed  Google Scholar 

  11. Pira E, Donato F, Maida L, Discalzi G. Exposure to asbestos: past, present and future. J Thorac Dis. 2018;10(Suppl 2):S237–S45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boulanger G, Andujar P, Pairon JC, Billon-Galland MA, Dion C, Dumortier P, et al. Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environ Health. 2014;13:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Roggli VL, Sharma A, Butnor KJ, Sporn T, Vollmer RT. Malignant mesothelioma and occupational exposure to asbestos: a clinicopathological correlation of 1445 cases. Ultrastruct Pathol. 2002;26(2):55–65.

    Article  PubMed  Google Scholar 

  14. Cooke WE. Fibrosis of the lungs due to the inhalation of asbestos dust. Br Med J. 1924;2(3317):140–2, 147.

    Article  Google Scholar 

  15. Cooke WE. Pulmonary asbestosis. Br Med J. 1927;2(3491):1024–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gloyne SR, Merewether ER. Asbestos. In: Occupation and health: encyclopedia of hygiene, pathology, and social welfare. Geneva: International Labour Office; 1938. p. S1–15.

    Google Scholar 

  17. Doll R. Mortality from lung cancer in asbestos workers. Br J Ind Med. 1955;12(2):81–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Der Schoot HC. [Asbestosis & pleural tumors]. Ned Tijdschr Geneeskd. 1958;102(23):1125–6.

    Google Scholar 

  19. Weiss A. [Cancer of pleura in pulmonary asbestosis determined morphologically in vivo]. Medizinische. 1953;6(3):93–4.

    Google Scholar 

  20. Lehnert M, Kraywinkel K, Heinze E, Wiethege T, Johnen G, Fiebig J, et al. Incidence of malignant mesothelioma in Germany 2009-2013. Cancer Causes Control. 2017;28(2):97–105.

    Article  PubMed  Google Scholar 

  21. Soeberg MJ, Leigh J, van Zandwijk N. Malignant mesothelioma in Australia 2015: current incidence and asbestos exposure trends. J Toxicol Environ Health B Crit Rev. 2016;19(5–6):173–89.

    Article  CAS  PubMed  Google Scholar 

  22. Agudo A, Gonzalez CA, Bleda MJ, Ramirez J, Hernandez S, Lopez F, et al. Occupation and risk of malignant pleural mesothelioma: a case-control study in Spain. Am J Ind Med. 2000;37(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  23. Aguilar-Madrid G, Robles-Perez E, Juarez-Perez CA, Alvarado-Cabrero I, Rico-Mendez FG, Javier KG. Case-control study of pleural mesothelioma in workers with social security in Mexico. Am J Ind Med. 2010;53(3):241–51.

    PubMed  Google Scholar 

  24. Howel D, Arblaster L, Swinburne L, Schweiger M, Renvoize E, Hatton P. Routes of asbestos exposure and the development of mesothelioma in an English region. Occup Environ Med. 1997;54(6):403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwatsubo Y, Pairon JC, Boutin C, Menard O, Massin N, Caillaud D, et al. Pleural mesothelioma: dose-response relation at low levels of asbestos exposure in a French population-based case-control study. Am J Epidemiol. 1998;148(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  26. Rees D, Goodman K, Fourie E, Chapman R, Blignaut C, Bachmann MO, et al. Asbestos exposure and mesothelioma in South Africa. S Afr Med J. 1999;89(6):627–34.

    CAS  PubMed  Google Scholar 

  27. Rodelsperger K, Jockel KH, Pohlabeln H, Romer W, Woitowitz HJ. Asbestos and man-made vitreous fibers as risk factors for diffuse malignant mesothelioma: results from a German hospital-based case-control study. Am J Ind Med. 2001;39(3):262–75.

    Article  CAS  PubMed  Google Scholar 

  28. Pintos J, Parent ME, Case BW, Rousseau MC, Siemiatycki J. Risk of mesothelioma and occupational exposure to asbestos and man-made vitreous fibers: evidence from two case-control studies in Montreal, Canada. J Occup Environ Med. 2009;51(10):1177–84.

