Skip to main content

Green Synthesis of Microbial Nanoparticle: Approaches to Application

  • Chapter
  • First Online:
Microbial Nanobionics

Abstract

In the recent years, the biosynthesis and application of noble nanoparticles have been emerged as escalating field with a great impact on biology, medicine and electronics. Diverse strategies including high-energy physical to toxic chemical procedures have been used for the synthesis of nanoparticles. Moreover, higher production cost with raising environmental risk becomes the major issue. To overcome these, green synthesis of nanoparticles is considered as the potential alternative. Green synthesis involves exploitation of biological entities like algae including microalgae, plants, and microorganisms. Microorganisms have innate potential for the synthesis of nanoparticles and could be regarded as potential biofactories for nanoparticles synthesis. So far, the wealth of microbial resources such as bacteria, algae, fungi, actinomycetes and viruses has been exploited for the development of different metallic nanoparticles. Microbial-nanoparticle syntheses have attracted a great attention due to their rich diversity and wider application with simple, cost-effective, non-toxic, and eco-friendly methods for production of technologically important materials. Hence, exploitation of organisms of microbial origin for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. In this chapter, we provide an overview of green synthesized nanoparticles using various microbes as biotemplates, which highlights from their substantial mechanism to incredible applications for the purpose of minimizing the negative impacts of synthetic procedures, their accompanying chemicals, and derivative compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: a novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, Wang S (eds) Fungal nanobionics: principles and applications. Springer, Singapore, pp 61–87

    Chapter  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Anwar SH (2018) A brief review on nanoparticles: types of platforms, biological synthesis and applications. Res Rev J Mat Sci 6(2):109–116

    Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart:689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9):764–766. https://doi.org/10.1016/j.matlet.2008.12.050

    Article  CAS  Google Scholar 

  • Baker S, Harini BP, Rakshith D, Satish S (2013) Marine microbes: invisible nanofactories. J Pharm Res 6:383–388

    CAS  Google Scholar 

  • Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64:120–127

    Google Scholar 

  • Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305

    Article  CAS  Google Scholar 

  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589

    Article  CAS  Google Scholar 

  • Benelli G, Lukehart CM (2017) Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28(1):1–2. https://doi.org/10.1007/s10876-017-1165-5

    Article  CAS  Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25(4):199–204

    Article  CAS  PubMed  Google Scholar 

  • Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications, vol 2. World Scientific Series in Nanoscience and Nanotechnology. Imperial College Press, London, pp 1–433

    Book  Google Scholar 

  • Castro L, Blázquez ML, Munoz JA, Gonzalez F, Ballester A (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7(3):109–116

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation-a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37(2):105–108

    Article  CAS  PubMed  Google Scholar 

  • Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles : synthesis, characterization, and applications to catalysis. Acc Chem Res 34(3):181–190

    Article  CAS  PubMed  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold Nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199. https://doi.org/10.1021/la900585p

    Article  CAS  PubMed  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330. https://doi.org/10.1016/S0043-1354(03)00293-8

    Article  CAS  PubMed  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi. Curr Trends Appl 32:49–73

    CAS  Google Scholar 

  • Dhillon GS, Kaur S, Brar SK (2014) Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int Nano Lett 4:107. https://doi.org/10.1007/s40089-014-0107-6

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Duran M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624

    Article  CAS  PubMed  Google Scholar 

  • Ealias AM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Series: Mater Sci Eng 263:032019. https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  • Fayaz M, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles- an effect of temperature on the size of particles. Colloids Surf B: Biointerfaces 74(1):123–126

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomed: Nanotechnol Biol Med 6(1):103–109

    Article  CAS  Google Scholar 

  • Flenniken ML, Uchida M, Lipold L, Kang S, Young MJ, Douglas T (2009) A library of protein cage architectures as nanomaterials. Curr Top Microbiol Immunol 327:71–73

    CAS  PubMed  Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20. https://doi.org/10.3389/fenvs.2016.00020

