Skip to main content

Substance Use Disorders: Cognitive Sequelae, Behavioral Manifestations, Neuroimaging Correlates, and Novel Interventions

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

The United States is currently in the midst of a substance abuse crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Center for Behavioral Health Statistics and Quality. 2016 National Survey on Drug Use and Health: Methodological summary and definitions. Rockville, MD: Substance Abuse and Mental Health Services Administration; 2017.

    Google Scholar 

  2. Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol. 2012;52:321–36.

    Article  PubMed  Google Scholar 

  3. Volkow ND, Koob GF, McLellan AT. Neurobiologic Advances from the Brain Disease Model of Addiction. N Engl J Med. 2016;374(4):363–71.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Volkow ND, Morales M. The Brain on Drugs: From Reward to Addiction. Cell. 2015;162(4):712–25.

    Article  PubMed  Google Scholar 

  5. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Di Chiara G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res. 2002;137(1–2):75–114.

    Article  PubMed  Google Scholar 

  7. Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of Reward Processing in Addiction: An Image-Based Meta-analysis of Functional Magnetic Resonance Imaging Studies. JAMA Psychiatry. 2017;74(4):387–98.

    Article  PubMed  Google Scholar 

  8. Dean AC, Groman SM, Morales AM, London ED. An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology. 2013;38(2):259–74.

    Article  PubMed  Google Scholar 

  9. Spronk DB, van Wel JH, Ramaekers JG, Verkes RJ. Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci Biobehav Rev. 2013;37(8):1838–59.

    Article  PubMed  Google Scholar 

  10. Jovanovski D, Erb S, Zakzanis KK. Neurocognitive deficits in cocaine users: a quantitative review of the evidence. J Clin Exp Neuropsychol. 2005;27(2):189–204.

    Article  PubMed  Google Scholar 

  11. Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, et al. Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol Rev. 2007;17(3):275–97.

    Article  PubMed  Google Scholar 

  12. Solowij N, Battisti R. The chronic effects of cannabis on memory in humans: a review. Curr Drug Abuse Rev. 2008;1(1):81–98.

    Article  PubMed  Google Scholar 

  13. Baldacchino A, Balfour DJ, Passetti F, Humphris G, Matthews K. Neuropsychological consequences of chronic opioid use: a quantitative review and meta-analysis. Neurosci Biobehav Rev. 2012;36(9):2056–68.

    Article  PubMed  Google Scholar 

  14. Stavro K, Pelletier J, Potvin S. Widespread and sustained cognitive deficits in alcoholism: a meta-analysis. Addict Biol. 2013;18(2):203–13.

    Article  PubMed  Google Scholar 

  15. Schrimsher GW, Parker JD, Burke RS. Relation between cognitive testing performance and pattern of substance use in males at treatment entry. Clin Neuropsychol. 2007;21(3):498–510.

    Article  PubMed  Google Scholar 

  16. London ED, Berman SM, Voytek B, Simon SL, Mandelkern MA, Monterosso J, et al. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biol Psychiatry. 2005;58(10):770–8.

    Article  PubMed  Google Scholar 

  17. Redish AD, Jensen S, Johnson A. A unified framework for addiction: vulnerabilities in the decision process. Behav Brain Sci. 2008;31(4):415–37; discussion 37-87.

    Article  PubMed  Google Scholar 

  18. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159(10):1642–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Verdejo-Garcia A, Bechara A. A somatic marker theory of addiction. Neuropharmacology. 2009;56(Suppl 1):48–62.

    Article  PubMed  Google Scholar 

  20. Blume AW, Marlatt GA. The role of executive cognitive functions in changing substance use: what we know and what we need to know. Ann Behav Med. 2009;37(2):117–25.

    Article  PubMed  Google Scholar 

  21. Loughead J, Wileyto EP, Ruparel K, Falcone M, Hopson R, Gur R, et al. Working memory-related neural activity predicts future smoking relapse. Neuropsychopharmacology. 2015;40(6):1311–20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aharonovich E, Hasin DS, Brooks AC, Liu X, Bisaga A, Nunes EV. Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend. 2006;81(3):313–22.

    Article  PubMed  Google Scholar 

  23. Aharonovich E, Nunes E, Hasin D. Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug Alcohol Depend. 2003;71(2):207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sofuoglu M. Cognitive enhancement as a pharmacotherapy target for stimulant addiction. Addiction. 2010;105(1):38–48.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McKellar J, Kelly J, Harris A, Moos R. Pretreatment and during treatment risk factors for dropout among patients with substance use disorders. Addict Behav. 2006;31(3):450–60.

    Article  PubMed  Google Scholar 

  26. McKellar JD, Harris AH, Moos RH. Predictors of outcome for patients with substance-use disorders five years after treatment dropout. J Stud Alcohol. 2006;67(5):685–93.

    Article  PubMed  Google Scholar 

  27. Aharonovich E, Brooks AC, Nunes EV, Hasin DS. Cognitive deficits in marijuana users: Effects on motivational enhancement therapy plus cognitive behavioral therapy treatment outcome. Drug Alcohol Depend. 2008;95(3):279–83.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sofuoglu M, Sugarman DE, Carroll KM. Cognitive function as an emerging treatment target for marijuana addiction. Exp Clin Psychopharmacol. 2010;18(2):109–19.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pathan H, Williams J. Basic opioid pharmacology: an update. Br J Pain. 2012;6(1):11–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hedegaard H, Warner M, Minino AM. Drug Overdose Deaths in the United States, 1999-2016. NCHS Data Brief. 2017;294:1–8.

    Google Scholar 

  31. Gruber SA, Silveri MM, Yurgelun-Todd DA. Neuropsychological consequences of opiate use. Neuropsychol Rev. 2007;17(3):299–315.

    Article  PubMed  Google Scholar 

  32. Zhang XL, Shi J, Zhao LY, Sun LL, Wang J, Wang GB, et al. Effects of stress on decision-making deficits in formerly heroin-dependent patients after different durations of abstinence. Am J Psychiatry. 2011;168(6):610–6.

    Article  PubMed  Google Scholar 

  33. Rapeli P, Fabritius C, Kalska H, Alho H. Cognitive functioning in opioid-dependent patients treated with buprenorphine, methadone, and other psychoactive medications: stability and correlates. BMC Clin Pharmacol. 2011;11:13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mintzer MZ, Stitzer ML. Cognitive impairment in methadone maintenance patients. Drug Alcohol Depend. 2002;67(1):41–51.

    Article  PubMed  Google Scholar 

  35. Rapeli P, Fabritius C, Alho H, Salaspuro M, Wahlbeck K, Kalska H. Methadone vs. buprenorphine/naloxone during early opioid substitution treatment: a naturalistic comparison of cognitive performance relative to healthy controls. BMC Clin Pharmacol. 2007;7:5.

    Google Scholar 

  36. Darke S, Sims J, McDonald S, Wickes W. Cognitive impairment among methadone maintenance patients. Addiction. 2000;95(5):687–95.

    Article  PubMed  Google Scholar 

  37. Prosser J, Cohen LJ, Steinfeld M, Eisenberg D, London ED, Galynker II. Neuropsychological functioning in opiate-dependent subjects receiving and following methadone maintenance treatment. Drug Alcohol Depend. 2006;84(3):240–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Specka M, Finkbeiner T, Lodemann E, Leifert K, Kluwig J, Gastpar M. Cognitive-motor performance of methadone-maintained patients. Eur Addict Res. 2000;6(1):8–19.

    Article  PubMed  Google Scholar 

  39. Meade CS, Bevilacqua LA, Moore ED, Griffin ML, Gardin JG, 2nd, Potter JS, et al. Concurrent substance abuse is associated with sexual risk behavior among adults seeking treatment for prescription opioid dependence. Am J Addict. 2014;23(1):27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meade CS, McDonald LJ, Weiss RD. HIV risk behavior in opioid dependent adults seeking detoxification treatment: an exploratory comparison of heroin and oxycodone users. Am J Addict. 2009;18(4):289–93.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roux P, Fugon L, Jones JD, Comer SD. Hepatitis C infection in non-treatment-seeking heroin users: the burden of cocaine injection. Am J Addict. 2013;22(6):613–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Loeber S, Nakovics H, Kniest A, Kiefer F, Mann K, Croissant B. Factors affecting cognitive function of opiate-dependent patients. Drug Alcohol Depend. 2012;120(1–3):81–7.

    Article  PubMed  Google Scholar 

  43. Clark M, DiBenedetti D, Perez V. Cognitive dysfunction and work productivity in major depressive disorder. Expert Rev Pharmacoecon Outcomes Res. 2016;16(4):455–63.

