Skip to main content

Water Purification Using Magnetic Nanomaterials: An Overview

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Due to the rapid urbanization and industrialization, the supply of clean and affordable drinking water to living community is being a challenging job for water treatment experts because of the disposal of untreated wastewater into natural water bodies/streams. Regarding this, magnetic nanomaterials (MNMs)/particles are keeping pace in the development of innovative and future-oriented water purification technology due to having their unique characteristics (e.g., high specific surface area, charge opposite to targeted pollutant, small size and shape, efficient regeneration and reusability, higher chemical reactivity, easy separation from final effluents, etc.). However, the involvement of highly toxic and expensive chemicals during the synthesis of MNMs is hindering their practical applications in the water purification process. Recently, the synthesis of MNMs through biological approach is gaining great research interest due to the involvement of green biomolecules/bioreducing agents instead of hazardous chemicals as reducing and capping agents during fabrication of MNMs. Therefore, the present chapter is designed to discuss various approaches of MNMs manufacture via biological means and their applications in water purification systems. Moreover, a brief discussion is also portrayed on the removal of various pollutants from wastewater by using these MNMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    Article  Google Scholar 

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Ali I, Peng C, Naz I, Khan ZM, Sultan M, Islam T, Abbasia IA (2017) Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Adv 7(64):40158–40178

    Article  CAS  Google Scholar 

  • Ali I, Peng C, Khan ZM, Naz I, Sultan M (2018) An overview of heavy metal removal from wastewater using magnetotactic bacteria. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5648

  • Ali I, Peng C, Khan ZM, Naz I, Sultan M, Ali M, Abbasi IA, Islam T, Ye T (2019) Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. J Environ Manag 230:128–150

    Article  CAS  Google Scholar 

  • Buazar F, Baghlani-Nejazd MH, Badri M, Kashisaz M, Khaledi-Nasab A, Kroushawi F (2016) Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch-Stärke 68(7–8):796–804

    Article  CAS  Google Scholar 

  • Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotox Environ Safe 148:702–712

    Article  CAS  Google Scholar 

  • Cai Y, Shen Y, Xie A, Li S, Wang X (2010) Green synthesis of soybean sprouts–mediated superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater 322(19):2938–2943

    Google Scholar 

  • Cai F, Li J, Sun J, Ji Y (2011) Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR–1. Chem Eng J 175:70–75

    Article  CAS  Google Scholar 

  • Cheera P, Karlapudi S, Sellola G, Ponneri V (2016) A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J Mol Liq 221:993–998

    Article  CAS  Google Scholar 

  • Devatha CP, Thalla AK, Katte SY (2016) Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J Clean Prod 139:1425–1435

    Article  CAS  Google Scholar 

  • Dharupaneedi SP, Nataraj SK, Nadagouda M, Reddy KR, Shukla SS, Aminabhavi TM (2018) Membrane–based separation of potential emerging pollutants. Sep Purif Technol 210(2019):850–866

    Google Scholar 

  • Feng M, Zhang P, Zhou HC, Sharma VK (2018) Water–stable metal–organic frameworks for aqueous removal of heavy metals and radionuclides: a review. Chemosphere 209:783–800

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • Gupta VK, Nayak A (2012) Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J 180:81–90

    Article  CAS  Google Scholar 

  • Herlekar M, Barve S (2015). Optimization of microwave assisted green synthesis protocol for iron oxide nanoparticles and its application for simultaneous removal of multiple pollutants from domestic sewage. Int J Adv Res 3:331–345.

    Google Scholar 

  • Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Synthesis of iron–based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim Acta A Mol Biomol Spectrosc 117:801–804

    Article  CAS  Google Scholar 

  • Huiping S, Huaigang C, Xingang L, Fangqin C (2012) Simulation and experimental study on magnetic separation of Au loaded biomass from wastewater. Desalin Water Treat 44(1–3):205–214

    Article  Google Scholar 

  • Huiping S, Xingang L, Huaigang C, Fangqin C (2013) Theoretical and experimental study of Au (III)–containing wastewater treatment using magnetotactic bacteria. Desalin Water Treat 51(19–21):3864–3870

    Article  Google Scholar 

  • Islam T, Peng C, Ali I (2018) Morphological and cellular diversity of magnetotactic bacteria: a review. J Basic Microbiol 58(5):378–389

    Article  Google Scholar 

  • Iwahori K, Watanabe JI, Tani Y, Seyama H, Miyata N (2014) Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe (III)–reducing microbial enrichment cultures. J Biosci Bioeng 117(3):333–335

    Article  CAS  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70

    Article  CAS  Google Scholar 

  • Lingamdinne LP, Yang JK, Chang YY, Koduru JR (2016) Low-cost magnetized Lonicera japonica flower biomass for the sorption removal of heavy metals. Hydrometallurgy 165:81–89

    Article  CAS  Google Scholar 

  • Lingamdinne LP, Chang YY, Yang JK, Singh J, Choi EH, Shiratani M, Attri P (2017) Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem Eng J 307:74–84