    Article  PubMed  Google Scholar 

  29. Lacourt A, Gramond C, Rolland P, Ducamp S, Audignon S, Astoul P, et al. Occupational and non-occupational attributable risk of asbestos exposure for malignant pleural mesothelioma. Thorax. 2014;69(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  30. Noonan CW. Environmental asbestos exposure and risk of mesothelioma. Ann Transl Med. 2017;5(11):234.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Donovan EP, Donovan BL, McKinley MA, Cowan DM, Paustenbach DJ. Evaluation of take home (para-occupational) exposure to asbestos and disease: a review of the literature. Crit Rev Toxicol. 2012;42(9):703–31.

    Article  PubMed  Google Scholar 

  32. Reid A, Berry G, Heyworth J, de Klerk NH, Musk AW. Predicted mortality from malignant mesothelioma among women exposed to blue asbestos at Wittenoom, Western Australia. Occup Environ Med. 2009;66(3):169–74.

    Article  CAS  PubMed  Google Scholar 

  33. Goswami E, Craven V, Dahlstrom DL, Alexander D, Mowat F. Domestic asbestos exposure: a review of epidemiologic and exposure data. Int J Environ Res Public Health. 2013;10(11):5629–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tarres J, Alberti C, Martinez-Artes X, Abos-Herrandiz R, Rosell-Murphy M, Garcia-Allas I, et al. Pleural mesothelioma in relation to meteorological conditions and residential distance from an industrial source of asbestos. Occup Environ Med. 2013;70(8):588–90.

    Article  PubMed  Google Scholar 

  35. Kurumatani N, Kumagai S. Mapping the risk of mesothelioma due to neighborhood asbestos exposure. Am J Respir Crit Care Med. 2008;178(6):624–9.

    Article  PubMed  Google Scholar 

  36. Korda RJ, Clements MS, Armstrong BK, Law HD, Guiver T, Anderson PR, et al. Risk of cancer associated with residential exposure to asbestos insulation: a whole-population cohort study. Lancet Public Health. 2017;2(11):e522–e8.

    Article  PubMed  Google Scholar 

  37. Olsen NJ, Franklin PJ, Reid A, de Klerk NH, Threlfall TJ, Shilkin K, et al. Increasing incidence of malignant mesothelioma after exposure to asbestos during home maintenance and renovation. Med J Aust. 2011;195(5):271–4.

    Article  PubMed  Google Scholar 

  38. Zeig-Owens R, Webber MP, Hall CB, Schwartz T, Jaber N, Weakley J, et al. Early assessment of cancer outcomes in New York City firefighters after the 9/11 attacks: an observational cohort study. Lancet. 2011;378(9794):898–905.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bianchi C, Bianchi T. Global mesothelioma epidemic: trend and features. Indian J Occup Environ Med. 2014;18(2):82–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Henderson DW, Reid G, Kao SC, van Zandwijk N, Klebe S. Challenges and controversies in the diagnosis of mesothelioma: part 1. Cytology-only diagnosis, biopsies, immunohistochemistry, discrimination between mesothelioma and reactive mesothelial hyperplasia, and biomarkers. J Clin Pathol. 2013;66(10):847–53.

    Article  PubMed  Google Scholar 

  41. Henderson DW, Reid G, Kao SC, van Zandwijk N, Klebe S. Challenges and controversies in the diagnosis of malignant mesothelioma: part 2. Malignant mesothelioma subtypes, pleural synovial sarcoma, molecular and prognostic aspects of mesothelioma, BAP1, aquaporin-1 and microRNA. J Clin Pathol. 2013;66(10):854–61.

    Article  PubMed  Google Scholar 

  42. Soeberg MJ, Luong MA, Tran VT, Tran AT, Nguyen TT, Bui D, et al. Estimating the incidence of malignant mesothelioma in Vietnam: a pilot descriptive cancer registration study. Int J Occup Environ Health. 2016;22(2):167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park EK, Takahashi K, Hoshuyama T, Cheng TJ, Delgermaa V, Le GV, et al. Global magnitude of reported and unreported mesothelioma. Environ Health Perspect. 2011;119(4):514–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harper M. 10th Anniversary critical review: naturally occurring asbestos. J Environ Monit. 2008;10(12):1394–408.

