Skip to main content

Bacillus subtilis-Mediated Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol

Abstract

Abiotic stresses have a significant negative impact on global agricultural productivity. The application of the beneficial plant growth-promoting bacterium (PGPB) Bacillus subtilis is a sustainable and environmentally friendly strategy to cope with the adverse effects of abiotic stresses on plants. A review of the literature indicates that B. subtilis exerts growth-stimulating and protective effects on different plant species under various environmental stresses, including drought, salinity, heavy metals, etc. Despite numerous studies, the pathways by which B. subtilis induces plant tolerance to stress, and the mechanisms of interaction in the systems “B. subtilis – host plants – stress” leading to the increase of plant growth and tolerance, are not completely understood. These mechanisms are driven by wide range of biologically active substances, not yet fully characterized, which improve the bioavailability of macro-/micronutrients and induce systemic resistance and tolerance to the stressors. The most effective bacterium in growth promotion and plant protection against stress might be the endophytic B. subtilis which is living inside the plant tissues. They are less dependent on external environmental factors than epiphytic strains and provide long-term protection to the host plant which, along with the promotion of growth, is economically beneficial. Therefore, the precise understanding the mechanisms used by B. subtilis is extremely important to fully utilize the potential of this microbe as a component of organic agriculture, and as an agent to increase plant productivity and maintain long-term sustainability in a clean environment. A solid understanding of how these biological systems work will contribute to our future food security. This chapter presents numerous examples where the application of B. subtilis has successfully improved plant abiotic stress tolerance. The recent progress made in understanding the role of B. subtilis in plant growth, development and defense responses to different abiotic stresses is discussed. The current state of knowledge of the fundamental physiological and biochemical mechanisms of B. subtilis-induced abiotic stress tolerance in host plants and the potential of B. subtilis in reducing postharvest food losses are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FON, Malik JA, Alharbi RI, Egamberdieva D (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Interact 13(1):37–44. https://doi.org/10.1080/17429145.2017.1414321

    Article  CAS  Google Scholar 

  • Ahmad Z, Wu J, Chen L, Dong W (2017) Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Sci Rep 7(1):1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn I-P, Park K, Kim C-H (2002) Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Mol Cell 13(2):302–308

    CAS  Google Scholar 

  • Akram W, Anjum T, Ali B, Ahmad A (2013) Screening of native Bacillus strains to induce systemic resistance in tomato plants against Fusarium wilt in split root system and its field applications. Int J Agric Biol 15:1289–1294

    Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412

    Article  Google Scholar 

  • Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209. https://doi.org/10.1007/s11104-004-5047-x

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315. https://doi.org/10.1007/s11104-007-9233-5

    Article  CAS  Google Scholar 

  • Arya B, Komala BR, Sumalatha NT, Surendra GM, Gurumurthy PR (2018) PGPR induced systemic tolerance in plant. Int J Curr Microbiol Appl Sci 7:453–462

    Google Scholar 

  • Asgari HR, Cornelis W, Van Damme P (2012) Salt stress effect on wheat (Triticum aestivum L.) growth and leaf ion concentrations. Int J Plant Prod 6(2):195–208

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculation wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Baez-Rogelio A, Morales-García YE, Quintero-Hernández V, Muñoz-Rojas J (2016) Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol 10(1). https://doi.org/10.1111/1751-7915.12448

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32(4):809–822

    Article  CAS  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514. https://doi.org/10.1111/ppl.12614

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford

    Google Scholar 

  • Belyaev AA, Shternshis MV, Chechenina NS, Shpatova TV, Lelyak AA (2017) Adaptation of primocane fruiting raspberry plants to environmental factors under the influence of Bacillus strains in Western Siberia. Environ Sci Pollut Res 24(8):7016–7022

    Article  CAS  Google Scholar 

  • Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol 3(3):413–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia L (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguo bacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387

    Article  CAS  PubMed  Google Scholar 

  • Blagova DK, Sarvarova ER, Khairullin RM (2014) Isolation and characterization of bacterial carrot endophytes (Daucus carota L. var. Sativus). Bull Orenburg State Univ 174(13):10–12

    Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Bochow H, El-Sayed SF, Junge H, Stavropoulou A, Schmiedeknecht G (2001) Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Z Pflanzenkrankh. Pflanzenschutz 108(1):21–30

    CAS  Google Scholar 

  • Bottini R, Cassan F, Picolli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Buchholz F, Kostic T, Sessitsch A, Mitter B (2018) The potential of plant microbiota in reducing postharvest food loss. Microb Biotechnol 11(6):971–975. https://doi.org/10.1111/1751-7915.13252

    Article  PubMed  PubMed Central  Google Scholar 

  • Burg SP (1973) Ethylene in plant growth. Proc Natl Acad Sci U S A 70:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrell M, Hanfrey CC, Murray EJ, Stanley-Wall NR, Michael AJ (2010) Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. J Biol Chem 285:39224–39238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Çakmakçı R, Turan M, Kıtır N, Güneş A, Nikerel E, Özdemir BS, Yıldırım E, Olgun M, Topçuoğlu B, Tüfenkçi Ş, Karaman MR, Tarhan L, Mokhtari NEP (2017) The role of soil beneficial bacteria in wheat production: a review. Agricultural and biological sciences “wheat improvement, management and utilization”. https://doi.org/10.5772/67274

  • Chaudhary K, Khan S (2018) Role of plant growth promoting bacteria (PGPB) for bioremediation of heavy metals: an overview. Biostimulation Remediation Technologies for Groundwater Contaminants 22. https://doi.org/10.4018/978-1-5225-4162-2.ch006

  • Chen J-F, Gallie DR (2010) Analysis of the functional conservation of ethylene receptors between maize and Arabidopsis. Plant Mol Biol 74(4-5):405–421. https://doi.org/10.1007/s11103-010-9686-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Jiang J-G (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319

    Article  CAS  Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866. https://doi.org/10.1074/jbc.M201286200

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2012) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A et al (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678

    Article  CAS  PubMed  Google Scholar 

  • Chourdhary D, Johri B (2009) Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  Google Scholar 

  • Chowdappa P, Kumar SM, Lakshmi MJ et al (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65(1):109–117

    Article  Google Scholar 

  • Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, Roberts DP (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl Microbiol Biotechnol 80(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163. https://doi.org/10.1186/1471-2229-11-163

    Article  PubMed  PubMed Central  Google Scholar 

  • Dandekar AM (2000) Genetic engineering to improve quality, productivity and value of crops. Calif Agric 54(4):49–56. https://doi.org/10.3733/ca.v054n04p49

    Article  Google Scholar 

  • De Jensen CE, Meronuck R, Percich JA (2000) Efficacy of Bacillus subtilis and two rhizobium strains for the management of bean root rot in Minnesota. Annu Rep Bean Improv Coop 43:33–34

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 57:361–379

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45(6):563–571

    Article  Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887. https://doi.org/10.3389/fmicb.2017.01887

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2014). Available from: http://www.fao.org/news/story/en/item/273303/icode

  • FAO (2015) Food losses and waste. URL http://www.fao.org/food-loss-and-food-waste/en/

  • FAO (2016) Available online: http://www.fao.org/3/a-i6030e.pdf (2016)

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.) isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The gram-positive side of plant-microbe interactions. Environ Microbiol 12:1–12. https://doi.org/10.1111/j.1462-2920.2009.01989.x

    Article  CAS  PubMed  Google Scholar 

  • Fravel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Gagne-Bourgue F, Aliferis KA, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114(3):836–853

    Article  CAS  PubMed  Google Scholar 

  • Gagné-Bourque F, Mayer BF, Charron JB, Vali H, Bertrand A, Jabaji S (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS One 10(6):e0130456. https://doi.org/10.1371/journal.pone.0130456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagné-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584. https://doi.org/10.3389/fpls.2016.00584

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao H, Xu X, Dai Y, He H (2016) Isolation, identification and characterization of Bacillus subtilis CF-3, a bacterium from fermented bean curd for controlling postharvest diseases of peach fruit. Food Sci Technol Res 22(3):377–385. https://doi.org/10.3136/fstr.22.377