    Article  PubMed  Google Scholar 

  44. Association AP. Diagnostic and Statistical Manual of Mental Disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  45. Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull. 2013;139(1):81–132.

    Article  PubMed  Google Scholar 

  46. Nitschke JB, Heller W, Etienne MA, Miller GA. Prefrontal cortex activity differentiates processes affecting memory in depression. Biol Psychol. 2004;67(1–2):125–43.

    Article  PubMed  Google Scholar 

  47. Kornreich C, Foisy ML, Philippot P, Dan B, Tecco J, Noel X, et al. Impaired emotional facial expression recognition in alcoholics, opiate dependence subjects, methadone maintained subjects and mixed alcohol-opiate antecedents subjects compared with normal controls. Psychiatry Res. 2003;119(3):251–60.

    Article  PubMed  Google Scholar 

  48. Aguilar de Arcos F, Verdejo-Garcia A, Peralta-Ramirez MI, Sanchez-Barrera M, Perez-Garcia M. Experience of emotions in substance abusers exposed to images containing neutral, positive, and negative affective stimuli. Drug Alcohol Depend. 2005;78(2):159–67.

    Article  PubMed  Google Scholar 

  49. Gerra G, Ceresini S, Esposito A, Zaimovic A, Moi G, Bussandri M, et al. Neuroendocrine and behavioural responses to opioid receptor-antagonist during heroin detoxification: relationship with personality traits. Int Clin Psychopharmacol. 2003;18(5):261–9.

    Article  PubMed  Google Scholar 

  50. Aguilar de Arcos F, Verdejo-Garcia A, Ceverino A, Montanez-Pareja M, Lopez-Juarez E, Sanchez-Barrera M, et al. Dysregulation of emotional response in current and abstinent heroin users: negative heightening and positive blunting. Psychopharmacology (Berl). 2008;198(2):159–66.

    Article  PubMed  Google Scholar 

  51. Wang X, Li B, Zhou X, Liao Y, Tang J, Liu T, et al. Changes in brain gray matter in abstinent heroin addicts. Drug Alcohol Depend. 2012;126(3):304–8.

    Article  PubMed  Google Scholar 

  52. Yuan Y, Zhu Z, Shi J, Zou Z, Yuan F, Liu Y, et al. Gray matter density negatively correlates with duration of heroin use in young lifetime heroin-dependent individuals. Brain Cogn. 2009;71(3):223–8.

    Article  PubMed  Google Scholar 

  53. Liu H, Hao Y, Kaneko Y, Ouyang X, Zhang Y, Xu L, et al. Frontal and cingulate gray matter volume reduction in heroin dependence: optimized voxel-based morphometry. Psychiatry Clin Neurosci. 2009;63(4):563–8.

    Article  PubMed  Google Scholar 

  54. Lin WC, Chou KH, Chen CC, Huang CC, Chen HL, Lu CH, et al. White matter abnormalities correlating with memory and depression in heroin users under methadone maintenance treatment. PLoS ONE. 2012;7(4):e33809.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, Li W, Li Q, Yang W, Zhu J, Wang W. White matter impairment in heroin addicts undergoing methadone maintenance treatment and prolonged abstinence: a preliminary DTI study. Neurosci Lett. 2011;494(1):49–53.

    Article  PubMed  Google Scholar 

  56. Li W, Zhu J, Li Q, Ye J, Chen J, Liu J, et al. Brain white matter integrity in heroin addicts during methadone maintenance treatment is related to relapse propensity. Brain Behav. 2016;6(2):e00436.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li W, Li Q, Zhu J, Qin Y, Zheng Y, Chang H, et al. White matter impairment in chronic heroin dependence: a quantitative DTI study. Brain Res. 2013;1531:58–64.

    Article  PubMed  Google Scholar 

  58. Reid AG, Daglish MR, Kempton MJ, Williams TM, Watson B, Nutt DJ, et al. Reduced thalamic grey matter volume in opioid dependence is influenced by degree of alcohol use: a voxel-based morphometry study. J Psychopharmacol. 2008;22(1):7–10.

    Article  PubMed  Google Scholar 

  59. Amass L, Nardin R, Mendelson JH, Teoh SK, Woods BT. Quantitative magnetic resonance imaging in heroin- and cocaine-dependent men: a preliminary study. Psychiatry Res. 1992;45(1):15–23.

    Article  PubMed  Google Scholar 

  60. Rose JS, Branchey M, Buydens-Branchey L, Stapleton JM, Chasten K, Werrell A, et al. Cerebral perfusion in early and late opiate withdrawal: a technetium-99 m-HMPAO SPECT study. Psychiatry Res. 1996;67(1):39–47.

    Article  PubMed  Google Scholar 

  61. Li M, Tian J, Zhang R, Qiu Y, Wen X, Ma X, et al. Abnormal cortical thickness in heroin-dependent individuals. Neuroimage. 2014;88:295–307.

    Article  PubMed  Google Scholar 

  62. Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage. 2009;48(2):371–80.

    Article  PubMed  Google Scholar 

  63. Clarkson MJ, Cardoso MJ, Ridgway GR, Modat M, Leung KK, Rohrer JD, et al. A comparison of voxel and surface based cortical thickness estimation methods. Neuroimage. 2011;57(3):856–65.

    Article  PubMed  Google Scholar 

  64. Bora E, Yucel M, Fornito A, Pantelis C, Harrison BJ, Cocchi L, et al. White matter microstructure in opiate addiction. Addict Biol. 2012;17(1):141–8.

    Article  PubMed  Google Scholar 

  65. Qiu Y, Jiang G, Su H, Lv X, Zhang X, Tian J, et al. Progressive white matter microstructure damage in male chronic heroin dependent individuals: a DTI and TBSS study. PLoS ONE. 2013;8(5):e63212.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu H, Li L, Hao Y, Cao D, Xu L, Rohrbaugh R, et al. Disrupted white matter integrity in heroin dependence: a controlled study utilizing diffusion tensor imaging. Am J Drug Alcohol Abuse. 2008;34(5):562–75.

    Article  PubMed  Google Scholar 

  67. Copersino ML, Price JS, Frost KH, Vitaliano GD, Frederick BD, Lukas SE, et al. Default Mode Network Functional Reorganization During Early Abstinence in Polysubstance-Using Emerging Adults Treated for Opioid Dependence. J Neuropsychiatry Clin Neurosci. 2016:appineuropsych15090240.

    Google Scholar 

  68. Ma X, Qiu Y, Tian J, Wang J, Li S, Zhan W, et al. Aberrant default-mode functional and structural connectivity in heroin-dependent individuals. PLoS ONE. 2015;10(4):e0120861.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Costardi JV, Nampo RA, Silva GL, Ribeiro MA, Stella HJ, Stella MB, et al. A review on alcohol: from the central action mechanism to chemical dependency. Rev Assoc Med Bras (1992). 2015;61(4):381–7.

    Article  PubMed  Google Scholar 

  70. Oscar-Berman M, Valmas MM, Sawyer KS, Ruiz SM, Luhar RB, Gravitz ZR. Profiles of impaired, spared, and recovered neuropsychologic processes in alcoholism. Handb Clin Neurol. 2014;125:183–210.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Le Berre AP, Fama R, Sullivan EV. Executive Functions, Memory, and Social Cognitive Deficits and Recovery in Chronic Alcoholism: A Critical Review to Inform Future Research. Alcohol Clin Exp Res. 2017;41(8):1432–43.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fama R, Pfefferbaum A, Sullivan EV. Perceptual learning in detoxified alcoholic men: contributions from explicit memory, executive function, and age. Alcohol Clin Exp Res. 2004;28(11):1657–65.

    Article  PubMed  Google Scholar 

  73. Sullivan EV, Harris RA, Pfefferbaum A. Alcohol’s effects on brain and behavior. Alcohol Res Health. 2010;33(1–2):127–43.

    PubMed  PubMed Central  Google Scholar 

  74. Fein G, Bachman L, Fisher S, Davenport L. Cognitive impairments in abstinent alcoholics. West J Med. 1990;152(5):531–7.

    PubMed  PubMed Central  Google Scholar 

  75. Fein G, Torres J, Price LJ, Di Sclafani V. Cognitive performance in long-term abstinent alcoholic individuals. Alcohol Clin Exp Res. 2006;30(9):1538–44.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Loeber S, Duka T, Welzel Marquez H, Nakovics H, Heinz A, Mann K, et al. Effects of repeated withdrawal from alcohol on recovery of cognitive impairment under abstinence and rate of relapse. Alcohol Alcohol. 2010;45(6):541–7.