    Article  CAS  Google Scholar 

  • Liu G, Wang N, Zhou J, Wang A, Wang J, Jin R, Lv H (2015) Microbial preparation of magnetite/reduced graphene oxide nanocomposites for the removal of organic dyes from aqueous solutions. RSC Adv 5(116):95857–95865

    Article  CAS  Google Scholar 

  • Lu Y, Xu L, Shu W, Zhou J, Chen X, Xu Y, Qian G (2017) Microbial mediated iron redox cycling in Fe (hydr) oxides for nitrite removal. Bioresour Technol 224:34–40

    Article  CAS  Google Scholar 

  • Machado S, Pinto SL, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445:1–8

    Article  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

    Article  Google Scholar 

  • Martínez-Cabanas M, López-García M, Barriada JL, Herrero R, de Vicente MES (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient as (V) removal. Chem Eng J 301:83–91

    Article  Google Scholar 

  • Mukherjee D, Ghosh S, Majumdar S, Annapurna K (2016) Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J Environ Chem Eng 4(1):639–650

    Article  CAS  Google Scholar 

  • Panneerselvam P, Morad N, Tan KA (2011) Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. J Hazard Mater 186(1):160–168

    Article  CAS  Google Scholar 

  • Phumying S, Labuayai S, Thomas C, Amornkitbamrung V, Swatsitang E, Maensiri S (2013) Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl Phys A Mater Sci Process 111(4):1187–1193

    Article  CAS  Google Scholar 

  • Prasad C, Yuvaraja G, Venkateswarlu P (2017) Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and methyl orange dye degradation studies. J Magn Magn Mater 424:376–381

    Article  CAS  Google Scholar 

  • Qu Y, Zhang X, Xu J, Zhang W, Guo Y (2014) Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Sep Purif Technol 136:10–17

    Article  CAS  Google Scholar 

  • Ramasahayam SK, Gunawan G, Finlay C, Viswanathan T (2012) Renewable resource–based magnetic nanocomposites for removal and recovery of phosphorous from contaminated waters. Water Air Soil Pollut 223(8):4853–4863

    Article  CAS  Google Scholar 

  • Rauf MA, Ashraf SS (2012) Survey of recent trends in biochemically assisted degradation of dyes. Chem Eng J 209:520–530

    Article  CAS  Google Scholar 

  • Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng 83:52–59

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157

    Article  CAS  Google Scholar 

  • Schaider LA, Senn DB, Estes ER, Brabander DJ, Shine JP (2014) Sources and fates of heavy metals in a mining–impacted stream: temporal variability and the role of iron oxides. Sci Total Environ 490:456–466

    Article  CAS  Google Scholar 

  • Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133

    Article  Google Scholar 

  • Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O4 nanoparticles using Tridax Procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Bios 7(4):1655–1661

    Google Scholar 

  • Shamuyarira KK, Gumbo JR (2014) Assessment of heavy metals in municipal sewage sludge: a case study of Limpopo Province, South Africa. Int J Environ Res Public Health 11(3):2569–2579

    Article  CAS  Google Scholar 

  • Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes–a review. Int Biodeterior Biodegradation 104:21–31

    Article  CAS  Google Scholar 

  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membrane Sci 379(1):131–137

    Article  CAS  Google Scholar 

  • Solís M, Solís A, Pérez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47(12):1723–1748

    Article  Google Scholar 

  • Song H, Li X, Sun J, Wang Y (2006) Heavy metals removal from wastewater by magnetic field–magnetotactic bacteria technology. In: Annual meeting on water resource conservation: purification, reclamation and reuse 16

    Google Scholar 

  • Song HP, Li XG, Sun JS, Xu SM, Han X (2008) Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au (III) from contaminated wastewater with a magnetic separator. Chemosphere 72(4):616–621

    Article  CAS  Google Scholar 

  • Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB (2004) Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci Total Environ 329(1–3):99–113

    Article  CAS  Google Scholar 

  • Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, Sadeghizadeh M, Ghorbanzadeh-Mashkani S, Dabbagh R (2016) Cobalt separation by Alphaproteobacterium MTB–KTN90: magnetotactic bacteria in bioremediation. Bioprocess Biosyst Eng 39(12):1899–1911

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, Basel, pp 133–164

    Chapter  Google Scholar 

  • Venkateswarlu S, Rao YS, Balaji T, Prathima B, Jyothi NVV (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244

    Article  CAS  Google Scholar 

  • Venkateswarlu S, Kumar BN, Prathima B, Anitha K, Jyothi NVV (2015) A novel green synthesis of Fe3O4–Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Physica B 457:30–35

    Article  CAS  Google Scholar 

  • Wang Y, Gao H, Sun J, Li J, Su Y, Ji Y, Gong C (2011) Selective reinforced competitive biosorption of Ag(I) and Cu(II) on Magnetospirillum gryphiswaldense. Desalination 270(1):258–263

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, I., Peng, C., Naz, I., Amjed, M.A. (2019). Water Purification Using Magnetic Nanomaterials: An Overview. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_9

Download citation

Publish with us

Policies and ethics