Skip to main content

Clip Impact-Compression Model

  • Chapter
  • First Online:
Animal Models of Acute Neurological Injury

Abstract

In human spinal cord injury, the most common mechanism is the combination of acute impact and continuing compression. To simulate combined impact-compression, we developed in the 1970s the acute clip impact-compression model, one of the first non-transection models in the rodent. Subsequently, we characterized the relationships between clip strength, duration of compression and neurological recovery, and established dose-response relationships between the forces of clip compression injury, axon evoked potentials, spinal cord blood flow, neurological function, axon counts and retrograde labeling of supraspinal neurons with axonal tracers. In this review, we discuss the defining features of the acute clip impact-compression model of spinal cord injury and outline its advantages and disadvantages. We also briefly discuss other impact-compression/contusion models and non-impact models of spinal cord injury. The method for performing acute impact-compression injury in rats is included. Clip injury is useful for in vitro and in vivo spinal cord injury studies in rats and mice for cervical, thoracic and lumbar injuries, and is consistent, reliable and relatively inexpensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Girolami U, Frosch MP, Tator CH. Regional neuropathology: diseases of the spinal cord and vertebral column. In: Greenfield’s neuropathology. 7th edn. London: Arnold; 2002.

    Google Scholar 

  2. Tator CH. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery. 2006;59:957–82.

    Article  PubMed  Google Scholar 

  3. Anderson TE, Stokes BT. Experimental models for spinal cord injury research: physical and physiological considerations. J Neurotrauma. 1992;9(Suppl 1):S135–42.

    PubMed  Google Scholar 

  4. Kwon BK, Oxland TR, Tetzlaff W. Animal models used in spinal cord regeneration research. Spine. 2002;27(14):1504–10.

    Article  PubMed  Google Scholar 

  5. Grill RJ. User-defined variables that affect outcome in spinal cord contusion/compression models. Exp Neurol. 2005;196:1–5.

    Article  CAS  PubMed  Google Scholar 

  6. Fehlings MG, Tator CH. A review of experimental models of acute spinal cord injury. In: Spinal cord dysfunction: assessment. Oxford: Oxford University; 1988.

    Google Scholar 

  7. Wrathall JR. Spinal cord injury models. J Neurotrauma. 1992;9(Suppl 1):S129–34.

    PubMed  Google Scholar 

  8. Tator CH. Spine-spinal cord relationships in spinal cord trauma. Clin Neurosurg. 1983;30:479–94.

    Article  CAS  PubMed  Google Scholar 

  9. Rivlin AS, Tator CH. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol. 1978;10:38–43.

    CAS  PubMed  Google Scholar 

  10. Dolan EJ, Tator CH, Endrenyi L. The value of decompression for acute experimental spinal cord compression injury. J Neurosurg. 1980;53:749–55.

    Article  CAS  PubMed  Google Scholar 

  11. Guha A, Tator CH, Endrenyi L, Piper I. Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Paraplegia. 1987;25:324–39.

    CAS  PubMed  Google Scholar 

  12. Fehlings MG, Tator CH, Linden RD. The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials and spinal cord blood flow. Electroencephalogr Clin Neurophysiol. 1989;74:241–59.

    Article  CAS  PubMed  Google Scholar 

  13. Fehlings MG, Tator CH. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury. Exp Neurol. 1995;132:220–8.

    Article  CAS  PubMed  Google Scholar 

  14. Poon PC, Gupta D, Shoichet MS, Tator CH. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates. Spine (Phila Pa 1976). 2007;32:2853–9. https://doi.org/10.1097/BRS.0b013e31815b7e6b.

    Article  Google Scholar 

  15. Moonen G, Satkunendrarajah K, Wilcox JT, Badner A, Mothe A, Foltz W, Fehlings MG, Tator CH. A new acute impact-compression lumbar spinal cord injury model in the rodent. J Neurotrauma. 2016;33(3):278–89. https://doi.org/10.1089/neu.2015.3937.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Geisler FH, Coleman WP, Grieco G, Poonian D. Measurements and recovery patterns in a multicenter study of acute spinal cord injury. Spine. 2001;26(24 Suppl):S68–86.

    Article  CAS  PubMed  Google Scholar 

  17. Weaver LC, Verghese P, Bruce JC, Fehlings MG, Krenz NR, Marsh DR. Autonomic dysreflexia and primary afferent sprouting after clip-compression injury of the rat spinal cord. J Neurotrauma. 2001;18:1107–19.

    Article  CAS  PubMed  Google Scholar 

  18. Forgione N, Karadimas SK, Foltz WD, Satkunendrarajah K, Lip A, Fehlings MG. Bilateral contusion-compression model of incomplete traumatic cervical spinal cord injury. J Neurotrauma. 2014;31:1776–88. https://doi.org/10.1089/neu.2014.3388.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mothe AJ, Bozkurt G, Catapano J, Zabojova J, Wang X, Keating A, Tator CH. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat. Spinal Cord. 2011;49:967–73. https://doi.org/10.1038/sc.2011.46.