    Article  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gibney E (2015) Buckyballs in space solve 100-year-old riddle. Nat News. https://doi.org/10.1038/nature.2015.17987

  • Gomaa EZ (2017) Silver nanoparticles as an antimicrobial agent: a case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J Gen Appl Microbiol 63(1):36–43. https://doi.org/10.2323/jgam.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  • Gopinathan P, Ashok AM, Selvakumar R (2013) Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial. Appl Surf Sci 276(1):717–722

    Article  CAS  Google Scholar 

  • Gref R, Minamitake Y, Perracchia MT, Trubeskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Sci 263(5153):1600–1603

    Article  CAS  Google Scholar 

  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350

    Article  CAS  PubMed  Google Scholar 

  • Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158(1):389–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  PubMed  Google Scholar 

  • Husseiney MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006

    Article  CAS  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165. https://doi.org/10.4172/2157-7439.1000165

    Article  CAS  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Iqbal P, Preece JA, Mendes PM (2012) Nanotechnology: the “Top-Down” and “Bottom-Up” approaches. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials. John Wiley & Sons Ltd, Chichester, pp 3589–3602. https://doi.org/10.1002/9780470661345.smc195

    Chapter  Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. International Scholarly Research Notices, Article ID 359316, 18 pages. https://doi.org/10.1155/2014/359316

    Article  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Plantsystem: Nature’s nanofactory. Colloids Surf B: Biointerfaces 73:219–223

    Article  CAS  PubMed  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticides research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Banumathi E, Pandian SRK, Deepak V, Muniyandi J, Eom SH, Gurunathan S (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B: Biointerfaces 73:51–57

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy S, Prema RS (2015) Methods of synthesis of nanoparticles and its applications. J Chem Pharm Res 7:278–285

    CAS  Google Scholar 

  • Kannan RRR, Stirk WA, Staden JV (2013) Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr J Bot 86:1–4

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71(1):133–137

    Article  CAS  PubMed  Google Scholar 

  • Khandel P, Shahi SK (2016) Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostruct 6(1):1–24

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818

    Article  CAS  Google Scholar 

  • Labrenz M, Druschel GK, Tomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfeld JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Duan X, Qian Y, Li Y, Liao H (1999) Nanocrystalline silver particles: synthesis. J Colloid Interface Sci 209:347–349

    Article  CAS  PubMed  Google Scholar 

  • Li C, Cai W, Kan C, Fu G, Zhang L (2004) Ultrasonic solvent inducedmorphological change of Au colloids. Mat Lett 58:196–199

    Article  CAS  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 270974:16. https://doi.org/10.1155/2011/270974

    Article  CAS  Google Scholar 

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Lu YC, Xu Z, Gasteiger HA, Chen S, Schifferli KH, Horn YS (2010) Platinum-Gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable Lithium-Air batteries. J Am Chem Soc 132(35):12170–12171. https://doi.org/10.1021/ja1036572

    Article  CAS  PubMed  Google Scholar 

  • Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13(12):6439–6445

    Article  CAS  Google Scholar 

  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae 6:35–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart:302429. https://doi.org/10.1155/2014/302429

    Article  CAS  Google Scholar 

  • Mallick K, Witcomb MJ, Scurell MS (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route. J Matter Sci 39:4459–4463

    Article  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA 100(12):6946–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariekie G, Anthony P (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    Article  Google Scholar 

  • Mazhar T, Shrivastava V, Tomar RS (2017) Green synthesis of bimetallic nanoparticles and its applications: a review. J Pharm Sci Res 9(2):102–110

    CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  PubMed  Google Scholar 

  • Menon S, Shanmugam RK, Venkat Kumar S (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies 3:516–527

    Article  Google Scholar 

  • Merzlyak A, Lee SW (2006) Phage as template for hybrid materials and mediators for nanomaterials synthesis. Curr Opin Chem Biol 10:246–252