    Article  CAS  Google Scholar 

  • García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate – and salicylic acid-dependent defense responses. Microb Biotechnol 6(3):264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242. https://doi.org/10.1080/07352680701572966

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol Biochem 39(1):11–17

    Article  CAS  Google Scholar 

  • Gupta V, Bochow H, Dolej S et al (2000) Plant growth-promoting Bacillus subtilis strain as potential inducer of systemic resistance in tomato against Fusarium wilt. J Plant Dis Prot 107:145–154

    Google Scholar 

  • Haggag WM, Tawfik MM, Abouziena HF, Abd El Wahed MSA, Ali RR (2017) Enhancing wheat production under arid climate stresses using bio-elicitors. Gesunde Pflanzen 69(3):149–158

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1(3):216–221

    Google Scholar 

  • Hao Y, Wu H, Liu Y, Hu Q (2015) Mitigative effect of Bacillus subtilis QM3 on root morphology and resistance enzyme activity of wheat root under lead stress. Adv Microbiol 5:469–478

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi A, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Plant Sci 7:1089. https://doi.org/10.3389/fmicb.2016.01089

    Article  Google Scholar 

  • Hodges RJ, Buzby JC, Bennett B (2010) Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. J Agric Sci 149:37–45

    Article  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummel I, Couée I, El Amrani A, Martin-Tanguy J, Hennion F (2002) Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. J Exp Bot 53:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishak Z, Mohd Iswadi MK, Russman Nizam AH, Ahmad Kamil MJ, Ernie Eileen RR, Wan Syaidatul A, Ainon H (2016) Plant growth hormones produced by endophytic Bacillus subtilis strain LKM-BK isolated from cocoa. Malays Cocoa J 9(1):127–133

    Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928

    CAS  Google Scholar 

  • Jayaraj J, Anand A, Muthukrishnan S (2004a) Pathogenesis-related proteins and their roles in resistance to fungal pathogens. Fungal disease resistance in pants: biochemistry, molecular biology, and genetic engineering. Haworth Press, New York

    Google Scholar 

  • Jayaraj J, Yi H, Liang G et al (2004b) Foliar application of Bacillus subtilis AUBS1 reduces sheath blight and triggers defense mechanisms in rice. J Plant Dis Prot 111(2):115–125

    Article  CAS  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jiang YM, Chen F, Li YB, Liu SX (2001) A preliminary study on the biological control of postharvest diseases of Litchi fruit. J Fruit Sci 14(3):185–186

    Google Scholar 

  • Karaca U, Sabir A (2017) Sustainable mitigation of alkaline stress in grapevine rootstocks (vitis spp.) by plant growth-promoting rhizobacteria. Erwerbs-Obstbau:1–10. https://doi.org/10.1007/s10341-017-0361-7

  • Karimi K, Amini J, Harighi B, Bahramnejad B (2012) Evaluation of biocontrol potential of ‘pseudomonas’ and ‘bacillus’ spp. against fusarium wilt of chickpea. Aust J Crop Sci 6(4):695

    Google Scholar 

  • Karlidag H, Esitken A, Yildirim E, Donmez MF, Turan M (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth, leaf water content, membrane permeability andionic composition of strawberry under saline conditions. J Plant Nutr 34:34–46

    Article  CAS  Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria×ananassa). Hortscience 48(5):563–567

    Article  CAS  Google Scholar 

  • Kaushal M, Wani SP (2015) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol:1–8

    Google Scholar 

  • Key S, Ma JK-C, Drake PMW (2008) Genetically modified plants and human health. J R Soc Med 101(6):290–298. https://doi.org/10.1258/jrsm.2008.070372

    Article  PubMed  PubMed Central  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Kuklinski-Sorbal J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterisation of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6(12):1244–1251

    Article  CAS  Google Scholar 

  • Kuramshina ZM, Smirnova YV, Khairullin RM (2018) Cadmium and nickel toxicity for sinapis alba plants inoculated with endophytic strains of Bacillus subtilis. Russ J Plant Physiol 65(2):269–277

