Skip to main content

Magnetic Nanostructures: Environmental and Agricultural Applications

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

In recent years, a wide array of novel nanomaterials with distinct structures and applications have emerged. Among them are iron-based magnetic nanomaterials, which exhibit special physical and chemical properties. Based on these properties, iron-based magnetic nanomaterials found applications in a wide range of fields including catalysis, biotechnology, biomedicine, magnetic resonance imaging, data storage, biosensors, agriculture, and removal of environmental pollutants and control of aflatoxins, etc. Because of their low cost and easy manufacturing and modification, they especially have great potential for agricultural and environmental applications. This chapter focuses on the properties and biosynthesis strategies of magnetic nanostructures and their utilization in agricultural and environmental applications along with mycotoxin control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abobatta WF (2018) Nanotechnology application in agriculture. Acta Sci Agron 2(6):99–102

    Google Scholar 

  • Ali Mansoori G, Bastami TR, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology. Annu Rev NanoRes 2(2):439–493

    Article  Google Scholar 

  • Amendola V, Riello P, Meneghetti M (2011) Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J Phys Chem C 115(12):5140–5146

    Article  CAS  Google Scholar 

  • Anonymous (2009) Nanotechnology and nanoscience applications: an overview. Egypt J Soil Sci 2:1–18

    Google Scholar 

  • Atanasova M, Vasileva N, Godjevargova T (2017) Determination of aflatoxin M1 in milk by a magnetic nanoparticle-based fluorescent immunoassay. Anal Lett 50(3):452–469

    Article  CAS  Google Scholar 

  • Bhalerao TS (2014) A review: applications of iron nanomaterials in bioremediation and in detection of pesticide contamination. Int J Nanopart 7(1):73–79

    Article  CAS  Google Scholar 

  • Charles SW (2002) The preparation of magnetic fluids. In: Odenbach S (ed) Ferrofluids. Springer, Berlin, pp 3–18

    Chapter  Google Scholar 

  • Dang VD, Walter DM, Lee CM (2012) Historical changes in polychlorinated biphenyls contaminated sediments. Am J Environ Sci 8(1):11–15

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Gacem MA, El Hadj-Khelil AO (2016) Toxicology, biosynthesis, bio-control of aflatoxin and new methods of detection. Asian Pac J Trop Biomed 6(9):808–814

    Article  Google Scholar 

  • Gao S, Shi Y, Zhang S, Jiang K, Yang S, Li Z, Takayama-Muromachi E (2008) Biopolymer-assisted green synthesis of iron oxide nanoparticles and their magnetic properties. J Phys Chem C 112:10398–10401

    Article  CAS  Google Scholar 

  • Geng Z, Lin Y, Yu X, Shen Q, Ma L, Li Z, Pan N, Wang X (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22:3527–3535

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445(446):237–260

    Article  Google Scholar 

  • Gutierrez AM, Dziubla TD, Hilt JZ (2017) Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev Environ Health 32(1–2):111–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopf NB, Ruder AM, Succop P (2009) Background levels of polychlorinated biphenyls in the U.S. population. Sci Total Environ 407(24):6109–6119

    Article  CAS  Google Scholar 

  • Jones KC, de Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100(1–3):209–221

    Article  CAS  Google Scholar 

  • Khan I, Khalil A, Khanday F, Shemsi AM, Qurashi A, Siddiqui KS (2017) Synthesis, characterization and applications of magnetic iron oxide nanostructures. Arab J Sci Eng 43(1):43–61

    Article  Google Scholar 

  • Kim HJ, Kim SH, Lee JK, Choi CU, Lee HS, Kang HG, Cha SH (2012) A novel mycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1 and zearalenone from feed. J Vet Sci (Suwŏn-si, Korea) 13(4):363–369

    Article  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticle. Journal of Magnetism and Magnetic Materials. Sci Res 200:359–372

    CAS  Google Scholar 

  • Liu Y, Choi H, Dionysiou D, Lowry GV (2005) Trichloroethane hydrodechlorination in water by highly disordered monometallic nanoiron. Chem Mater 17(21):5315–5322

    Article  CAS  Google Scholar 

  • Lowry GV (2007) Nanomaterials for groundwater remediation. In: Weisner MR, Bottero J (eds) Environmental nanotechnology. McGraw Hill Companies, New York, pp 297–336

    Google Scholar 

  • Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L (2018) Aflatoxin B1 and M1: biological properties and their involvement in cancer development. Toxins 10(214):9–19

    Google Scholar 

  • Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, https://doi.org/10.1155/2014/963961

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

    Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0 (in press) https://www.springer.com/978-3-319-99570-0

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture. Present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  CAS  Google Scholar 

  • Richardson ST, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86(6):2813–2848

    Article  CAS  Google Scholar 

  • Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6:209. https://doi.org/10.3390/nano6110209

    Article  CAS  PubMed Central  Google Scholar 

  • Schwarts E, Scow KM (2001) Repeated inoculation as a strategy for the remediation of low concentrations of phenanthrene in soil. Biodegradation 12(3):201–207

    Article  Google Scholar 

  • Seabra AB, Haddad P, Duran N (2013) Biogenic synthesis of nanostructured iron compounds: applications and perspectives. NanoBiotechnology 7(3):90–99

    Article  CAS  Google Scholar 

  • Sertova MN (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16(2):117–130

    Article  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6(7):983–990

    Article  CAS  Google Scholar 

  • Urusov AE, Petrakova AV, Vozniak MV, Zherdev AV, Dzantiev BB (2014) Rapid immunoenzyme assay of aflatoxin b1 using magnetic nanoparticles. Sensors 14:21843–21857

    Article  Google Scholar 

  • Yavuz CT, Mayo JT, William WY, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D (2006) Low-field magnetic separation of monodisperse Fe3 O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Zahoor M, Khan FA (2018) Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arab J Chem 11:729–738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhalerao, T.S. (2019). Magnetic Nanostructures: Environmental and Agricultural Applications. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_11

Download citation

Publish with us

Policies and ethics