    Article  PubMed  Google Scholar 

  77. Rosenbloom MJ, Pfefferbaum A, Sullivan EV. Recovery of short-term memory and psychomotor speed but not postural stability with long-term sobriety in alcoholic women. Neuropsychology. 2004;18(3):589–97.

    Article  Google Scholar 

  78. Pitel AL, Rivier J, Beaunieux H, Vabret F, Desgranges B, Eustache F. Changes in the episodic memory and executive functions of abstinent and relapsed alcoholics over a 6-month period. Alcohol Clin Exp Res. 2009;33(3):490–8.

    Article  PubMed  Google Scholar 

  79. Munro CA, Saxton J, Butters MA. The neuropsychological consequences of abstinence among older alcoholics: a cross-sectional study. Alcohol Clin Exp Res. 2000;24(10):1510–6.

    Article  PubMed  Google Scholar 

  80. Nowakowska-Domagala K, Jablkowska-Gorecka K, Mokros L, Koprowicz J, Pietras T. Differences in the verbal fluency, working memory and executive functions in alcoholics: Short-term vs. long-term abstainers. Psychiatry Res. 2017;249:1–8.

    Article  PubMed  Google Scholar 

  81. Ando B, Must A, Kurgyis E, Szkaliczki A, Drotos G, Rozsa S, et al. Personality traits and coping compensate for disadvantageous decision-making in long-term alcohol abstinence. Alcohol Alcohol. 2012;47(1):18–24.

    Article  PubMed  Google Scholar 

  82. Fein G, Klein L, Finn P. Impairment on a simulated gambling task in long-term abstinent alcoholics. Alcohol Clin Exp Res. 2004;28(10):1487–91.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cheng C, Huang CL, Tsai CJ, Chou PH, Lin CC, Chang CK. Alcohol-Related Dementia: A Systemic Review of Epidemiological Studies. Psychosomatics. 2017;58(4):331–42.

    Article  PubMed  Google Scholar 

  84. Lobo A, Launer LJ, Fratiglioni L, Andersen K, Di Carlo A, Breteler MM, et al. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology. 2000;54(11 Suppl 5):S4–9.

    Google Scholar 

  85. Harvey RJ, Skelton-Robinson M, Rossor MN. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry. 2003;74(9):1206–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Harper C. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol. 1998;57(2):101–10.

    Article  PubMed  Google Scholar 

  87. Zahr NM, Kaufman KL, Harper CG. Clinical and pathological features of alcohol-related brain damage. Nat Rev Neurol. 2011;7(5):284–94.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Penick EC, Powell BJ, Liskow BI, Jackson JO, Nickel EJ. The stability of coexisting psychiatric syndromes in alcoholic men after one year. J Stud Alcohol. 1988;49(5):395–405.

    Article  PubMed  Google Scholar 

  89. Conner KR, Pinquart M, Gamble SA. Meta-analysis of depression and substance use among individuals with alcohol use disorders. J Subst Abuse Treat. 2009;37(2):127–37.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Degenhardt L, Hall W, Lynskey M. Alcohol, cannabis and tobacco use among Australians: a comparison of their associations with other drug use and use disorders, affective and anxiety disorders, and psychosis. Addiction. 2001;96(11):1603–14.

    Article  PubMed  Google Scholar 

  91. Hunt SA, Kay-Lambkin FJ, Baker AL, Michie PT. Systematic review of neurocognition in people with co-occurring alcohol misuse and depression. J Affect Disord. 2015;179:51–64.

    Article  PubMed  Google Scholar 

  92. Rosenbloom MJ, Pfefferbaum A. Magnetic resonance imaging of the living brain: evidence for brain degeneration among alcoholics and recovery with abstinence. Alcohol Res Health. 2008;31(4):362–76.

    PubMed  PubMed Central  Google Scholar 

  93. Gierski F, Hubsch B, Stefaniak N, Benzerouk F, Cuervo-Lombard C, Bera-Potelle C, et al. Executive functions in adult offspring of alcohol-dependent probands: toward a cognitive endophenotype? Alcohol Clin Exp Res. 2013;37(Suppl 1):E356–63.

    Article  PubMed  Google Scholar 

  94. Lisdahl KM, Gilbart ER, Wright NE, Shollenbarger S. Dare to delay? The impacts of adolescent alcohol and marijuana use onset on cognition, brain structure, and function. Front Psychiatry. 2013;4:53.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jacobus J, Squeglia LM, Bava S, Tapert SF. White matter characterization of adolescent binge drinking with and without co-occurring marijuana use: a 3-year investigation. Psychiatry Res. 2013;214(3):374–81.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pfefferbaum A, Kwon D, Brumback T, Thompson WK, Cummins K, Tapert SF, et al. Altered Brain Developmental Trajectories in Adolescents After Initiating Drinking. Am J Psychiatry. 2018;175(4):370–80.

    Article  PubMed  Google Scholar 

  97. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18(1):121–33.

    Article  PubMed  Google Scholar 

  98. Shokri-Kojori E, Tomasi D, Wiers CE, Wang GJ, Volkow ND. Linking brain connectivity and behavior after acute and chronic alcohol exposure. Mol Psychiatry. 2017;22(8):1079.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Squeglia LM, Pulido C, Wetherill RR, Jacobus J, Brown GG, Tapert SF. Brain response to working memory over three years of adolescence: influence of initiating heavy drinking. J Stud Alcohol Drugs. 2012;73(5):749–60.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Squeglia LM, Cservenka A. Adolescence and Drug Use Vulnerability: Findings from Neuroimaging. Curr Opin Behav Sci. 2017;13:164–70.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pomara C, Cassano T, D’Errico S, Bello S, Romano AD, Riezzo I, et al. Data available on the extent of cocaine use and dependence: biochemistry, pharmacologic effects and global burden of disease of cocaine abusers. Curr Med Chem. 2012;19(33):5647–57.

    Article  PubMed  Google Scholar 

  102. Bolla KI, Cadet JL. Cocaine. In: Gorp AKWv, ed. Neuropsychology and Substance Use. New York, New York: Taylor and Francis; 2007.

    Google Scholar 

  103. Sofuoglu M, DeVito EE, Waters AJ, Carroll KM. Cognitive enhancement as a treatment for drug addictions. Neuropharmacology. 2013;64:452–63.

    Article  PubMed  Google Scholar 

  104. Potvin S, Stavro K, Rizkallah E, Pelletier J. Cocaine and cognition: a systematic quantitative review. J Addict Med. 2014;8(5):368–76.

    Article  PubMed  Google Scholar 

  105. Winhusen T, Lewis D, Adinoff B, Brigham G, Kropp F, Donovan DM, et al. Impulsivity is associated with treatment non-completion in cocaine- and methamphetamine-dependent patients but differs in nature as a function of stimulant-dependence diagnosis. J Subst Abuse Treat. 2013;44(5):541–7.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li CS, Milivojevic V, Kemp K, Hong K, Sinha R. Performance monitoring and stop signal inhibition in abstinent patients with cocaine dependence. Drug Alcohol Depend. 2006;85(3):205–12.

    Article  PubMed  Google Scholar 

  107. Fillmore MT, Rush CR. Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend. 2002;66(3):265–73.

    Article  PubMed  Google Scholar 

  108. Cadet JL, Bisagno V. Neuropsychological Consequences of Chronic Drug Use: Relevance to Treatment Approaches. Front Psychiatry. 2015;6:189.

    PubMed  Google Scholar 

  109. Fernandez-Serrano MJ, Perales JC, Moreno-Lopez L, Perez-Garcia M, Verdejo-Garcia A. Neuropsychological profiling of impulsivity and compulsivity in cocaine dependent individuals. Psychopharmacology. 2012;219(2):673–83.

    Article  PubMed  Google Scholar 

  110. Hart CL, Marvin CB, Silver R, Smith EE. Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology. 2012;37(3):586–608.

    Article  PubMed  Google Scholar 

  111. Cherner M, Suarez P, Casey C, Deiss R, Letendre S, Marcotte T, et al. Methamphetamine use parameters do not predict neuropsychological impairment in currently abstinent dependent adults. Drug Alcohol Depend. 2010;106(2–3):154–63.

    Article  PubMed  Google Scholar 

  112. Dean AC, Hellemann G, Sugar CA, London ED. Educational attainment is not a good proxy for cognitive function in methamphetamine dependence. Drug Alcohol Depend. 2012;123(1–3):249–54.

    Article  PubMed  Google Scholar 

  113. Kalechstein AD, Newton TF, Green M. Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. J Neuropsychiatry Clin Neurosci. 2003;15(2):215–20.

    Article  PubMed  Google Scholar 

  114. Johanson CE, Frey KA, Lundahl LH, Keenan P, Lockhart N, Roll J, et al. Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology. 2006;185(3):327–38.