    Article  CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Plant 228:367–381

    Article  CAS  Google Scholar 

  • Kwon YS, Ryu C-M, Lee S, Park HB, Han KS, Lee JH et al (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370. https://doi.org/10.1007/s00425-010-1259-x

    Article  CAS  PubMed  Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova D, Khairullin R, Aliniaeifard S (2017a) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88

    Article  CAS  PubMed  Google Scholar 

  • Lastochkina OV, Yuldashev RA, Pusenkova LI (2017b) The effect of bacteria Bacillus subtilis 26D on drought resistance of soft spring wheat cultivars of the West Siberian forest-steppe and Volga steppe ecotypes in the early stages of ontogenesis. Proc RAS Ufa Sci Cent 3(1):99–102

    Google Scholar 

  • Lastochkina O, Seifikalhor M, Aliniaeifard S, Baymiev A, Pusenkova L, Garipova S, Kulabuhova D, Maksimov I (2019) Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 8(4):97

    Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of β-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzym Microb Technol 38(7):990–997

    Article  CAS  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748. https://doi.org/10.1093/nar/gkt1250

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Chen D, Yin H, Song M, Guo S (2010) Bacillus subtilis for salt stress relief in vegetable cultivation. Acta Hortic 856:237–242. https://doi.org/10.17660/ActaHortic.2010.856.33

    Article  CAS  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164. https://doi.org/10.1007/s00253-013-5193-2

    Article  CAS  PubMed  Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Cell fructan and its relationship to abiotic stress tolerance in plants. Mol Life Sci 66(13):2007–2023. https://doi.org/10.1007/s00018-009-0002-x

    Article  CAS  Google Scholar 

  • Ma Y (2017) Beneficial bacteria for disease suppression and plant growth promotion. Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_26

    Book  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Maksimov I, Khairullin R (2016) The role of Bacillus bacterium in formation of plant defence: mechanisms and reactions. The handbook of microbial bioresources.

    Google Scholar 

  • Maksimov IV, Veselova SV, Nuzhnaya TV, Sarvarova ER, Khairullin RM (2015) Plant growth promoting bacteria in regulation of plant resistance to stress factors. Russ J Plant Physiol 62(6):715–726

    Article  CAS  Google Scholar 

  • Martins SJ, Rocha GA, de Melo HC, de Castro Georg R, Ulhôa CJ, de Campos Dianese É, Oshiquiri LH, da Cunha MG, da Rocha MR, de Araújo LG, Vaz KS, Dunlap CA (2018) Plant-associated bacteria mitigate drought stress in soybean. Environ Sci Pollut Res 25(14):13676–13686. https://doi.org/10.1007/s11356-018-1610-5

    Article  CAS  Google Scholar 

  • Miller AR (2003) Harvest and handling injury: physiology, biochemistry, and detection. In: Postharvest physiology and pathology of vegetables. Marcel Dekker Inc., New York

    Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50(2):263–272. https://doi.org/10.1007/s11099-012-0032-8

    Article  CAS  Google Scholar 

  • Moon S, Asif R, Basharat A (2017) Phylogenetic diversity of drought tolerant Bacillus spp. and their growth stimulation of Zea mays L. under different water regimes. Res J Biotechnol 12(10):38–46

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Sheela J, Raguchander T (2001) A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol 46(4):493–510

    Article  Google Scholar 

  • Naseem S, Yasin M, Faisal M, Ahmed A (2016) Comparative study of plant growth promoting bacteria in minimizing toxic effects of chromium on growth and metabolic activities in wheat (Triticum aestivum). J Chem Soc Pak 38(3):509–516

    CAS  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24(5):533–542

    Article  CAS  PubMed  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, AL-Harrasi A (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32. https://doi.org/10.1016/j.micres.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  • Oliveira ALM, Urquiaga S, Baldani JI (2003) Processos e mecanismos envolvidos na influência de microrganismos sobre o crescimento vegetal. Embrapa Agrobiologia Documentos 161:1–5

    Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2014) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712. https://doi.org/10.4161/psb.4.8.9047