    Article  CAS  PubMed  Google Scholar 

  45. Bayram M, Bakan ND. Environmental exposure to asbestos: from geology to mesothelioma. Curr Opin Pulm Med. 2014;20(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  46. Constantopoulos SH. Environmental mesothelioma associated with tremolite asbestos: lessons from the experiences of Turkey, Greece, Corsica, New Caledonia and Cyprus. Regul Toxicol Pharmacol. 2008;52(1 Suppl):S110–5.

    Article  CAS  PubMed  Google Scholar 

  47. McConnochie K, Simonato L, Mavrides P, Christofides P, Mitha R, Griffiths DM, et al. Mesothelioma in cyprus. IARC Sci Publ. 1989;90:411–9.

    Google Scholar 

  48. Luce D, Brochard P, Quenel P, Salomon-Nekiriai C, Goldberg P, Billon-Galland MA, et al. Malignant pleural mesothelioma associated with exposure to tremolite. Lancet. 1994;344(8939–8940):1777.

    Article  CAS  PubMed  Google Scholar 

  49. Luo S, Liu X, Mu S, Tsai SP, Wen CP. Asbestos related diseases from environmental exposure to crocidolite in Da-yao, China. I. Review of exposure and epidemiological data. Occup Environ Med. 2003;60(1):35–41; discussion-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Baumann F, Maurizot P, Mangeas M, Ambrosi JP, Douwes J, Robineau B. Pleural mesothelioma in New Caledonia: associations with environmental risk factors. Environ Health Perspect. 2011;119(5):695–700.

    Article  PubMed  Google Scholar 

  51. Baumann F, Buck BJ, Metcalf RV, McLaurin BT, Merkler DJ, Carbone M. The presence of asbestos in the natural environment is likely related to mesothelioma in young individuals and women from Southern Nevada. J Thorac Oncol. 2015;10(5):731–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frank AL, Joshi TK. The global spread of asbestos. Ann Glob Health. 2014;80(4):257–62.

    Article  PubMed  Google Scholar 

  53. Lin RT, Takahashi K, Karjalainen A, Hoshuyama T, Wilson D, Kameda T, et al. Ecological association between asbestos-related diseases and historical asbestos consumption: an international analysis. Lancet. 2007;369(9564):844–9.

    Article  CAS  PubMed  Google Scholar 

  54. Allen TC, Cagle PT, Churg AM, Colby TV, Gibbs AR, Hammar SP, et al. Localized malignant mesothelioma. Am J Surg Pathol. 2005;29(7):866–73.

    Article  PubMed  Google Scholar 

  55. Kazan-Allen L. The debate on banning asbestos. CMAJ. 2001;165(9):1189; author reply 91-3.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kazan-Allen L. Asbestos poisons World Trade Organization atmosphere. Int J Health Serv. 2001;31(3):481–93.

    Article  CAS  PubMed  Google Scholar 

  57. Greenberg M. The defence of chrysotile, 1912-2007. Int J Occup Environ Health. 2008;14(1):57–66.

    Article  PubMed  Google Scholar 

  58. Ruff K. How Canada changed from exporting asbestos to banning asbestos: the challenges that had to be overcome. Int J Environ Res Public Health. 2017;14(10):E1135.

    Article  PubMed  Google Scholar 

  59. Ruff K. How Canada’s asbestos industry was defeated in Quebec. New Solut. 2017;26(4):543–56.

    Article  PubMed  Google Scholar 

  60. Courtice MN, Lin S, Wang X. An updated review on asbestos and related diseases in China. Int J Occup Environ Health. 2012;18(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  61. Andersen PK, Geskus RB, de Witte T, Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol. 2012;41(3):861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guo Z, Carbone M, Zhang X, Su D, Sun W, Lou J, et al. Improving the accuracy of mesothelioma diagnosis in China. J Thorac Oncol. 2017;12(4):714–23.

    Article  PubMed  Google Scholar 

  63. Jiang Z, Chen T, Chen J, Ying S, Gao Z, He X, et al. Hand-spinning chrysotile exposure and risk of malignant mesothelioma: a case-control study in Southeastern China. Int J Cancer. 2018;142(3):514–23.