    Article  PubMed  Google Scholar 

  115. Wang GJ, Volkow ND, Chang L, Miller E, Sedler M, Hitzemann R, et al. Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. Am J Psychiatry. 2004;161(2):242–8.

    Article  PubMed  Google Scholar 

  116. Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry. 2001;158(12):2015–21.

    Article  PubMed  Google Scholar 

  117. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry. 2001;158(3):377–82.

    Article  PubMed  Google Scholar 

  118. Iudicello JE, Woods SP, Vigil O, Scott JC, Cherner M, Heaton RK, et al. Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence. J Clin Exp Neuropsychol. 2010;32(7):704–18.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Parrott AC. Human psychobiology of MDMA or ‘Ecstasy’: an overview of 25 years of empirical research. Hum Psychopharmacol. 2013;28(4):289–307.

    Article  PubMed  Google Scholar 

  120. Wagner D, Becker B, Koester P, Gouzoulis-Mayfrank E, Daumann J. A prospective study of learning, memory, and executive function in new MDMA users. Addiction. 2013;108(1):136–45.

    Article  PubMed  Google Scholar 

  121. Halpern JH, Sherwood AR, Hudson JI, Gruber S, Kozin D, Pope HG Jr. Residual neurocognitive features of long-term ecstasy users with minimal exposure to other drugs. Addiction. 2011;106(4):777–86.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Conway KP, Compton W, Stinson FS, Grant BF. Lifetime comorbidity of DSM-IV mood and anxiety disorders and specific drug use disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry. 2006;67(2):247–57.

    Article  PubMed  Google Scholar 

  123. Poling J, Kosten TR, Sofuoglu M. Treatment outcome predictors for cocaine dependence. Am J Drug Alcohol Abuse. 2007;33(2):191–206.

    Article  PubMed  Google Scholar 

  124. Newton TF, Kalechstein AD, Duran S, Vansluis N, Ling W. Methamphetamine abstinence syndrome: preliminary findings. Am J Addict. 2004;13(3):248–55.

    Article  PubMed  Google Scholar 

  125. Mahoney JJ, 3rd, Kalechstein AD, De La Garza R, 2nd, Newton TF. Presence and persistence of psychotic symptoms in cocaine- versus methamphetamine-dependent participants. Am J Addict. 2008;17(2):83–98.

    Article  PubMed  Google Scholar 

  126. Mahoney JJ, 3rd, Hawkins RY, De La Garza R, 2nd, Kalechstein AD, Newton TF. Relationship between gender and psychotic symptoms in cocaine-dependent and methamphetamine-dependent participants. Gend Med. 2010;7(5):414–21.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mahoney JJ, 3rd, Thompson-Lake DG, Cooper K, Verrico CD, Newton TF, De La Garza R, 2nd. A comparison of impulsivity, depressive symptoms, lifetime stress and sensation seeking in healthy controls versus participants with cocaine or methamphetamine use disorders. J Psychopharmacol. 2015;29(1):50–6.

    Article  PubMed  Google Scholar 

  128. McKay JR, Van Horn D, Rennert L, Drapkin M, Ivey M, Koppenhaver J. Factors in sustained recovery from cocaine dependence. J Subst Abuse Treat. 2013;45(2):163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Glasner-Edwards S, Marinelli-Casey P, Hillhouse M, Ang A, Mooney LJ, Rawson R, et al. Depression among methamphetamine users: association with outcomes from the Methamphetamine Treatment Project at 3-year follow-up. J Nerv Ment Dis. 2009;197(4):225–31.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Parvaz MA, Moeller SJ, d’Oleire Uquillas F, Pflumm A, Maloney T, Alia-Klein N, et al. Prefrontal gray matter volume recovery in treatment-seeking cocaine-addicted individuals: a longitudinal study. Addict Biol. 2017;22(5):1391–401.

    Article  PubMed  Google Scholar 

  131. Hall MG, Alhassoon OM, Stern MJ, Wollman SC, Kimmel CL, Perez-Figueroa A, et al. Gray matter abnormalities in cocaine versus methamphetamine-dependent patients: a neuroimaging meta-analysis. Am J Drug Alcohol Abuse. 2015;41(4):290–9.

    Article  PubMed  Google Scholar 

  132. Moreno-Lopez L, Albein-Urios N, Martinez-Gonzalez JM, Soriano-Mas C, Verdejo-Garcia A. Prefrontal Gray Matter and Motivation for Treatment in Cocaine-Dependent Individuals with and without Personality Disorders. Front Psychiatry. 2014;5:52.

    PubMed  PubMed Central  Google Scholar 

  133. Crunelle CL, Kaag AM, van Wingen G, van den Munkhof HE, Homberg JR, Reneman L, et al. Reduced frontal brain volume in non-treatment-seeking cocaine-dependent individuals: exploring the role of impulsivity, depression, and smoking. Front Hum Neurosci. 2014;8:7.

    Article  PubMed  PubMed Central  Google Scholar 

  134. van Son D, Wiers RW, Catena A, Perez-Garcia M, Verdejo-Garcia A. White matter disruptions in male cocaine polysubstance users: Associations with severity of drug use and duration of abstinence. Drug Alcohol Depend. 2016;168:247–54.

    Article  PubMed  Google Scholar 

  135. Ma L, Steinberg JL, Wang Q, Schmitz JM, Boone EL, Narayana PA, et al. A preliminary longitudinal study of white matter alteration in cocaine use disorder subjects. Drug Alcohol Depend. 2017;173:39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ersche KD, Jones PS, Williams GB, Turton AJ, Robbins TW, Bullmore ET. Abnormal brain structure implicated in stimulant drug addiction. Science. 2012;335(6068):601–4.

    Article  PubMed  Google Scholar 

  137. de Win MM, Jager G, Booij J, Reneman L, Schilt T, Lavini C, et al. Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users. Brain. 2008;131(Pt 11):2936–45.

    Article  PubMed  Google Scholar 

  138. Ipser JC, Uhlmann A, Taylor P, Harvey BH, Wilson D, Stein DJ. Distinct intrinsic functional brain network abnormalities in methamphetamine-dependent patients with and without a history of psychosis. Addict Biol. 2018;23(1):347–58.

    Article  PubMed  Google Scholar 

  139. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.

    Article  PubMed  Google Scholar 

  140. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346(6284):561–4.

    Article  PubMed  Google Scholar 

  141. Oleson EB, Cheer JF. A brain on cannabinoids: the role of dopamine release in reward seeking. Cold Spring Harb Perspect Med. 2012;2(8).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Solowij N, Stephens R, Roffman RA, Babor T. Does marijuana use cause long-term cognitive deficits? JAMA. 2002;287(20):2653–4; author reply 4.

    Article  PubMed  Google Scholar 

  143. Solowij N, Stephens RS, Roffman RA, Babor T, Kadden R, Miller M, et al. Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA. 2002;287(9):1123–31.

    Article  PubMed  Google Scholar 

  144. Bolla KI, Brown K, Eldreth D, Tate K, Cadet JL. Dose-related neurocognitive effects of marijuana use. Neurology. 2002;59(9):1337–43.

    Article  PubMed  Google Scholar 

  145. Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RS, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci U S A. 2012;109(40):E2657–64.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Pope HG Jr, Gruber AJ, Yurgelun-Todd D. The residual neuropsychological effects of cannabis: the current status of research. Drug Alcohol Depend. 1995;38(1):25–34.

    Article  PubMed  Google Scholar 

  147. Pope HG Jr, Yurgelun-Todd D. The residual cognitive effects of heavy marijuana use in college students. JAMA. 1996;275(7):521–7.

    Article  PubMed  Google Scholar 

  148. Solowij N. Cannabis and cognitive functioning. New York: Cambridge University Press; 1998.

    Book  Google Scholar 

  149. Volkow ND, Swanson JM, Evins AE, DeLisi LE, Meier MH, Gonzalez R, et al. Effects of Cannabis Use on Human Behavior, Including Cognition, Motivation, and Psychosis: A Review. JAMA Psychiatry. 2016;73(3):292–7.

    Article  PubMed  Google Scholar 

  150. Pope HG Jr, Gruber AJ, Yurgelun-Todd D. Residual neuropsychologic effects of cannabis. Curr Psychiatry Rep. 2001;3(6):507–12.

    Article  PubMed  Google Scholar 

  151. Pope HG Jr, Gruber AJ, Hudson JI, Huestis MA, Yurgelun-Todd D. Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry. 2001;58(10):909–15.