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam BA, Namvar F, Moniri M, Md Tahir P, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nath D, Banerjee P (2013) Green nanotechnology–a new hope for medical biology. Environ Toxicol Pharmacol 36:997–1014

    Article  CAS  PubMed  Google Scholar 

  • Oh SY, Seo YD, Kim B, Kim IY, Cha DK (2016) Microbial reduction of nitrate in the presence of zero-valent iron and biochar. Bioresour Technol 200:891–896

    Article  CAS  PubMed  Google Scholar 

  • Palomo JM, Filice M (2016) Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts. Nanomaterials 6(5):84. https://doi.org/10.3390/nano6050084

    Article  CAS  PubMed Central  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414

    Article  CAS  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:233. https://doi.org/10.4172/2157-7439.1000233

    Article  CAS  Google Scholar 

  • Parak WJ, Boudreau R, Le Gros M et al (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14(12):882–885

    Article  CAS  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  • Pierfrancesco M (2010) Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmet Investig Dermatol 3:5–13

    Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 74(1):309–316. https://doi.org/10.1016/j.colsurfb.2009.07.040

    Article  CAS  PubMed  Google Scholar 

  • Pinto RJB, Daina S, Sadocco P, Neto CP, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res Int 6:280512. https://doi.org/10.1155/2013/280512

    Article  CAS  Google Scholar 

  • Pokorski JK, Steinmetz NF (2011) The art of engineering viral nanoparticles. Mol Pharm 8:29–43

    Article  CAS  PubMed  Google Scholar 

  • Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed Res Int:365672. https://doi.org/10.1155/2015/365672

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland. isbn:978-3-319-42989-2

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature, Singapore. isbn:978-3-319-68423-9

    Book  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713. https://doi.org/10.5897/AJBX2013.13554

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018a) Exploring the realms of nature for nanosynthesis. Springer International Publishing. https://www.springer.com/978-3-319-99570-0. isbn:978-3-319-99570-0

  • Prasad R, Kumar V, Kumar M, Wang S (2018b) Fungal nanobionics: principles and applications. Springer Nature, Singapore. https://www.springer.com/gb/book/9789811086656. isbn:978-981-10-8666-3

    Book  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324. https://doi.org/10.4236/jbnb.2012.322039

    Article  CAS  Google Scholar 

  • Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4(3):186–193. PMC3425166. https://doi.org/10.4103/0975-7406.99016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agirc Res 2:48–57

    Article  CAS  Google Scholar 

  • Razavi M, Salahinejad E, Fahmy M, Yazdimamaghani M, Vashaee D, Tayebi L (2015) Green chemical and biological synthesis of nanoparticles and their biomedical applications. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer, Cham, pp 207–235

    Google Scholar 

  • Reddy AS, Chen CY, Chen CC, Jean JS, Chen HR, Tseng MJ, Fan CW, Wang JC (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol 10(10):6567–6574

    Article  CAS  PubMed  Google Scholar 

  • Reddy GAK, Joy JM, Mitra T, Shabnam S, Shilpa T (2012) Nano silver – a review. Int J Adv Pharm 2(1):09–15

    Google Scholar 

  • Royston ES, Brown AD, Harris MT, Culver JN (2009) Preparation of silica stabilized tobacco mosaic virus templates for the production of metal and layered nanoparticles. J Colloid Interface Sci 332(2):402–407. https://doi.org/10.1016/j.jcis.2008.12.064

    Article  CAS  PubMed  Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun Y (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids and Surf B: Biointerfaces 81:358–362

    Article  CAS  PubMed  Google Scholar 

  • Sanchez F, Sobolev K (2010) Nanotechnology in concrete-A review. Construct Build Mater 24:2060–2071

    Article  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504. https://doi.org/10.1016/j.biortech.2008.05.048

    Article  CAS  PubMed  Google Scholar 

  • Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L (2016) Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 6:24929. https://doi.org/10.1038/srep24929

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K (2012) Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst Eng 35(4):637–643