    Article  CAS  PubMed  Google Scholar 

  20. Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials. 2013;34:3775–83. https://doi.org/10.1016/j.biomaterials.2013.02.002.

    Article  CAS  PubMed  Google Scholar 

  21. Parr AM, Kulbatski I, Tator CH. Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury. J Neurotrauma. 2007;24:835–45.

    Article  PubMed  Google Scholar 

  22. Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator CH. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience. 2008;155:760–70. https://doi.org/10.1016/j.neuroscience.2008.05.042.

    Article  CAS  PubMed  Google Scholar 

  23. Joshi M, Fehlings MG. Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: part 2. Quantitative neuroanatomical assessment and analysis of the relationships between axonal tracts, residual tissue, and locomotor recovery. J Neurotrauma. 2002;19:191–203.

    Article  PubMed  Google Scholar 

  24. Joshi M, Fehlings MG. Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: part 1. Clip design, behavioral outcomes, and histopathology. J Neurotrauma. 2002;19:175–90.

    Article  PubMed  Google Scholar 

  25. Khan M, Griebel R, Rozdilsky B, Politis M. Hemorrhagic changes in experimental spinal cord injury models. Can J Neurol Sci. 1985;12:259–62.

    Article  CAS  PubMed  Google Scholar 

  26. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A. 2002;99:9450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. von Euler M, Seiger A, Sundstrom E. Clip compression injury in the spinal cord: a correlative study of neurological and morphological alterations. Exp Neurol. 1997;145:502–10.

    Article  Google Scholar 

  28. Marques SA, Garcez VF, Del Bel EA, Martinez AM. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment. J Neurosci Methods. 2009;177:183–93. https://doi.org/10.1016/j.jneumeth.2008.10.015.

    Article  PubMed  Google Scholar 

  29. Dolan EJ, Tator CH. A new method for testing the force of clips for aneurysms or experimental spinal cord compression. J Neurosurg. 1979;51:229–33.

    Article  CAS  PubMed  Google Scholar 

  30. Gruner JA. A monitored contusion model of spinal cord injury in the rat. J Neurotrauma. 1992;9:123–6.

    Article  CAS  PubMed  Google Scholar 

  31. Allen AR. Surgery of experimental lesions of the spinal cord equivalent to crush injury of fracture dislocation of the spinal column. A preliminary report. JAMA. 1911;57:878–80.

    Article  Google Scholar 

  32. Behrmann DL, Bresnahan JC, Beattie MS, Shah BR. Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis. J Neurotrauma. 1992;9:197–217.

    Article  CAS  PubMed  Google Scholar 

  33. Cao Q, Zhang YP, Iannotti C, DeVries WH, Xu XM, Shields CB, Whittemore SR. Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat. Exp Neurol. 2005;191(Suppl 1):S3–S16.

    Article  PubMed  Google Scholar 

  34. Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE Jr. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma. 2003;20:179–93.

    Article  PubMed  Google Scholar 

  35. Ghasemlou N, Kerr BJ, David S. Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury. Exp Neurol. 2005;196:9–17.

    Article  PubMed  Google Scholar 

  36. Pearse DD, Lo TP Jr, Cho KS, Lynch MP, Garg MS, Marcillo AE, Sanchez AR, Cruz Y, Dietrich WD. Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat. J Neurotrauma. 2005;22:680–702.

    Article  CAS  PubMed  Google Scholar 

  37. Mondello SE, Sunshine MD, Fischedick AE, Moritz CT, Horner PJ. A cervical hemi-contusion spinal cord injury model for the investigation of novel therapeutics targeting proximal and distal forelimb functional recovery. J Neurotrauma. 2015;32:1994–2007. https://doi.org/10.1089/neu.2014.3792.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Watson BD, Prado R, Dietrich WD, Ginsberg MD, Green BA. Photochemically induced spinal cord injury in the rat. Brain Res. 1986;367:296–300.

    Article  CAS  PubMed  Google Scholar 

  39. Bunge MB, Holets VR, Bates ML, Clarke TS, Watson BD. Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy. Exp Neurol. 1994;127:76–93.

    Article  CAS  PubMed  Google Scholar 

  40. Verdu E, Garcia-Alias G, Fores J, Vela JM, Cuadras J, Lopez-Vales R, Navarro X. Morphological characterization of photochemical graded spinal cord injury in the rat. J Neurotrauma. 2003;20:483–99.

    Article  PubMed  Google Scholar 

  41. Tator CH. Strategies for recovery and regeneration after brain and spinal cord injury. Inj Prev. 2002;8(Suppl 4):IV33–6.

    PubMed  PubMed Central  Google Scholar 

  42. Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 1995;5:407–13.

    Article  CAS  PubMed  Google Scholar 

  43. Koda M, Nishio Y, Hashimoto M, Kamada T, Koshizuka S, Yoshinaga K, Onodera S, Nishihira J, Moriya H, Yamazaki M. Up-regulation of macrophage migration-inhibitory factor expression after compression-induced spinal cord injury in rats. Acta Neuropathol (Berl). 2004;108:31–6.