    Article  PubMed  Google Scholar 

  152. Gonzalez R, Pacheco-Colon I, Duperrouzel JC, Hawes SW. Does Cannabis Use Cause Declines in Neuropsychological Functioning? A Review of Longitudinal Studies. J Int Neuropsychol Soc. 2017;23(9–10):893–902.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Daly M. Personality may explain the association between cannabis use and neuropsychological impairment. Proc Natl Acad Sci U S A. 2013;110(11):E979.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rogeberg O. Correlations between cannabis use and IQ change in the Dunedin cohort are consistent with confounding from socioeconomic status. Proc Natl Acad Sci U S A. 2013;110(11):4251–4.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lev-Ran S, Roerecke M, Le Foll B, George TP, McKenzie K, Rehm J. The association between cannabis use and depression: a systematic review and meta-analysis of longitudinal studies. Psychol Med. 2014;44(4):797–810.

    Article  PubMed  Google Scholar 

  156. Hser YI, Mooney LJ, Huang D, Zhu Y, Tomko RL, McClure E, et al. Reductions in cannabis use are associated with improvements in anxiety, depression, and sleep quality, but not quality of life. J Subst Abuse Treat. 2017;81:53–8.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Battistella G, Fornari E, Annoni JM, Chtioui H, Dao K, Fabritius M, et al. Long-term effects of cannabis on brain structure. Neuropsychopharmacology. 2014;39(9):2041–8.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Mata I, Perez-Iglesias R, Roiz-Santianez R, Tordesillas-Gutierrez D, Pazos A, Gutierrez A, et al. Gyrification brain abnormalities associated with adolescence and early-adulthood cannabis use. Brain Res. 2010;1317:297–304.

    Article  PubMed  Google Scholar 

  159. Smith MJ, Cobia DJ, Wang L, Alpert KI, Cronenwett WJ, Goldman MB, et al. Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects. Schizophr Bull. 2014;40(2):287–99.

    Article  PubMed  Google Scholar 

  160. Yucel M, Solowij N, Respondek C, Whittle S, Fornito A, Pantelis C, et al. Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen Psychiatry. 2008;65(6):694–701.

    Article  PubMed  Google Scholar 

  161. Cousijn J, Wiers RW, Ridderinkhof KR, van den Brink W, Veltman DJ, Goudriaan AE. Grey matter alterations associated with cannabis use: results of a VBM study in heavy cannabis users and healthy controls. Neuroimage. 2012;59(4):3845–51.

    Article  PubMed  Google Scholar 

  162. Ashtari M, Avants B, Cyckowski L, Cervellione KL, Roofeh D, Cook P, et al. Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res. 2011;45(8):1055–66.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Shollenbarger SG, Price J, Wieser J, Lisdahl K. Impact of cannabis use on prefrontal and parietal cortex gyrification and surface area in adolescents and emerging adults. Dev Cogn Neurosci. 2015;16:46–53.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Shollenbarger SG, Price J, Wieser J, Lisdahl K. Poorer frontolimbic white matter integrity is associated with chronic cannabis use, FAAH genotype, and increased depressive and apathy symptoms in adolescents and young adults. Neuroimage Clin. 2015;8:117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Pujol J, Blanco-Hinojo L, Batalla A, Lopez-Sola M, Harrison BJ, Soriano-Mas C, et al. Functional connectivity alterations in brain networks relevant to self-awareness in chronic cannabis users. J Psychiatr Res. 2014;51:68–78.

    Article  PubMed  Google Scholar 

  166. Filbey FM, Dunlop J. Differential reward network functional connectivity in cannabis dependent and non-dependent users. Drug Alcohol Depend. 2014;140:101–11.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cousijn J, Vingerhoets WA, Koenders L, de Haan L, van den Brink W, Wiers RW, et al. Relationship between working-memory network function and substance use: a 3-year longitudinal fMRI study in heavy cannabis users and controls. Addict Biol. 2014;19(2):282–93.

    Article  PubMed  Google Scholar 

  168. Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA. Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014;144:12–41.

    Article  PubMed  Google Scholar 

  169. Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Delta(9)-THC: mechanism underlying greater toxicity? Life Sci. 2014;97(1):45–54.

    Article  PubMed  Google Scholar 

  170. Schneir AB, Baumbacher T. Convulsions associated with the use of a synthetic cannabinoid product. J Med Toxicol. 2012;8(1):62–4.

    Article  PubMed  Google Scholar 

  171. Spaderna M, Addy PH, D’Souza DC. Spicing things up: synthetic cannabinoids. Psychopharmacology. 2013;228(4):525–40.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kronstrand R, Roman M, Andersson M, Eklund A. Toxicological findings of synthetic cannabinoids in recreational users. J Anal Toxicol. 2013;37(8):534–41.

    Article  PubMed  Google Scholar 

  173. Cohen K, Kapitany-Foveny M, Mama Y, Arieli M, Rosca P, Demetrovics Z, et al. The effects of synthetic cannabinoids on executive function. Psychopharmacology. 2017;234(7):1121–34.

    Article  PubMed  Google Scholar 

  174. Schneider M, Schomig E, Leweke FM. Acute and chronic cannabinoid treatment differentially affects recognition memory and social behavior in pubertal and adult rats. Addict Biol. 2008;13(3–4):345–57.

    Article  PubMed  Google Scholar 

  175. Fattore L, Fratta W. Beyond THC: The New Generation of Cannabinoid Designer Drugs. Front Behav Neurosci. 2011;5:60.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Glue P, Al-Shaqsi S, Hancock D, Gale C, Strong B, Schep L. Hospitalisation associated with use of the synthetic cannabinoid K2. N Z Med J. 2013;126(1377):18–23.

    PubMed  Google Scholar 

  177. Fellner A, Benninger F, Djaldetti R. Synthetic cannabinoids revealing adrenoleukodystrophy. J Clin Neurosci. 2016;24:155–6.

    Article  PubMed  Google Scholar 

  178. Bernson-Leung ME, Leung LY, Kumar S. Synthetic cannabis and acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(5):1239–41.

    Article  PubMed  Google Scholar 

  179. Takematsu M, Hoffman RS, Nelson LS, Schechter JM, Moran JH, Wiener SW. A case of acute cerebral ischemia following inhalation of a synthetic cannabinoid. Clin Toxicol (Phila). 2014;52(9):973–5.

    Article  Google Scholar 

  180. Olsen RW, Betz H. GABA and glycine. In: Siegel GJ, Albers RW, Brady S, Price DD, editors. Basic Neurochemistry: Molecular. Cellular and Medical Aspects: Elsevier; 2006.

    Google Scholar 

  181. Olfson M, King M, Schoenbaum M. Benzodiazepine use in the United States. JAMA Psychiatry. 2015;72(2):136–42.

    Article  PubMed  Google Scholar 

  182. Brandt J, Leong C. Benzodiazepines and Z-Drugs: An Updated Review of Major Adverse Outcomes Reported on in Epidemiologic Research. Drugs R D. 2017;17(4):493–507.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Buffett-Jerrott SE, Stewart SH. Cognitive and sedative effects of benzodiazepine use. Curr Pharm Des. 2002;8(1):45–58.

    Article  PubMed  Google Scholar 

  184. Vidailhet P, Danion JM, Kauffmann-Muller F, Grange D, Giersch A, van der Linden M, et al. Lorazepam and diazepam effects on memory acquisition in priming tasks. Psychopharmacology. 1994;115(3):397–406.

    Article  PubMed  Google Scholar 

  185. Gray SL, Lai KV, Larson EB. Drug-induced cognition disorders in the elderly: incidence, prevention and management. Drug Saf. 1999;21(2):101–22.

    Article  PubMed  Google Scholar 

  186. Barker MJ, Greenwood KM, Jackson M, Crowe SF. Cognitive effects of long-term benzodiazepine use: a meta-analysis. CNS Drugs. 2004;18(1):37–48.

    Article  PubMed  Google Scholar 

  187. Deckersbach T, Moshier SJ, Tuschen-Caffier B, Otto MW. Memory dysfunction in panic disorder: an investigation of the role of chronic benzodiazepine use. Depress Anxiety. 2011;28(11):999–1007.

    Article  PubMed  Google Scholar 

  188. Lagnaoui R, Begaud B, Moore N, Chaslerie A, Fourrier A, Letenneur L, et al. Benzodiazepine use and risk of dementia: a nested case-control study. J Clin Epidemiol. 2002;55(3):314–8.

    Article  PubMed  Google Scholar 

  189. Billioti de Gage S, Moride Y, Ducruet T, Kurth T, Verdoux H, Tournier M, et al. Benzodiazepine use and risk of Alzheimer’s disease: case-control study. BMJ. 2014;349:g5205.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Shash D, Kurth T, Bertrand M, Dufouil C, Barberger-Gateau P, Berr C, et al. Benzodiazepine, psychotropic medication, and dementia: A population-based cohort study. Alzheimers Dement. 2016;12(5):604–13.