    Article  CAS  PubMed  Google Scholar 

  64. Gao Z, Hiroshima K, Wu X, Zhang J, Shao D, Shao H, et al. Asbestos textile production linked to malignant peritoneal and pleural mesothelioma in women: analysis of 28 cases in Southeast China. Am J Ind Med. 2015;58(10):1040–9.

    Article  PubMed  Google Scholar 

  65. Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1666–80.

    Article  CAS  PubMed  Google Scholar 

  66. Harington JS. Fiber carcinogenesis: epidemiologic observations and the Stanton hypothesis. J Natl Cancer Inst. 1981;67(5):977–89.

    CAS  PubMed  Google Scholar 

  67. Gaudichet A, Sebastien P, Clark NJ, Pooley FD. Identification and quantification of asbestos fibres in human tissues. IARC Sci Publ. 1980;30:61–8.

    CAS  Google Scholar 

  68. Rowlands N, Gibbs GW, McDonald AD. Asbestos fibres in the lungs of chrysotile miners and millers—a preliminary report. Ann Occup Hyg. 1982;26(1–4):411–5.

    CAS  PubMed  Google Scholar 

  69. Rogers AJ, Leigh J, Berry G, Ferguson DA, Mulder HB, Ackad M. Relationship between lung asbestos fiber type and concentration and relative risk of mesothelioma. A case-control study. Cancer. 1991;67(7):1912–20.

    Article  CAS  PubMed  Google Scholar 

  70. Dufresne A, Harrigan M, Masse S, Begin R. Fibers in lung tissues of mesothelioma cases among miners and millers of the township of Asbestos, Quebec. Am J Ind Med. 1995;27(4):581–92.

    Article  CAS  PubMed  Google Scholar 

  71. Suzuki Y, Yuen SR, Ashley R. Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: pathological evidence. Int J Hyg Environ Health. 2005;208(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  72. Feder IS, Tischoff I, Theile A, Schmitz I, Merget R, Tannapfel A. The asbestos fibre burden in human lungs: new insights into the chrysotile debate. Eur Respir J. 2017;49(6):1602534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Berman DW, Crump KS. Update of potency factors for asbestos-related lung cancer and mesothelioma. Crit Rev Toxicol. 2008;38(Suppl 1):1–47.

    Article  CAS  PubMed  Google Scholar 

  74. Wang X, Yano E, Qiu H, Yu I, Courtice MN, Tse LA, et al. A 37-year observation of mortality in Chinese chrysotile asbestos workers. Thorax. 2012;67(2):106–10.

    Article  PubMed  Google Scholar 

  75. Pezerat H. Chrysotile biopersistence: the misuse of biased studies. Int J Occup Environ Health. 2009;15(1):102–6.

    Article  PubMed  Google Scholar 

  76. Dogan AU, Dogan M, Hoskins JA. Erionite series minerals: mineralogical and carcinogenic properties. Environ Geochem Health. 2008;30(4):367–81.

    Article  CAS  PubMed  Google Scholar 

  77. Baris YI, Sahin AA, Ozesmi M, Kerse I, Ozen E, Kolacan B, et al. Outbreak of pleural mesothelioma and chronic fibrosing pleurisy in village of Karain-Urgup in Anatolia. Thorax. 1978;33(2):181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Baris YI, Grandjean P. Prospective study of mesothelioma mortality in Turkish villages with exposure to fibrous zeolite. J Natl Cancer Inst. 2006;98(6):414–7.

    Article  CAS  PubMed  Google Scholar 

  79. Wagner JC, Skidmore JW, Hill RJ, Griffiths DM. Erionite exposure and mesotheliomas in rats. Br J Cancer. 1985;51(5):727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baris B, Demir AU, Shehu V, Karakoca Y, Kisacik G, Baris YI. Environmental fibrous zeolite (erionite) exposure and malignant tumors other than mesothelioma. J Environ Pathol Toxicol Oncol. 1996;15(2–4):183–9.

    CAS  PubMed  Google Scholar 

  81. Ortega-Guerrero MA, Carrasco-Nunez G, Barragan-Campos H, Ortega MR. High incidence of lung cancer and malignant mesothelioma linked to erionite fibre exposure in a rural community in Central Mexico. Occup Environ Med. 2015;72(3):216–8.