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sathiyanarayanan G, Dineshkumar K, Yang YH (2017) Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol 43(6):731–752. https://doi.org/10.1080/1040841X.2017.1306689

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. https://doi.org/10.2147/NSA.S39406

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvakumar R, Seethalakshmi N, Thavamani P, Naidu R, Megharaj M (2014) Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv 4:52156–52169. https://doi.org/10.1039/C4RA07903E

    Article  CAS  Google Scholar 

  • Shah SP, Konsta-Gdoutos MS, Metaxa ZS, Mondal P (2009) Nanoscale modification of cementitious materials. In: Bittnar Z, Bartos PJM, Nemecek J, Smilauer V, Zeman J (eds) Nanotechnology in construction 3. Springer, Berlin/Heidelberg, pp 125–130

    Chapter  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308. https://doi.org/10.3390/ma8115377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2015.11.002

  • Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256

    Article  CAS  Google Scholar 

  • Shinkai M, Yanase M, Suzuki M, Hiroyuki H, Wakabayashi T, Yoshida J, Kobayashi T (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194(1):176–184

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11:363. https://doi.org/10.1186/s11671-016-1580-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostruct 3(3):115–122

    Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sara M (1993) Crystalline bacterial cell surface layers. Mol Microbiol 10:911–916

    Article  CAS  PubMed  Google Scholar 

  • Sobolev K, Flores I, Torres-Martinez LM, Valdez PL, Zarazua E, Cuellar EL (2009) Engineering of SiO2 nanoparticles for optimal performance in nano cement-based materials. In: 3rd international symposium on nanotechnology in construction, Prague, Czech Republic, pp 139–148

    Chapter  Google Scholar 

  • Songara J, Shanker R, Singh NK (2018) Transformation of benzyl butyl phthalate by Pseudomonas putida and photocatalytic ZnO nanoparticles. Int J Chem Stud 6(4):1334–1340

    Google Scholar 

  • Stephen JR, Maenaughton S (1999) Developments in terrestrial bacterial remediation of metals. J Curr Opin Biotechnol 10:230–233

    Article  CAS  Google Scholar 

  • Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Dai Y, Li Y, Zhua D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J Mater Chem 13:1069–1075

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorous nanoparticle from tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6(2):84–89

    Article  CAS  Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of application. Afr J Biotechnol 12:219–226

    Article  Google Scholar 

  • Thakkar KN, Mhatre SS, Rasesh Y, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262

    Article  CAS  Google Scholar 

  • Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114(15):7610–7630

    Article  CAS  PubMed  Google Scholar 

  • Vasquez RD, Apostol JG, de Leon JD, Mariano JD, Mirhan CMC, Pangan SS, Reyes AGM, Zamora ET (2016) Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosum J.G. Agardh: assessment of toxicity and hepatoprotective activity. OpenNano 1:16–24

    Article  Google Scholar 

  • Velusamy P, Venkat Kumar G, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53(1):55–59

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Kamala Nalini SP (2010) Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J 5:1098–1110

    Article  CAS  PubMed  Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493

    Article  CAS  PubMed  Google Scholar 

  • Wen AM, Shukla S, Saxena P, Aljabali AA, Yildiz I et al (2012) Interior engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules 13:3990–4001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Wei J, Jianbo S, Guili W, Feng G, Ying L (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Yan S, He W, Sun C, Zhang X, Zhao H, Li Z, Zhou W, Tian X, Sun X, Han X (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dye Pigment 80:254–258

    Article  CAS  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494. https://doi.org/10.1016/j.chemosphere.2010.10.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors humbly acknowledge the assistance provided by the Honorable Vice Chancellor of S.D. Agricultural University, Sardarkrushinagar, Gujarat 385506 (India), for providing the facilities for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Purohit, J., Chattopadhyay, A., Singh, N.K. (2019). Green Synthesis of Microbial Nanoparticle: Approaches to Application. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16534-5_3

Download citation

Publish with us

Policies and ethics