    Article  PubMed  Google Scholar 

  191. Gray SL, Dublin S, Yu O, Walker R, Anderson M, Hubbard RA, et al. Benzodiazepine use and risk of incident dementia or cognitive decline: prospective population based study. BMJ. 2016;352:i90.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Busto UE, Bremner KE, Knight K, terBrugge K, Sellers EM. Long-term benzodiazepine therapy does not result in brain abnormalities. J Clin Psychopharmacol. 2000;20(1):2–6.

    Article  PubMed  Google Scholar 

  193. Huhtaniska S, Jaaskelainen E, Heikka T, Moilanen JS, Lehtiniemi H, Tohka J, et al. Long-term antipsychotic and benzodiazepine use and brain volume changes in schizophrenia: The Northern Finland Birth Cohort 1966 study. Psychiatry Res. 2017;266:73–82.

    Article  Google Scholar 

  194. Johnstad PG. Powerful substances in tiny amounts: An interview study of psychedelic microdosing. Nordic Studies on Alcohol and Drugs. 2018;35(1):39–51.

    Article  Google Scholar 

  195. Bouso JC, Palhano-Fontes F, Rodriguez-Fornells A, Ribeiro S, Sanches R, Crippa JA, et al. Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans. Eur Neuropsychopharmacol. 2015;25(4):483–92.

    Article  PubMed  Google Scholar 

  196. Espiard ML, Lecardeur L, Abadie P, Halbecq I, Dollfus S. Hallucinogen persisting perception disorder after psilocybin consumption: a case study. Eur Psychiatry. 2005;20(5–6):458–60.

    Article  PubMed  Google Scholar 

  197. Halberstadt AL, Geyer MA. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology. 2011;61(3):364–81.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Aghajanian GK, Marek GJ. Serotonin and hallucinogens. Neuropsychopharmacology. 1999;21(2 Suppl):16S–23S.

    Article  PubMed  Google Scholar 

  199. Family N, Vinson D, Vigliocco G, Kaelen M, Bolstridge M, Nutt D. Semantic activation in LSD: evidence from picture naming. Language, Cognition, and Neuroscience. 2016;31(10):1320–7.

    Article  Google Scholar 

  200. Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci. 2005;17(10):1497–508.

    Article  PubMed  Google Scholar 

  201. Halpern JH, Pope HG Jr. Do hallucinogens cause residual neuropsychological toxicity? Drug Alcohol Depend. 1999;53(3):247–56.

    Article  PubMed  Google Scholar 

  202. Halpern JH, Sherwood AR, Hudson JI, Yurgelun-Todd D, Pope HG Jr. Psychological and cognitive effects of long-term peyote use among Native Americans. Biol Psychiatry. 2005;58(8):624–31.

    Article  PubMed  Google Scholar 

  203. Dolder PC, Schmid Y, Muller F, Borgwardt S, Liechti ME. LSD Acutely Impairs Fear Recognition and Enhances Emotional Empathy and Sociality. Neuropsychopharmacology. 2016;41(11):2638–46.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Fadiman J. The psychedelic explorer’s guide: Safe, therapeutic, and sacred journeys. Toronto, Canada: Park Street Press; 2011.

    Google Scholar 

  205. Solon O. Would you take LSD to give you a boost at work? WIRED takes a trip inside the world of microdosing. Wired 2016.

    Google Scholar 

  206. Waldman A. A really good day: How microdosing made a mega difference in my mood, my marriage, and my life. New York, New York: Knopf; 2017.

    Google Scholar 

  207. Williams A. How LSD saved one woman’s marriage. New York: New York Times. New York; 2017.

    Google Scholar 

  208. Andrews-Hanna JR. The brain’s default network and its adaptive role in internal mentation. Neuroscientist. 2012;18(3):251–70.

    Article  PubMed  Google Scholar 

  209. Spengos K, Schwartz A, Hennerici M. Multifocal cerebral demyelination after magic mushroom abuse. J Neurol. 2000;247(3):224–5.

    Article  PubMed  Google Scholar 

  210. Legriel S, Bruneel F, Spreux-Varoquaux O, Birenbaum A, Chadenat ML, Mignon F, et al. Lysergic acid amide-induced posterior reversible encephalopathy syndrome with status epilepticus. Neurocrit Care. 2008;9(2):247–52.

    Article  PubMed  Google Scholar 

  211. Ambermoon P, Carter A, Hall W, Dissanayaka N, O’Sullivan J. Compulsive use of dopamine replacement therapy: a model for stimulant drug addiction? Addiction. 2012;107(2):241–7.

    Article  PubMed  Google Scholar 

  212. Spigset O, von Scheele C. Levodopa dependence and abuse in Parkinson’s disease. Pharmacotherapy. 1997;17(5):1027–30.

    PubMed  Google Scholar 

  213. Pezzella FR, Colosimo C, Vanacore N, Di Rezze S, Chianese M, Fabbrini G, et al. Prevalence and clinical features of hedonistic homeostatic dysregulation in Parkinson’s disease. Mov Disord. 2005;20(1):77–81.

    Article  PubMed  Google Scholar 

  214. Lawrence AD, Evans AH, Lees AJ. Compulsive use of dopamine replacement therapy in Parkinson’s disease: reward systems gone awry? Lancet Neurol. 2003;2(10):595–604.

    Article  PubMed  Google Scholar 

  215. Ferrazzoli D, Carter A, Ustun FS, Palamara G, Ortelli P, Maestri R, et al. Dopamine Replacement Therapy, Learning and Reward Prediction in Parkinson’s Disease: Implications for Rehabilitation. Front Behav Neurosci. 2016;10:121.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Weintraub D, Koester J, Potenza MN, Siderowf AD, Stacy M, Voon V, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol. 2010;67(5):589–95.

    Article  PubMed  Google Scholar 

  217. Maier F, Merkl J, Ellereit AL, Lewis CJ, Eggers C, Pedrosa DJ, et al. Hypomania and mania related to dopamine replacement therapy in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(4):421–7.

    Article  PubMed  Google Scholar 

  218. Schifano F. Misuse and abuse of pregabalin and gabapentin: cause for concern? CNS Drugs. 2014;28(6):491–6.

    Article  PubMed  Google Scholar 

  219. Sills GJ. The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol. 2006;6(1):108–13.

    Article  PubMed  Google Scholar 

  220. Badgaiyan RD. A Novel Perspective on Dopaminergic Processing of Human Addiction. J Alcohol Drug Depend. 2013;1(1).

    Google Scholar 

  221. Kapil V, Green JL, Le Lait MC, Wood DM, Dargan PI. Misuse of the gamma-aminobutyric acid analogues baclofen, gabapentin and pregabalin in the UK. Br J Clin Pharmacol. 2014;78(1):190–1.

    Article  PubMed  Google Scholar 

  222. Mersfelder TL, Nichols WH. Gabapentin: Abuse, Dependence, and Withdrawal. Ann Pharmacother. 2016;50(3):229–33.

    Article  PubMed  Google Scholar 

  223. Salinsky MC, Binder LM, Oken BS, Storzbach D, Aron CR, Dodrill CB. Effects of gabapentin and carbamazepine on the EEG and cognition in healthy volunteers. Epilepsia. 2002;43(5):482–90.

    Article  PubMed  Google Scholar 

  224. Meador KJ, Loring DW, Ray PG, Murro AM, King DW, Nichols ME, et al. Differential cognitive effects of carbamazepine and gabapentin. Epilepsia. 1999;40(9):1279–85.

    Article  PubMed  Google Scholar 

  225. Martin R, Kuzniecky R, Ho S, Hetherington H, Pan J, Sinclair K, et al. Cognitive effects of topiramate, gabapentin, and lamotrigine in healthy young adults. Neurology. 1999;52(2):321–7.

    Article  PubMed  Google Scholar 

  226. Brewer JA, Worhunsky PD, Carroll KM, Rounsaville BJ, Potenza MN. Pretreatment brain activation during stroop task is associated with outcomes in cocaine-dependent patients. Biol Psychiatry. 2008;64(11):998–1004.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Streeter CC, Terhune DB, Whitfield TH, Gruber S, Sarid-Segal O, Silveri MM, et al. Performance on the Stroop predicts treatment compliance in cocaine-dependent individuals. Neuropsychopharmacology. 2008;33(4):827–36.

    Article  PubMed  Google Scholar 

  228. Turner TH, LaRowe S, Horner MD, Herron J, Malcolm R. Measures of cognitive functioning as predictors of treatment outcome for cocaine dependence. J Subst Abuse Treat. 2009;37(4):328–34.