    Article  PubMed  Google Scholar 

  82. Carbone M, Baris YI, Bertino P, Brass B, Comertpay S, Dogan AU, et al. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc Natl Acad Sci U S A. 2011;108(33):13618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roushdy-Hammady I, Siegel J, Emri S, Testa JR, Carbone M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet. 2001;357(9254):444–5.

    Article  CAS  PubMed  Google Scholar 

  84. Dogan AU, Baris YI, Dogan M, Emri S, Steele I, Elmishad AG, et al. Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey. Cancer Res. 2006;66(10):5063–8.

    Article  CAS  PubMed  Google Scholar 

  85. De Bruin ML, Burgers JA, Baas P, van ’t Veer MB, Noordijk EM, Louwman MW, et al. Malignant mesothelioma after radiation treatment for Hodgkin lymphoma. Blood. 2009;113(16):3679–81.

    Article  PubMed  CAS  Google Scholar 

  86. Travis LB, Fossa SD, Schonfeld SJ, McMaster ML, Lynch CF, Storm H, et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst. 2005;97(18):1354–65.

    Article  PubMed  Google Scholar 

  87. Peterson JT Jr, Greenberg SD, Buffler PA. Non-asbestos-related malignant mesothelioma. A review. Cancer. 1984;54(5):951–60.

    Article  PubMed  Google Scholar 

  88. Farioli A, Ottone M, Morganti AG, Compagnone G, Romani F, Cammelli S, et al. Radiation-induced mesothelioma among long-term solid cancer survivors: a longitudinal analysis of SEER database. Cancer Med. 2016;5(5):950–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Stey C, Landolt-Weber U, Vetter W, Sauter C, Marincek B. Malignant peritoneal mesothelioma after Thorotrast exposure. Am J Clin Oncol. 1995;18(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  90. Goodman JE, Nascarella MA, Valberg PA. Ionizing radiation: a risk factor for mesothelioma. Cancer Causes Control. 2009;20(8):1237–54.

    Article  PubMed  Google Scholar 

  91. Sanders CL, Jackson TA. Induction of mesotheliomas and sarcomas from “hot spots” of 239 PuO 2 activity. Health Phys. 1972;22(6):755–9.

    Article  CAS  PubMed  Google Scholar 

  92. Hillerdal G, Berg J. Malignant mesothelioma secondary to chronic inflammation and old scars. Two new cases and review of the literature. Cancer. 1985;55(9):1968–72.

    Article  CAS  PubMed  Google Scholar 

  93. Roviaro GC, Sartori F, Calabro F, Varoli F. The association of pleural mesothelioma and tuberculosis. Am Rev Respir Dis. 1982;126(3):569–71.

    CAS  PubMed  Google Scholar 

  94. Riddell RH, Goodman MJ, Moossa AR. Peritoneal malignant mesothelioma in a patient with recurrent peritonitis. Cancer. 1981;48(1):134–9.

    Article  CAS  PubMed  Google Scholar 

  95. Butnor KJ, Pavlisko EN, Sporn TA, Roggli VL. Malignant peritoneal mesothelioma and Crohn disease. J Clin Pathol. 2017;70(3):228–32.

    Article  PubMed  Google Scholar 

  96. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Boffetta P, Donaldson K, Moolgavkar S, Mandel JS. A systematic review of occupational exposure to synthetic vitreous fibers and mesothelioma. Crit Rev Toxicol. 2014;44(5):436–49.

    Article  CAS  PubMed  Google Scholar 

  98. Moller P, Jacobsen NR. Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes. Crit Rev Toxicol. 2017;47(10):867–84.

    Article  PubMed  CAS  Google Scholar 

  99. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 2009;4(11):747–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pepper C, Jasani B, Navabi H, Wynford-Thomas D, Gibbs AR. Simian virus 40 large T antigen (SV40LTAg) primer specific DNA amplification in human pleural mesothelioma tissue. Thorax. 1996;51(11):1074–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Poulin DL, DeCaprio JA. Is there a role for SV40 in human cancer? J Clin Oncol. 2006;24(26):4356–65.