    Article  Google Scholar 

  • Pandey PK, Singh MC, Singh SS, Kumar AK, Pathak MM, Shakywar RC, Pandey AK (2017) Inside the plants: endophytic bacteria and their functional attributes for plant growth promotion. Int J Curr Microbiol App Sci 6(2):11–21

    Article  CAS  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    PubMed  PubMed Central  Google Scholar 

  • Pérez-García A, Romero D, Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble. Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller D, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pusenkova LI, Il’yasova EY, Maksimov IV, Lastochkina OV (2015) Enhancement of adaptive capacity of sugar beet crops by microbial biopreparations under biotic and abiotic stresses. Agric Biol 50(1):115–123

    Google Scholar 

  • Pusenkova LI, Il’yasova EY, Lastochkina OV, Maksimov IV, Leonova SA (2016) Changes in the species composition of the rhizosphere and phyllosphere of sugar beet under the impact of biological preparations based on endophytic bacteria and their metabolites. Eurasian Soil Sci 49(10):1136–1144

    Article  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:500–508

    Article  CAS  PubMed  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP et al (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Ramyabharathi S, Meena B, Raguchander T (2012) Induction of chitinase and β-1,3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J Today Biol Sci Res Rev 1(1):50–60

    Google Scholar 

  • Reid MS (1981) The role of ethylene in flower senescene. Acta Hortic 261:157–169

    Google Scholar 

  • Rekha K, Baskar B, Srinath S, Usha B (2018) Plant-growth-promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots. Can J Microbiol 64(1):20–27. https://doi.org/10.1139/cjm-2017-0409

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera S, Bonilla R (2012) Effect of inoculation with plant growth promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, PérezGarcía A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3(6):942–955

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Pare PW et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932. https://doi.org/10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Mohamed AF, Hu CH, Munagala SR, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560. https://doi.org/10.1038/s41598-018-21921-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sailaja P, Podile A, Reddanna P (1998) Biocontrol strain of Bacillus subtilis AF 1 rapidly induces lipoxygenase in groundnut (Arachis hypogaea L.) compared to crown rot pathogen Aspergillus niger. Eur J Plant Pathol 104(2):125–132

    Article  CAS  Google Scholar 

  • Saleh SA, Heuberger H, Schnitzler WH (2005) Alleviation of salinity effect on artichoke productivity by Bacillus subtilis FZB24, supplemental Ca and micronutrients. J Appl Bot Food Qual 79:24–32

    CAS  Google Scholar 

  • Sandhya V, Shaik ZA, Minakshi G, Gopal R, Venkateswarlu B (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    Article  CAS  Google Scholar 

  • Sarma BK, Yadav KS, Singh DP, Singh HB (2018) Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. Bact Agrobiol Stress Manag:225–238

    Google Scholar 

  • Sayed SA, Atef AS, Soha E (2011) Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Nat Sci 9(6):31–36

    Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. MPMI 25(1):28–36

    Article  CAS  PubMed  Google Scholar 

  • Shafi О, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459. https://doi.org/10.1080/13102818.2017.1286950

    Article  CAS  Google Scholar 

  • Shahid M, Khan MS (2018) Cellular destruction, phytohormones and growth modulating enzymes production by Bacillus subtilis strain BC8 impacted by fungicides. Pestic Biochem Physiol 149:8–19

    Article  CAS  PubMed  Google Scholar 

  • Shakirova FM, Avalbaev AM, Bezrukova MV, Fatkhutdinova RA, Maslennikova DR, Yuldashev RA, Allagulova CR, Lastochkina OV (2012) Phytohormones and abiotic stress tolerance in plants. Springer, Berlin/Heidelberg

    Google Scholar 

  • Sivasakthi S, Kanchana D, Usharani G, Saranraj P (2013) Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. Int J Microbiol Res 4(3):227–233

    CAS  Google Scholar 

  • Soleimanzadeh N, Soleimanzadeh H (2010) Effect of VA-mycorrhiza on growth and yield of sunflower (Helianthus annuus L.) at different phosphorus level. World Acad Sci Eng Technol 71:414–417

    Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882. https://doi.org/10.1007/s12010-016-2139-z

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Brestic M, Taran N, Zivcak M (2016) Plants used for biomonitoring and phytoremediation of trace elements in soil and water. Plant metal interaction emerging remediation techniques. Elsevier.

    Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tahir HAS, Gu Q, Wu H, Raza W, Hanif A, Wu L, Colman MV, Gao X (2017) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:171. https://doi.org/10.3389/fmicb.2017.00171

    Article  PubMed  PubMed Central  Google Scholar 

  • Thilagavathi R, Saravanakumar D, Ragupathi N et al (2007) A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in greengram. Phytopathol Mediterr 46(2):157–167

    CAS  Google Scholar 

  • Treesubsuntorn C, Dhurakit P, Khaksar G, Thiravetyan P (2017) Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). Environ Sci Pollut Res:1–12

    Google Scholar 

  • Turan M, Gulluce M, Şahin F (2012) Effects of plant-growth-promoting rhizobacteria on yield, growth, and some physiological characteristics of wheat and barley plants. Commun Soil Sci Plant Anal 43(12):1658–1673

    Article  CAS  Google Scholar 

  • Turan M, Ekinci M, Yıldırım E, Güneş K, Karagöz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content in cabbage (Brassica oleracea) seedlings. Turk J Agric For 38:327–333

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth promoting rhizobacteria under salinity condition. Pedosphere 2:214–222

    Article  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–611

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9(2):189–195. https://doi.org/10.1016/j.pbi.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vardharajula S, Zulfikar AS, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp., effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14

    Article  CAS  Google Scholar 

  • Veselova SV, Nuzhnaya TV, Maksimov IV (2015) Jasmonic acid: biosynthesis, functions and role in plant development. Nova Science Publishers, New York

    Google Scholar 

  • Wang C-J, Yang W, Wang C, Gu C, Niu D-D, Liu H-X, Wang Y-P, Guo J-H (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):e52565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani PA, Wahid S, Singh R, Kehinde AM (2018) Antioxidant and chromium reductase assisted chromium (VI) reduction and Cr (III) immobilization by the rhizospheric Bacillus helps in the remediation of Cr (VI) and growth promotion of soybean crop. Rhizosphere 6:23–30

    Article  Google Scholar 

  • Wenhao X, Zhao L, Xu X, Yonghua Q, Guanghui Y (2012) Mutual information flow between beneficial microorganisms and the roots of host plants determined the biofunctions of biofertilisers. Am J Plant Sci 3:1115–1120

    Article  Google Scholar 

  • Wilks JC, Kitko RD, Cleeton SH, Lee GE, Ugwu CS, Jones BD, BonDurant SS, Slonczewski JL (2009) Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 75:981–990

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Zhang H, Pare P (2009) Sustained growth promotion in arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953. https://doi.org/10.4161/psb.4.10.9709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie S, Wu H, Zang H, Wu L, Zhu Q, Gao X (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant-Microbe Interact 27:655–663. https://doi.org/10.1094/MPMI-01-14-0010-R

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Wu H, Chen L, Zang H, Xie Y, Gao X (2015) Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol 15:21. https://doi.org/10.1186/s12866-015-0353-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yazici I, Tuerkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57

    Article  CAS  Google Scholar 

  • Yildirim E, Turan M, Ekinci M, Dursun A, Cakmakci R (2011) Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci Res Essays 6:4389–4396

    Article  Google Scholar 

  • Zhang H, Kim M, Krishnamachari V, Payton P, Sun Y, Grimson M et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851. https://doi.org/10.1007/s00425-007-0530-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273. https://doi.org/10.1111/j.1365-313X.2008.03593.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Murzello SY, Kim M-S, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23(8):1097–1104. https://doi.org/10.1094/MPMI-23-8-1097

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by RFBR (No. 19-016-00035) and RF Presidential Grants for Young Scientists (No. МК-643.2019.11).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lastochkina, O. (2019). Bacillus subtilis-Mediated Abiotic Stress Tolerance in Plants. In: Islam, M., Rahman, M., Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-15175-1_6

Download citation

Publish with us

Policies and ethics