    Article  PubMed  Google Scholar 

  229. Tsuang MT, Lyons MJ, Meyer JM, Doyle T, Eisen SA, Goldberg J, et al. Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities. Arch Gen Psychiatry. 1998;55(11):967–72.

    Article  PubMed  Google Scholar 

  230. Arias F, Arnsten JH, Cunningham CO, Coulehan K, Batchelder A, Brisbane M, et al. Neurocognitive, psychiatric, and substance use characteristics in opioid dependent adults. Addict Behav. 2016;60:137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Bolla KI, Funderburk FR, Cadet JL. Differential effects of cocaine and cocaine alcohol on neurocognitive performance. Neurology. 2000;54(12):2285–92.

    Article  PubMed  Google Scholar 

  232. Abi-Saab D, Beauvais J, Mehm J, Brody M, Gottschalk C, Kosten TR. The effect of alcohol on the neuropsychological functioning of recently abstinent cocaine-dependent subjects. Am J Addict. 2005;14(2):166–78.

    Article  PubMed  Google Scholar 

  233. Robinson JE, Heaton RK, O’Malley SS. Neuropsychological functioning in cocaine abusers with and without alcohol dependence. J Int Neuropsychol Soc. 1999;5(1):10–9.

    Article  PubMed  Google Scholar 

  234. Easton C, Bauer LO. Neuropsychological differences between alcohol-dependent and cocaine-dependent patients with or without problematic drinking. Psychiatry Res. 1997;71(2):97–103.

    Article  PubMed  Google Scholar 

  235. Lawton-Craddock A, Nixon SJ, Tivis R. Cognitive efficiency in stimulant abusers with and without alcohol dependence. Alcohol Clin Exp Res. 2003;27(3):457–64.

    Article  PubMed  Google Scholar 

  236. Diaz-Asper CM, Schretlen DJ, Pearlson GD. How well does IQ predict neuropsychological test performance in normal adults? J Int Neuropsychol Soc. 2004;10(1):82–90.

    Article  PubMed  Google Scholar 

  237. Tremont G, Hoffman RG, Scott JG, Adams RL. Effect of intellectual level on neuropsychological test performance: A response to Dodrill (1997). Clinical Neuropsychologist. 1998;12:560–7.

    Article  Google Scholar 

  238. Mahoney JJ, Kalechstein AD, De Marco AP, Newton TF, De La Garza R. The relationship between premorbid IQ and neurocognitive functioning in individuals with cocaine use disorders. Neuropsychology. 2017;31(3):311–8.

    Article  PubMed  Google Scholar 

  239. Roldan-Tapia L, Garcia J, Canovas R, Leon I. Cognitive reserve, age, and their relation to attentional and executive functions. Appl Neuropsychol Adult. 2012;19(1):2–8.

    Article  PubMed  Google Scholar 

  240. Satz P, Cole MA, Hardy DJ, Rassovsky Y. Brain and cognitive reserve: mediator(s) and construct validity, a critique. J Clin Exp Neuropsychol. 2011;33(1):121–30.

    Article  PubMed  Google Scholar 

  241. Satz P, Morgenstern H, Miller EN, Selnes OA, McArthur JC, Cohen BA, et al. Low education as a possible risk factor for cognitive abnormalities in HIV-1: findings from the multicenter AIDS Cohort Study (MACS). J Acquir Immune Defic Syndr. 1993;6(5):503–11.

    Article  PubMed  Google Scholar 

  242. Stern Y. Elaborating a hypothetical concept: comments on the special series on cognitive reserve. J Int Neuropsychol Soc. 2011;17(4):639–42.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448–60.

    Article  PubMed  Google Scholar 

  244. Neafsey EJ, Collins MA. Moderate alcohol consumption and cognitive risk. Neuropsychiatr Dis Treat. 2011;7:465–84.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Berry J, van Gorp WG, Herzberg DS, Hinkin C, Boone K, Steinman L, et al. Neuropsychological deficits in abstinent cocaine abusers: preliminary findings after two weeks of abstinence. Drug Alcohol Depend. 1993;32(3):231–7.

    Article  PubMed  Google Scholar 

  246. Woicik PA, Moeller SJ, Alia-Klein N, Maloney T, Lukasik TM, Yeliosof O, et al. The neuropsychology of cocaine addiction: recent cocaine use masks impairment. Neuropsychopharmacology. 2009;34(5):1112–22.

    Article  PubMed  Google Scholar 

  247. Bolla KI, Rothman R, Cadet JL. Dose-related neurobehavioral effects of chronic cocaine use. J Neuropsychiatry Clin Neurosci. 1999;11(3):361–9.

    Article  PubMed  Google Scholar 

  248. Fernandez-Serrano MJ, Perez-Garcia M, Schmidt Rio-Valle J, Verdejo-Garcia A. Neuropsychological consequences of alcohol and drug abuse on different components of executive functions. J Psychopharmacol. 2010;24(9):1317–32.

    Article  PubMed  Google Scholar 

  249. Moreno-Lopez L, Stamatakis EA, Fernandez-Serrano MJ, Gomez-Rio M, Rodriguez-Fernandez A, Perez-Garcia M, et al. Neural correlates of the severity of cocaine, heroin, alcohol, MDMA and cannabis use in polysubstance abusers: a resting-PET brain metabolism study. PLoS ONE. 2012;7(6):e39830.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, et al. Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence. Brain Res. 2007;1171:83–92.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Barros-Loscertales A, Bustamante JC, Ventura-Campos N, Llopis JJ, Parcet MA, Avila C. Lower activation in the right frontoparietal network during a counting Stroop task in a cocaine-dependent group. Psychiatry Res. 2011;194(2):111–8.

    Article  PubMed  Google Scholar 

  252. Bustamante JC, Barros-Loscertales A, Ventura-Campos N, Sanjuan A, Llopis JJ, Parcet MA, et al. Right parietal hypoactivation in a cocaine-dependent group during a verbal working memory task. Brain Res. 2011;1375:111–9.

    Article  PubMed  Google Scholar 

  253. Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage. 2003;19(3):1085–94.

    Article  PubMed  Google Scholar 

  254. Pietrzak RH, Russo AR, Ling Q, Southwick SM. Suicidal ideation in treatment-seeking Veterans of Operations Enduring Freedom and Iraqi Freedom: the role of coping strategies, resilience, and social support. J Psychiatr Res. 2011;45(6):720–6.

    Article  PubMed  Google Scholar 

  255. Morgan CA 3rd, Doran A, Steffian G, Hazlett G, Southwick SM. Stress-induced deficits in working memory and visuo-constructive abilities in Special Operations soldiers. Biol Psychiatry. 2006;60(7):722–9.

    Article  PubMed  Google Scholar 

  256. Back S, Dansky BS, Coffey SF, Saladin ME, Sonne S, Brady KT. Cocaine dependence with and without post-traumatic stress disorder: a comparison of substance use, trauma history and psychiatric comorbidity. Am J Addict. 2000;9(1):51–62.

    Article  PubMed  Google Scholar 

  257. Brady KT, Sinha R. Co-occurring mental and substance use disorders: the neurobiological effects of chronic stress. Am J Psychiatry. 2005;162(8):1483–93.

    Article  PubMed  Google Scholar 

  258. McMahon RC. Personality, stress, and social support in cocaine relapse prediction. J Subst Abuse Treat. 2001;21(2):77–87.

    Article  PubMed  Google Scholar 

  259. Sinha R. How does stress increase risk of drug abuse and relapse? Psychopharmacology. 2001;158(4):343–59.

    Article  PubMed  Google Scholar 

  260. Waldrop AE, Back SE, Verduin ML, Brady KT. Triggers for cocaine and alcohol use in the presence and absence of posttraumatic stress disorder. Addict Behav. 2007;32(3):634–9.

    Article  PubMed  Google Scholar 

  261. Sinha R, Fuse T, Aubin LR, O’Malley SS. Psychological stress, drug-related cues and cocaine craving. Psychopharmacology. 2000;152(2):140–8.

    Article  PubMed  Google Scholar 

  262. Mahoney JJ, 3rd, Newton TF, Omar Y, Ross EL, De La Garza R, 2nd. The relationship between lifetime stress and addiction severity in cocaine-dependent participants. Eur Neuropsychopharmacol. 2013;23(5):351–7.

    Article  PubMed  Google Scholar 

  263. Wallace TL, Ballard TM, Pouzet B, Riedel WJ, Wettstein JG. Drug targets for cognitive enhancement in neuropsychiatric disorders. Pharmacol Biochem Behav. 2011;99(2):130–45.

    Article  PubMed  Google Scholar 

  264. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42(1):33–84.

    Article  PubMed  Google Scholar 

  265. Wise RA. Catecholamine theories of reward: a critical review. Brain Res. 1978;152(2):215–47.

    Article  PubMed  Google Scholar 

  266. Wise RA. Rewards wanted: Molecular mechanisms of motivation. Discov Med. 2004;4(22):180–6.

    PubMed  Google Scholar 

  267. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5(6):483–94.

    Article  PubMed  Google Scholar 

  268. Kalechstein AD, De La Garza R, Newton T. Modafinil Administration Improves Working Memory in Methamphetamine-Dependent Individuals Who Demonstrate Baseline Impairment. American Journal on Addictions. 2010;In Press.

    Google Scholar 

  269. Kalechstein AD, Mahoney JJ, 3rd, Yoon JH, Bennett R, De la Garza R, 2nd. Modafinil, but not escitalopram, improves working memory and sustained attention in long-term, high-dose cocaine users. Neuropharmacology. 2013;64:472–8.

    Article  PubMed  Google Scholar 

  270. Sofuoglu M, Mooney M. Cholinergic functioning in stimulant addiction: implications for medications development. CNS Drugs. 2009;23(11):939–52.

    Article  PubMed  PubMed Central  Google Scholar 

  271. Farlow M. A clinical overview of cholinesterase inhibitors in Alzheimer’s disease. Int Psychogeriatr. 2002;14(Suppl 1):93–126.

    Article  PubMed  Google Scholar 

  272. Farlow MR. Do cholinesterase inhibitors slow progression of Alzheimer’s disease? Int J Clin Pract Suppl. 2002;127:37–44.

    Google Scholar 

  273. Adinoff B, Devous MD Sr, Williams MJ, Best SE, Harris TS, Minhajuddin A, et al. Altered neural cholinergic receptor systems in cocaine-addicted subjects. Neuropsychopharmacology. 2010;35(7):1485–99.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Sofuoglu M, Waters AJ, Poling J, Carroll KM. Galantamine improves sustained attention in chronic cocaine users. Exp Clin Psychopharmacol. 2011;19(1):11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  275. Mahoney JJ, 3rd, Kalechstein AD, Verrico CD, Arnoudse NM, Shapiro BA, De La Garza R, 2nd. Preliminary findings of the effects of rivastigmine, an acetylcholinesterase inhibitor, on working memory in cocaine-dependent volunteers. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:137–42.

    Article  PubMed  Google Scholar 

  276. Trojak B, Sauvaget A, Fecteau S, Lalanne L, Chauvet-Gelinier JC, Koch S, et al. Outcome of Non-Invasive Brain Stimulation in Substance Use Disorders: A Review of Randomized Sham-Controlled Clinical Trials. J Neuropsychiatry Clin Neurosci. 2017;29(2):105–18.

    Article  PubMed  Google Scholar 

  277. Jansen JM, Daams JG, Koeter MW, Veltman DJ, van den Brink W, Goudriaan AE. Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2472–80.

    Article  PubMed  Google Scholar 

  278. Coles AS, Kozak K, George TP. A review of brain stimulation methods to treat substance use disorders. Am J Addict. 2018;27(2):71–91.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Bellamoli E, Manganotti P, Schwartz RP, Rimondo C, Gomma M, Serpelloni G. rTMS in the treatment of drug addiction: an update about human studies. Behav Neurol. 2014;2014:815215.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Sousa AD. Repetitive Transcranial Magnetic Stimulation (rTMS) in the Management of Alcohol Dependence and other Substance Abuse Disorders - Emerging Data and Clinical Relevance. Basic Clin Neurosci. 2013;4(3):271–5.

    PubMed  PubMed Central  Google Scholar 

  281. Gorelick DA, Zangen A, George MS. Transcranial magnetic stimulation in the treatment of substance addiction. Ann N Y Acad Sci. 2014;1327:79–93.

    PubMed  PubMed Central  Google Scholar 

  282. Shen Y, Cao X, Tan T, Shan C, Wang Y, Pan J, et al. 10-Hz Repetitive Transcranial Magnetic Stimulation of the Left Dorsolateral Prefrontal Cortex Reduces Heroin Cue Craving in Long-Term Addicts. Biol Psychiatry. 2016;80(3):e13–4.

    Article  PubMed  Google Scholar 

  283. Mishra BR, Praharaj SK, Katshu MZ, Sarkar S, Nizamie SH. Comparison of anticraving efficacy of right and left repetitive transcranial magnetic stimulation in alcohol dependence: a randomized double-blind study. J Neuropsychiatry Clin Neurosci. 2015;27(1):e54–9.

    Article  PubMed  Google Scholar 

  284. Herremans SC, Van Schuerbeek P, De Raedt R, Matthys F, Buyl R, De Mey J, et al. The Impact of Accelerated Right Prefrontal High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on Cue-Reactivity: An fMRI Study on Craving in Recently Detoxified Alcohol-Dependent Patients. PLoS ONE. 2015;10(8):e0136182.

    Article  PubMed  PubMed Central  Google Scholar 

  285. Kravitz AV, Tomasi D, LeBlanc KH, Baler R, Volkow ND, Bonci A, et al. Cortico-striatal circuits: Novel therapeutic targets for substance use disorders. Brain Res. 2015;1628(Pt A):186–98.

    Article  PubMed  Google Scholar 

  286. Prikryl R, Ustohal L, Kucerova HP, Kasparek T, Jarkovsky J, Hublova V, et al. Repetitive transcranial magnetic stimulation reduces cigarette consumption in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry. 2014;49:30–5.

    Article  PubMed  Google Scholar 

  287. Protasio MI, da Silva JP, Arias-Carrion O, Nardi AE, Machado S, Cruz MS. Repetitive transcranial magnetic stimulation to treat substance use disorders and compulsive behavior. CNS Neurol Disord: Drug Targets. 2015;14(3):331–40.

    Article  Google Scholar 

  288. Feil J, Zangen A. Brain stimulation in the study and treatment of addiction. Neurosci Biobehav Rev. 2010;34(4):559–74.

    Article  PubMed  Google Scholar 

  289. Knoch D, Gianotti LR, Pascual-Leone A, Treyer V, Regard M, Hohmann M, et al. Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. J Neurosci. 2006;26(24):6469–72.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage. 2014;85(Pt 3):961–70.

    Article  PubMed  Google Scholar 

  291. Hardesty DE, Sackeim HA. Deep brain stimulation in movement and psychiatric disorders. Biol Psychiatry. 2007;61(7):831–5.

    Article  PubMed  Google Scholar 

  292. Zhou H, Xu J, Jiang J. Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry. 2011;69(11):e41–2.

    Article  PubMed  Google Scholar 

  293. Kuhn J, Moller M, Treppmann JF, Bartsch C, Lenartz D, Gruendler TO, et al. Deep brain stimulation of the nucleus accumbens and its usefulness in severe opioid addiction. Mol Psychiatry. 2014;19(2):145–6.

    Article  PubMed  Google Scholar 

  294. Muller UJ, Sturm V, Voges J, Heinze HJ, Galazky I, Buntjen L, et al. Nucleus Accumbens Deep Brain Stimulation for Alcohol Addiction - Safety and Clinical Long-term Results of a Pilot Trial. Pharmacopsychiatry. 2016;49(4):170–3.

    Article  PubMed  Google Scholar 

  295. Kuhn J, Lenartz D, Mai JK, Huff W, Lee SH, Koulousakis A, et al. Deep brain stimulation of the nucleus accumbens and the internal capsule in therapeutically refractory Tourette-syndrome. J Neurol. 2007;254(7):963–5.

    Article  PubMed  Google Scholar 

  296. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H, et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry. 2010;67(10):1061–8.

    Article  PubMed  Google Scholar 

  297. Grant JE, Odlaug BL, Chamberlain SR. Neurocognitive response to deep brain stimulation for obsessive-compulsive disorder: a case report. Am J Psychiatry. 2011;168(12):1338–9.

    Article  PubMed  Google Scholar 

  298. Sachdev PS, Cannon E, Coyne TJ, Silburn P. Bilateral deep brain stimulation of the nucleus accumbens for comorbid obsessive compulsive disorder and Tourette’s syndrome. BMJ Case Rep. 2012;2012.

    Google Scholar 

  299. Mantione M, van de Brink W, Schuurman PR, Denys D. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery. 2010;66(1):E218; discussion E.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Mahoney III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahoney, J.J., Bryant, K.R., Haut, M.W. (2019). Substance Use Disorders: Cognitive Sequelae, Behavioral Manifestations, Neuroimaging Correlates, and Novel Interventions. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-030-14895-9_32

Download citation

Publish with us

Policies and ethics