    Article  CAS  PubMed  Google Scholar 

  102. Cristaudo A, Foddis R, Vivaldi A, Buselli R, Gattini V, Guglielmi G, et al. SV40 enhances the risk of malignant mesothelioma among people exposed to asbestos: a molecular epidemiologic case-control study. Cancer Res. 2005;65(8):3049–52.

    Article  CAS  PubMed  Google Scholar 

  103. Strickler HD, International SVWG. A multicenter evaluation of assays for detection of SV40 DNA and results in masked mesothelioma specimens. Cancer Epidemiol Biomark Prev. 2001;10(5):523–32.

    CAS  Google Scholar 

  104. Strickler HD, Goedert JJ, Devesa SS, Lahey J, Fraumeni JF Jr, Rosenberg PS. Trends in U.S. pleural mesothelioma incidence rates following simian virus 40 contamination of early poliovirus vaccines. J Natl Cancer Inst. 2003;95(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  105. Kane AB. Animal models of malignant mesothelioma. Inhal Toxicol. 2006;18(12):1001–4.

    Article  PubMed  CAS  Google Scholar 

  106. Robinson C, Dick IM, Wise MJ, Holloway A, Diyagama D, Robinson BW, et al. Consistent gene expression profiles in MexTAg transgenic mouse and wild type mouse asbestos-induced mesothelioma. BMC Cancer. 2015;15:983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Herrick SE, Mutsaers SE. Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol. 2004;36(4):621–42.

    Article  CAS  PubMed  Google Scholar 

  108. Bolen JW, Hammar SP, McNutt MA. Reactive and neoplastic serosal tissue. A light-microscopic, ultrastructural, and immunocytochemical study. Am J Surg Pathol. 1986;10(1):34–47.

    Article  CAS  PubMed  Google Scholar 

  109. Jaurand MC, Fleury-Feith J. Pathogenesis of malignant pleural mesothelioma. Respirology. 2005;10(1):2–8.

    Article  PubMed  Google Scholar 

  110. Roe OD, Anderssen E, Helge E, Pettersen CH, Olsen KS, Sandeck H, et al. Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One. 2009;4(8):e6554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Heintz NH, Janssen-Heininger YM, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol. 2010;42(2):133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chew SH, Toyokuni S. Malignant mesothelioma as an oxidative stress-induced cancer: an update. Free Radic Biol Med. 2015;86:166–78.

    Article  CAS  PubMed  Google Scholar 

  113. Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C, et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A. 2010;107(28):12611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–16.

    Article  CAS  PubMed  Google Scholar 

  115. Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75(2):264–9.

    Article  CAS  PubMed  Google Scholar 

  116. Lo Iacono M, Monica V, Righi L, Grosso F, Libener R, Vatrano S, et al. Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol. 2015;10(3):492–9.

    Article  CAS  PubMed  Google Scholar 

  117. Altomare DA, Menges CW, Xu J, Pei J, Zhang L, Tadevosyan A, et al. Losses of both products of the Cdkn2a/Arf locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis. PLoS One. 2011;6(4):e18828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Altomare DA, Vaslet CA, Skele KL, De Rienzo A, Devarajan K, Jhanwar SC, et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res. 2005;65(18):8090–5.

    Article  CAS  PubMed  Google Scholar 

  119. Jongsma J, van Montfort E, Vooijs M, Zevenhoven J, Krimpenfort P, van der Valk M, et al. A conditional mouse model for malignant mesothelioma. Cancer Cell. 2008;13(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  120. Xu J, Kadariya Y, Cheung M, Pei J, Talarchek J, Sementino E, et al. Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Res. 2014;74(16):4388–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ascoli V, Romeo E, Carnovale Scalzo C, Cozzi I, Ancona L, Cavariani F, et al. Familial malignant mesothelioma: a population-based study in central Italy (1980-2012). Cancer Epidemiol. 2014;38(3):273–8.

    Article  PubMed  Google Scholar 

  122. Matullo G, Guarrera S, Betti M, Fiorito G, Ferrante D, Voglino F, et al. Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study. PLoS One. 2013;8(4):e61253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ascoli V, Cozzi I, Vatrano S, Izzo S, Giorcelli J, Romeo E, et al. Mesothelioma families without inheritance of a BAP1 predisposing mutation. Cancer Genet. 2016;209(9):381–7.

    Article  CAS  PubMed  Google Scholar 

  125. LaFave LM, Beguelin W, Koche R, Teater M, Spitzer B, Chramiec A, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 2015;21(11):1344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zauderer MG, Szlosarek P, Le Moulec S, Popat S, Taylor P, Planchard D, et al. Phase 2, multicenter study of the EZH2 inhibitor tazemetostat as monotherapy in adults with relapsed or refractory (R/R) malignant mesothelioma (MM) with BAP1 inactivation. J Clin Oncol. 2018;36(15_suppl; abstr):8515.

    Article  Google Scholar 

  127. Gordon GJ, Rockwell GN, Jensen RV, Rheinwald JG, Glickman JN, Aronson JP, et al. Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol. 2005;166(6):1827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pass HI, Liu Z, Wali A, Bueno R, Land S, Lott D, et al. Gene expression profiles predict survival and progression of pleural mesothelioma. Clin Cancer Res. 2004;10(3):849–59.

    Article  CAS  PubMed  Google Scholar 

  129. Lopez-Rios F, Chuai S, Flores R, Shimizu S, Ohno T, Wakahara K, et al. Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res. 2006;66(6):2970–9.

    Article  CAS  PubMed  Google Scholar 

  130. de Reynies A, Jaurand MC, Renier A, Couchy G, Hysi I, Elarouci N, et al. Molecular classification of malignant pleural mesothelioma: identification of a poor prognosis subgroup linked to the epithelial-to-mesenchymal transition. Clin Cancer Res. 2014;20(5):1323–34.

    Article  PubMed  CAS  Google Scholar 

  131. Singhal S, Wiewrodt R, Malden LD, Amin KM, Matzie K, Friedberg J, et al. Gene expression profiling of malignant mesothelioma. Clin Cancer Res. 2003;9(8):3080–97.

    CAS  PubMed  Google Scholar 

  132. Sugarbaker DJ, Richards WG, Gordon GJ, Dong L, De Rienzo A, Maulik G, et al. Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci U S A. 2008;105(9):3521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nymark P, Lindholm PM, Korpela MV, Lahti L, Ruosaari S, Kaski S, et al. Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics. 2007;8:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Ramos-Nino ME, Heintz N, Scappoli L, Martinelli M, Land S, Nowak N, et al. Gene profiling and kinase screening in asbestos-exposed epithelial cells and lungs. Am J Respir Cell Mol Biol. 2003;29(3 Suppl):S51–8.

    CAS  PubMed  Google Scholar 

  135. Shukla A, MacPherson MB, Hillegass J, Ramos-Nino ME, Alexeeva V, Vacek PM, et al. Alterations in gene expression in human mesothelial cells correlate with mineral pathogenicity. Am J Respir Cell Mol Biol. 2009;41(1):114–23.

    Article  CAS  PubMed  Google Scholar 

  136. Putnam EA, Smartt A, Groves A, Schwanke C, Brezinski M, Pershouse MA. Gene expression changes after exposure to six-mix in a mouse model. J Immunotoxicol. 2008;5(2):139–44.

    Article  CAS  PubMed  Google Scholar 

  137. Sabo-Attwood T, Ramos-Nino M, Bond J, Butnor KJ, Heintz N, Gruber AD, et al. Gene expression profiles reveal increased mClca3 (Gob5) expression and mucin production in a murine model of asbestos-induced fibrogenesis. Am J Pathol. 2005;167(5):1243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  139. Reid G. MicroRNAs in mesothelioma: from tumour suppressors and biomarkers to therapeutic targets. J Thorac Dis. 2015;7(6):1031–40.

    PubMed  PubMed Central  Google Scholar 

  140. Tanaka N, Toyooka S, Soh J, Tsukuda K, Shien K, Furukawa M, et al. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. 2013;29(6):2169–74.

    Article  CAS  PubMed  Google Scholar 

  141. Menges CW, Kadariya Y, Altomare D, Talarchek J, Neumann-Domer E, Wu Y, et al. Tumor suppressor alterations cooperate to drive aggressive mesotheliomas with enriched cancer stem cells via a p53-miR-34a-c-Met axis. Cancer Res. 2014;74(4):1261–71.