    Article  CAS  Google Scholar 

  44. Tarlov IM. Spinal cord compression: mechanisms of paralysis and treatment. Springfield: Thomas; 1957.

    Google Scholar 

  45. Gruner JA, Yee AK, Blight AR. Histological and functional evaluation of experimental spinal cord injury: evidence of a stepwise response to graded compression. Brain Res. 1996;729:90–101.

    Article  CAS  PubMed  Google Scholar 

  46. Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p 75 expression following spinal cord injury in the rat. Neuroscience. 2001;103:203–18.

    Article  CAS  PubMed  Google Scholar 

  47. Midha R, Fehlings MG, Tator CH, Saint-Cyr JA, Guha A. Assessment of spinal cord injury by counting corticospinal and rubrospinal neurons. Brain Res. 1987;410:299–308.

    Article  CAS  PubMed  Google Scholar 

  48. Park YK, Tator CH. Failure of topical DMSO to improve blood flow or evoked potentials in rat spinal cord injury. J Korean Med Sci. 1998;13:638–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fan XY, Mothe AJ, Tator CH. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord. Stem Cells Dev. 2013;22:359–73. https://doi.org/10.1089/scd.2012.0131.

    Article  CAS  PubMed  Google Scholar 

  50. Namiki J, Kojima A, Tator CH. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma. 2000;17:1219–31.

    Article  CAS  PubMed  Google Scholar 

  51. Park YK, Tator CH. Prevention of arachnoiditis and postoperative tethering of the spinal cord with Gore-Tex surgical membrane: an experimental study with rats. Neurosurgery. 1998;42:813–23.

    Article  CAS  PubMed  Google Scholar 

  52. Schultke E, Kendall E, Kamencic H, Ghong Z, Griebel RW, Juurlink BH. Quercetin promotes functional recovery following acute spinal cord injury. J Neurotrauma. 2003;20:583–91.

    Article  CAS  PubMed  Google Scholar 

  53. Baffour R, Achanta K, Kaufman J, Berman J, Garb JL, Rhee S, Friedmann P. Synergistic effect of basic fibroblast growth factor and methylprednisolone on neurological function after experimental spinal cord injury. J Neurosurg. 1995;83:105–10.

    Article  CAS  PubMed  Google Scholar 

  54. Boyd JG, Lee J, Skihar V, Doucette R, Kawaja MD. LacZ-expressing olfactory ensheathing cells do not associate with myelinated axons after implantation into the compressed spinal cord. Proc Natl Acad Sci U S A. 2004;101:2162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kureshi IU, Ho SY, Onyiuke HC, Wakefield AE, D’Arrigo JS, Simon RH. The affinity of lipid-coated microbubbles to maturing spinal cord injury sites. Neurosurgery. 1999;44:1047–53.

    Article  CAS  PubMed  Google Scholar 

  56. Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res. 2003;12:271–8.

    Article  CAS  PubMed  Google Scholar 

  57. Fu ES, Saporta S. Methylprednisolone inhibits production of interleukin-1beta and interleukin-6 in the spinal cord following compression injury in rats. J Neurosurg Anesthesiol. 2005;17:82–5.

    Article  PubMed  Google Scholar 

  58. Nashmi R, Fehlings MG. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience. 2001;104:235–51.

    Article  CAS  PubMed  Google Scholar 

  59. Elliott Donaghue I, Tator CH, Shoichet MS. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater Sci. 2015;3:65–72. https://doi.org/10.1039/c4bm00311j.

    Article  CAS  PubMed  Google Scholar 

  60. Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials. 2006;27:2370–9.

    Article  CAS  PubMed  Google Scholar 

  61. Jimenez Hamann MC, Tator CH, Shoichet MS. Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Exp Neurol. 2005;194:106–19.

    Article  CAS  PubMed  Google Scholar 

  62. Kang CE, Baumann MD, Tator CH, Shoichet MS. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury. Cells Tissues Organs. 2013;197:55–63. https://doi.org/10.1159/000339589.

    Article  CAS  PubMed  Google Scholar 

  63. Bozkurt G, Mothe AJ, Zahir T, Kim H, Shoichet MS, Tator CH. Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat. Neurosurgery. 2010;67:1733–44. https://doi.org/10.1227/NEU.0b013e3181f9af35.

    Article  PubMed  Google Scholar 

  64. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci. 2006;26:3377–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roussos I, Rodriguez M, Villan D, Ariza A, Rodriguez L, Garcia J. Development of a rat model of spinal cord injury and cellular transplantation. Transplant Proc. 2005;37:4127–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following sources for funding: Conquer Paralysis Now and the Sam Schmidt Foundation, Ontario Ministry of Research and Innovation and Medicine by Design, Ontario-China Research and Innovation Fund, Krembil Foundation, Toronto General and Western Hospital Foundation, and Spinal Cord Injury Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Tator .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tator, C.H., Poon, P., Mothe, A.J. (2019). Clip Impact-Compression Model. In: Chen, J., Xu, Z., Xu, X., Zhang, J. (eds) Animal Models of Acute Neurological Injury. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16082-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16082-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16080-7

  • Online ISBN: 978-3-030-16082-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics