Skip to main content

Magnetic Nanoparticle Interface with an Antimicrobial Propensity

  • Chapter
  • First Online:

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Magnetic nanoparticles for its biocompatible, magnetic, thermal, and mechanical properties have made inroads in different fields of medical and pharmaceutical sciences, like pathogen detection, antigen diagnosis, tissue repair, drug delivery, magnetic resonance imaging (MRI), etc. Studies have elucidated the insignificant antimicrobial activity of intact magnetic nanoparticles; however, the activity is likely to be enhanced by altering the nanoparticle interface to broaden the particle applications. Hence, this chapter discusses the antimicrobial activity of magnetic nanoparticles against Gram-positive and Gram-negative bacteria including multidrug-resistant pathogens, the role of interaction pattern at the bio-nano interface determining the antimicrobial activity, effect of nanoparticle interface alteration on the particle antimicrobial activity, and role of reactive oxygen species in the antimicrobial activity of magnetic nanoparticles. To this end, the chapter would explore the potential of magnetic nanoparticles as novel antimicrobial agents against microbes including plant pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8:3326–3337

    Article  CAS  Google Scholar 

  • Arakha M (2017) Effects of photocatalytic nanoparticle interfaces on biological membranes and biomacromolecules. Doctoral dissertation

    Google Scholar 

  • Arakha M, Jha S (2018a) Effect of interfacial assembly of antimicrobial peptide on conformational and functional dynamics of the peptide. In: Interfacial phenomena on biological membranes. Springer, pp 111–135. Springer Nature Switzerland AG, Part of Springer Nature, https://doi.org/10.1007/978-3-319-73326-5

  • Arakha M, Jha S (2018b) Effect of interfacial potential on antimicrobial propensity of ZnO NPs. In: Interfacial phenomena on biological membranes. Springer, pp 61–77. Springer Nature Switzerland AG, Part of Springer Nature, https://doi.org/10.1007/978-3-319-73326-5

  • Arakha M, Jha S (2018c) Effect of surface functionality on antimicrobial propensity of iron oxide nanoparticles. In: Interfacial phenomena on biological membranes. Springer, pp 79–89. Springer Nature Switzerland AG, Part of Springer Nature, https://doi.org/10.1007/978-3-319-73326-5

  • Arakha M, Jha S (2018d) Interfacial phenomena on biological membranes. Springer, Springer Nature Switzerland AG, Part of Springer Nature, https://doi.org/10.1007/978-3-319-73326-5

  • Arakha M, Jha S (2018e) Nanoparticle. In: Interfacial phenomena on biological membranes. Springer, pp 1–36. Springer Nature Switzerland AG, Part of Springer Nature, https://doi.org/10.1007/978-3-319-73326-5

  • Arakha M, Jha S (2018f) Synthesis and characterization of nanoparticles. In: Interfacial phenomena on biological membranes. Springer, pp 37–59. Springer Nature Switzerland AG, Part of Springer Nature, https://doi.org/10.1007/978-3-319-73326-5

  • Arakha M et al (2015a) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep 5:14813

    Article  CAS  Google Scholar 

  • Arakha M, Saleem M, Mallick BC, Jha S (2015b) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5:9578

    Article  CAS  Google Scholar 

  • Arakha M, Borah SM, Saleem M, Jha AN, Jha S (2016) Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin. Free Radic Biol Med 101:434–445

    Article  CAS  Google Scholar 

  • Arakha M, Roy J, Nayak PS, Mallick B, Jha S (2017) Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death. Free Radic Biol Med 110:42–53

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Wiesner MR, Bottero J-Y (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612 https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Frankel RB (1994) Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microsc Res Tech 27:389–401

    Article  CAS  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. J Evid Based Complement Alternat Med 2015:246012

    Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Google Scholar 

  • Biehl P, von der Lühe M, Dutz S, Schacher F (2018) Synthesis, characterization, and applications of magnetic nanoparticles featuring polyzwitterionic Coatings. Polymers 10:91

    Article  Google Scholar 

  • Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2:395–401

    Article  Google Scholar 

  • Borcherding J et al (2014) Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ Sci Nano 1:123–132

    Article  CAS  Google Scholar 

  • Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9:34

    Article  CAS  Google Scholar 

  • Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133

    Article  CAS  Google Scholar 

  • Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517

    Article  CAS  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int 2014:498420

    Article  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  CAS  Google Scholar 

  • Iconaru SL, Prodan AM, Le Coustumer P, Predoi D (2013) Synthesis and antibacterial and antibiofilm activity of iron oxide glycerol nanoparticles obtained by coprecipitation method. J Chem, Vol. 2013, Article ID 412079, 6 pages

    Google Scholar 

  • Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH (2011) Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS–2B) cells. Mutat Res Genet Toxicol Environ Mutagen 726(2):129–135

    Article  CAS  Google Scholar 

  • Krishnan KM (2016) Fundamentals and applications of magnetic materials. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kumar SR, Imlay JA (2013) How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway. J Bacteriol 195(20):4569–4579, 00737–00713

    Article  CAS  Google Scholar 

  • Moyano DF, Rotello VM (2011) Nano meets biology: structure and function at the nanoparticle interface. Langmuir 27:10376–10385

    Article  CAS  Google Scholar 

  • Nath D, Banerjee P (2013) Green nanotechnology-a new hope for medical biology. Environ Toxicol Pharmacol 36:997–1014

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nel AE et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543

    Article  CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    Article  CAS  Google Scholar 

  • Perreault F, De Faria AF, Nejati S, Elimelech M (2015) Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9:7226–7236

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    Article  CAS  Google Scholar 

  • Sharma H, Dhirta B, Shirkot P (2017) Evaluation of biogenic iron nano formulations to control Meloidogyne incognita in okra. IJCS 5:1278–1284

    CAS  Google Scholar 

  • Sigmund W, Pyrgiotakis G, Daga A (2005) Theory and applications of colloidal processing. In: Chemical processing of ceramic. Taylor & Francis, Boca Raton, p 269

    Google Scholar 

  • Singh S, Singh BK, Yadav S, Gupta A (2015) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol 5:1–5

    Article  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol 6:257–262

    Article  CAS  Google Scholar 

  • Thayer P, Stall R (1961) A survey of Xanthomonas vesicatoria resistance to streptomycin. Proc Fla State Hort Soc 75:163–165

    Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. PNAS 108:20260–20264

    Article  CAS  Google Scholar 

  • Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomedicine 5:277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valsami-Jones E, Lynch I (2015) How safe are nanomaterials? Science 350:388–389

    Article  CAS  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu C–M, Huang C–M (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    Article  CAS  Google Scholar 

  • Zhang S, Gao H, Bao G (2015) Physical principles of nanoparticle cellular endocytosis. ACS Nano 9:8655–8671

    Article  CAS  Google Scholar 

  • Zheng L-Y, Zhu J-F (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manoranjan Arakha or Suman Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arakha, M., Mallick, B.C., Jha, S. (2019). Magnetic Nanoparticle Interface with an Antimicrobial Propensity. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_15

Download citation

Publish with us

Policies and ethics