    Article  CAS  PubMed  Google Scholar 

  142. Christensen BC, Houseman EA, Godleski JJ, Marsit CJ, Longacker JL, Roelofs CR, et al. Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res. 2009;69(1):227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Christensen BC, Godleski JJ, Roelofs CR, Longacker JL, Bueno R, Sugarbaker DJ, et al. Asbestos burden predicts survival in pleural mesothelioma. Environ Health Perspect. 2008;116(6):723–6.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T, Soh J, et al. Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res. 2011;17(15):4965–74.

    Article  CAS  PubMed  Google Scholar 

  145. Cioce M, Ganci F, Canu V, Sacconi A, Mori F, Canino C, et al. Protumorigenic effects of mir-145 loss in malignant pleural mesothelioma. Oncogene. 2014;33(46):5319–31.

    Article  CAS  PubMed  Google Scholar 

  146. Andersen M, Trapani D, Ravn J, Sorensen JB, Andersen CB, Grauslund M, et al. Methylation-associated silencing of microRNA-126 and its host gene EGFL7 in malignant pleural mesothelioma. Anticancer Res. 2015;35(11):6223–9.

    CAS  PubMed  Google Scholar 

  147. Ivanov SV, Goparaju CM, Lopez P, Zavadil J, Toren-Haritan G, Rosenwald S, et al. Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem. 2010;285(30):22809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Johnson TG, Schelch K, Cheng YY, Williams M, Sarun KH, Kirschner MB, et al. Dysregulated expression of the microRNA miR-137 and its target YBX1 contribute to the invasive characteristics of malignant pleural mesothelioma. J Thorac Oncol. 2018;13(2):258–72.

    Article  PubMed  Google Scholar 

  149. Matsumoto S, Nabeshima K, Hamasaki M, Shibuta T, Umemura T. Upregulation of microRNA-31 associates with a poor prognosis of malignant pleural mesothelioma with sarcomatoid component. Med Oncol. 2014;31(12):303.

    Article  PubMed  CAS  Google Scholar 

  150. Pass HI, Goparaju C, Ivanov S, Donington J, Carbone M, Hoshen M, et al. hsa-miR-29c* is linked to the prognosis of malignant pleural mesothelioma. Cancer Res. 2010;70(5):1916–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fassina A, Cappellesso R, Guzzardo V, Dalla Via L, Piccolo S, Ventura L, et al. Epithelial-mesenchymal transition in malignant mesothelioma. Mod Pathol. 2012;25(1):86–99.

    Article  CAS  PubMed  Google Scholar 

  152. Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013;24(12):3128–35.

    Article  CAS  PubMed  Google Scholar 

  153. Williams M, Kirschner MB, Cheng YY, Hanh J, Weiss J, Mugridge N, et al. miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget. 2015;6(27):23480–95.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Khodayari N, Mohammed KA, Lee H, Kaye F, Nasreen N. MicroRNA-302b targets Mcl-1 and inhibits cell proliferation and induces apoptosis in malignant pleural mesothelioma cells. Am J Cancer Res. 2016;6(9):1996–2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18(10):1386–96.

    Article  PubMed  Google Scholar 

  156. Kao SC, Cheng YY, Williams M, Kirschner MB, Madore J, Lum T, et al. Tumor suppressor microRNAs contribute to the regulation of PD-L1 expression in malignant pleural mesothelioma. J Thorac Oncol. 2017;12(9):1421–33.

    Article  PubMed  Google Scholar 

  157. De Santi C, Vencken S, Blake J, Haase B, Benes V, Gemignani F, et al. Identification of MiR-21-5p as a functional regulator of mesothelin expression using MicroRNA capture affinity coupled with next generation sequencing. PLoS One. 2017;12(1):e0170999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico van Zandwijk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Zandwijk, N., Reid, G. (2019). Asbestos and the Pathophysiology of Mesothelioma. In: Ceresoli, G., Bombardieri, E., D'Incalci, M. (eds) Mesothelioma. Springer, Cham. https://doi.org/10.1007/978-3-030-16884-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16884-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16883-4

  • Online ISBN: 978-3-030-16884-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics