Skip to main content

Autism Spectrum Disorder: A Cognitive Neuroscience Perspective

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

Autism is a neurodevelopmental disorder that presents as a spectrum with various co-morbid symptoms as well as cognitive traits. This chapter reviews diagnosis, putative etiologies, neurocognitive models, and anatomical and functional brain differences with summaries of commonly observed neuropsychological, sensory, motor, language, and social profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanner L. Autistic disturbances of affective contact. Nervous Child. 1943;2:217–50.

    Google Scholar 

  2. Asperger H. Die ‘‘Autistischen Psychopathen’’ im Kindesalter. Archiv fu¨r Psychiatrie und Nervenkrankheiten. 1944;117:76–136.

    Article  Google Scholar 

  3. American Psychiatric Association, Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). 2013, Arlington, VA: American Psychiatric Association.

    Google Scholar 

  4. Chawarska K, et al. Parental recognition of developmental problems in toddlers with autism spectrum disorders. J Autism Dev Disord. 2007;37(1):62–72.

    Article  PubMed  Google Scholar 

  5. Sacrey LA, et al. Can parents’ concerns predict autism spectrum disorder? A prospective study of high-risk siblings from 6 to 36 months of age. J Am Acad Child Adolesc Psychiatr. 2015;54(6):470–8.

    Article  Google Scholar 

  6. Lord C, Shulman C, DiLavore P. Regression and word loss in autistic spectrum disorders. J Child Psychol Psychiatry. 2004;45(5):936–55.

    Article  PubMed  Google Scholar 

  7. Turner LM, et al. Follow-up of children with autism spectrum disorders from age 2 to age 9. Autism. 2006;10(3):243–65.

    Article  PubMed  Google Scholar 

  8. Werner E, Dawson G. Validation of the phenomenon of autistic regression using home videotapes. Arch Gen Psychiatry. 2005;62(8):889–95.

    Article  PubMed  Google Scholar 

  9. Tuchman RF, Rapin I. Regression in pervasive developmental disorders: seizures and epileptiform electroencephalogram correlates. Pediatrics. 1997;99(4):560–6.

    Article  PubMed  Google Scholar 

  10. Chawarska K, et al. Autism spectrum disorder in the second year: stability and change in syndrome expression. J Child Psychol Psychiatry. 2007;48(2):128–38.

    Article  PubMed  Google Scholar 

  11. Charman T, Baird G. Practitioner review: Diagnosis of autism spectrum disorder in 2- and 3-year-old children. J Child Psychol Psychiatry. 2002;43(3):289–305.

    Article  PubMed  Google Scholar 

  12. Zwaigenbaum L, et al. Early Screening of Autism Spectrum Disorder: Recommendations for Practice and Research. Pediatrics. 2015;136(Suppl 1):S41–59.

    Article  PubMed  Google Scholar 

  13. Ozonoff S, et al. Diagnostic stability in young children at risk for autism spectrum disorder: a baby siblings research consortium study. J Child Psychol Psychiatry. 2015;56(9):988–98.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zwaigenbaum L, et al. Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci. 2005;23(2–3):143–52.

    Article  PubMed  Google Scholar 

  15. Bedford R, et al. Neurocognitive and observational markers: prediction of autism spectrum disorder from infancy to mid-childhood. Mol Autism. 2017;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gammer I, et al. Behavioural markers for autism in infancy: scores on the Autism Observational Scale for Infants in a prospective study of at-risk siblings. Infant Behav Dev. 2015;38:107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zwaigenbaum L, et al. Clinical assessment and management of toddlers with suspected autism spectrum disorder: insights from studies of high-risk infants. Pediatrics. 2009;123(5):1383–91.

    Article  PubMed  Google Scholar 

  18. Rogers SJ. What are infant siblings teaching us about autism in infancy? Autism Research. 2009;2(3):125–37.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Myers SM, Johnson CP. Management of children with autism spectrum disorders. Pediatrics. 2007;120(5):1162–82.

    Article  PubMed  Google Scholar 

  20. Johnson CP, Myers SM. Identification and evaluation of children with autism spectrum disorders. Pediatrics. 2007;120(5):1183–215.

    Article  PubMed  Google Scholar 

  21. Gupta VB, et al. Identifying children with autism early? Pediatrics. 2007;119(1):152–3.

    Article  PubMed  Google Scholar 

  22. Council on Children With Disabilities. Identifying infants and young children with developmental disorders in the medical home: an algorithm for developmental surveillance and screening. Pediatrics. 2006;118(1):405–20.

    Article  Google Scholar 

  23. World Health Organization, International Classification of Diseases: Tenth Revision. 1992, Geneva, Switzerland: World Health Organization.

    Google Scholar 

  24. Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.

    Article  PubMed  Google Scholar 

  25. Lord C, et al. Autism Diagnostic Observation Schedule. 2nd ed. Torrance, CA: Western Psychological Services; 2012.

    Google Scholar 

  26. Rutter M, LeCouteur A, Lord C. The Autism Diagnostic Interview-Revised. Los Angeles: Western Psychological Services; 2003.

    Google Scholar 

  27. Bruininks RH, et al. Scales of Independent Behavior-Revised Comprehensive Manual. Itasca, IL: Riverside Publishing; 1996.

    Google Scholar 

  28. Constantino JN, Gruber CP. The Social Responsiveness Scale Manual, Second Edition (SRS-2). Los Angeles: Western Psychological Services; 2012.

    Google Scholar 

  29. Schopler E, Reichler R, Renner B Rochen. Childhood autism rating scale. Los Angeles: Western Psychological Services; 1993.

    Google Scholar 

  30. Fombonne E. Epidemiological studies of pervasive developmental disorders. In: Volkmar F, Kiln A, Paul R, Cohen DJ, editors. Handbook of autism and pervasive developmental disorders. 3rd ed. Hoboken, NJ: Wiley; 2005. p. 42–69.

    Google Scholar 

  31. Voigt RG, et al. Laboratory evaluation of children with autistic spectrum disorders: a guide for primary care pediatricians. Clin Pediatr (Phila). 2000;39(11):669–71.

    Article  Google Scholar 

  32. Rossi PG, et al. EEG features and epilepsy in patients with autism. Brain Dev. 1995;17(3):169–74.

    Article  PubMed  Google Scholar 

  33. Kawasaki Y, et al. Brief report: electroencephalographic paroxysmal activities in the frontal area emerged in middle childhood and during adolescence in a follow-up study of autism. J Autism Dev Disord. 1997;27(5):605–20.

    Article  PubMed  Google Scholar 

  34. Kielinen M, et al. Associated medical disorders and disabilities in children with autistic disorder: a population-based study. Autism. 2004;8(1):49–60.

    Article  PubMed  Google Scholar 

  35. Hara H. Autism and epilepsy: a retrospective follow-up study. Brain Dev. 2007;29(8):486–90.

    Article  PubMed  Google Scholar 

  36. Danielsson S, et al. Epilepsy in young adults with autism: a prospective population-based follow-up study of 120 individuals diagnosed in childhood. Epilepsia. 2005;46(6):918–23.

    Article  PubMed  Google Scholar 

  37. Fombonne E. Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry. 2005;66(Suppl 10):3–8.

    PubMed  Google Scholar 

  38. Volkmar FR, Nelson DS. Seizure disorders in autism. J Am Acad Child Adolesc Psychiatry. 1990;29(1):127–9.

    Article  PubMed  Google Scholar 

  39. Leitner Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children - what do we know? Front Hum Neurosci. 2014;8:268.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nadeau J, et al. Treatment of comorbid anxiety and autism spectrum disorders. Neuropsychiatry (London). 2011;1(6):567–78.

    Article  Google Scholar 

  41. Vasa RA, et al. A systematic review of treatments for anxiety in youth with autism spectrum disorders. J Autism Dev Disord. 2014;44(12):3215–29.

    Article  PubMed  Google Scholar 

  42. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. 2000, Washington, DC: American Psychiatric Association.

    Google Scholar 

  43. Kielinen M, Linna SL, Moilanen I. Autism in Northern Finland. Eur Child Adolesc Psychiatry. 2000;9(3):162–7.

    Article  PubMed  Google Scholar 

  44. Blaxill MF, Redwood L, Bernard S. Thimerosal and autism? A plausible hypothesis that should not be dismissed. Med Hypotheses. 2004;62(5):788–94.

    Article  PubMed  Google Scholar 

  45. Bernard S, et al. Autism: a novel form of mercury poisoning. Med Hypotheses. 2001;56(4):462–71.

    Article  PubMed  Google Scholar 

  46. Godlee F, Smith J, Marcovitch H. Wakefield’s article linking MMR vaccine and autism was fraudulent. BMJ. 2011;342:c7452.

    Article  PubMed  Google Scholar 

  47. Fombonne E. Thimerosal disappears but autism remains. Arch Gen Psychiatry. 2008;65(1):15–6.

    Article  PubMed  Google Scholar 

  48. Schechter R, Grether JK. Continuing increases in autism reported to California’s developmental services system: mercury in retrograde. Arch Gen Psychiatry. 2008;65(1):19–24.

    Article  PubMed  Google Scholar 

  49. Andreae MC, Freed GL, Katz SL. Safety concerns regarding combination vaccines. Perspective of select European countries. Hum Vaccin. 2005;1(1):1–5.

    Article  PubMed  Google Scholar 

  50. Institute of Medicine. Immunization Safety Review: Vaccines and Autism. Washington, DC: National Academies Press; 2004.

    Google Scholar 

  51. Barbaresi WJ, Katusic SK, Voigt RG. Autism: a review of the state of the science for pediatric primary health care clinicians. Arch Pediatr Adolesc Med. 2006;160(11):1167–75.

    Article  PubMed  Google Scholar 

  52. Baird G, et al, Measles vaccination and antibody response in autism spectrum disorders. Arch Dis Child, 2008.

    Google Scholar 

  53. Parker AA, et al. Implications of a 2005 measles outbreak in Indiana for sustained elimination of measles in the United States. N Engl J Med. 2006;355(5):447–55.

    Article  PubMed  Google Scholar 

  54. Gernsbacher M, Dawson M, Goldsmith HH. Three reasons not to believe in an autism epidemic. Curr Dir Psychol Sci. 2005;14(2):55–8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sealey LA, et al. Environmental factors in the development of autism spectrum disorders. Environ Int. 2016;88:288–98.

    Article  PubMed  Google Scholar 

  56. Kalkbrenner AE, Schmidt RJ, Penlesky AC. Environmental chemical exposures and autism spectrum disorders: a review of the epidemiological evidence. Curr Probl Pediatr Adolesc Health Care. 2014;44(10):277–318.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Matelski L, Van de Water J. Risk factors in autism: Thinking outside the brain. J Autoimmun. 2016;67:1–7.

    Article  PubMed  Google Scholar 

  58. Thion MS, et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell;2017.

    Google Scholar 

  59. Hallmayer J, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68(11):1095–102.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Constantino JN, et al. Autism recurrence in half siblings: strong support for genetic mechanisms of transmission in ASD. Mol Psychiatry. 2013;18(2):137–8.

    Article  PubMed  Google Scholar 

  61. Robinson EB, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet. 2016;48(5):552–5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gaugler T, et al. Most genetic risk for autism resides with common variation. Nat Genet. 2014;46(8):881–5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. de la Torre-Ubieta L, et al. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016;22(4):345–61.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pinto D, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am J Hum Genet. 2014;94(5):677–94.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Clarke TK, et al. Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol Psychiatry. 2016;21(3):419–25.

    Article  PubMed  Google Scholar 

  66. Hagenaars SP, et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112 151) and 24 GWAS consortia. Mol Psychiatry. 2016;21(11):1624–32.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Merikangas AK, et al. The phenotypic manifestations of rare genic CNVs in autism spectrum disorder. Mol Psychiatry. 2015;20(11):1366–72.

    Article  PubMed  Google Scholar 

  68. Weiner DJ, et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet. 2017;49(7):978–85.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Consortium C.-D.G.o.t.P.G. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45:984–94.

    Google Scholar 

  70. Ciernia A Vogel, LaSalle J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat Rev Neurosci. 2016;17(7):411–23.

    Article  PubMed Central  Google Scholar 

  71. Schanen NC, Epigenetics of autism spectrum disorders. Hum Mol Genet. 2006; 15 Spec No (2):R138–50.

    Article  PubMed  Google Scholar 

  72. Cook EH Jr, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet. 1997;60(4):928–34.

    PubMed  PubMed Central  Google Scholar 

  73. Blatt GJ. GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol. 2005;71:167–78.

    Article  PubMed  Google Scholar 

  74. Levitt P. Disruption of interneuron development. Epilepsia. 2005;46(Suppl 7):22–8.

    Article  PubMed  Google Scholar 

  75. Landrigan PJ, Lambertini L, Birnbaum LS. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities. Environ Health Perspect. 2012;120(7):a258–60.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schmidt RJ, et al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology. 2011;22(4):476–85.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Donovan AP, Basson MA. The neuroanatomy of autism – a developmental perspective. J Anat. 2017;230(1):4–15.

    Article  PubMed  Google Scholar 

  78. Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34.

    Article  PubMed  Google Scholar 

  79. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23(2–3):183–7.

    Article  PubMed  Google Scholar 

  80. Palmen SJ, et al. Neuropathological findings in autism. Brain. 2004;127(Pt 12):2572–83.

    Article  PubMed  Google Scholar 

  81. Courchesne E, Redcay E, Kennedy DP. The autistic brain: birth through adulthood. Curr Opin Neurol. 2004;17(4):489–96.

    Article  PubMed  Google Scholar 

  82. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31(3):137–45.

    Article  PubMed  Google Scholar 

  83. Nordahl CW, et al. Cortical folding abnormalities in autism revealed by surface-based morphometry. J Neurosci. 2007;27(43):11725–35.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bailey A, et al. A clinicopathological study of autism. Brain. 1998;121(5):889–905.

    Article  PubMed  Google Scholar 

  85. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism. In: Bauman ML, Kemper TL, editors. The Neurobiology of Autism. 3rd ed. Baltimore: John Hopkins University Press; 1994. p. 119–45.

    Google Scholar 

  86. Fehlow PK, Bernstein EA Early infantile autism and excessive aerophagy with symptomatic megacolon and ileus in a case of Ehlers-Danlos syndrome. Padiatrie und Grenzgebiete 1993;31(4): 259–67.

    Google Scholar 

  87. Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Experiment Neurol. 1998;57(7):645–52.

    Article  Google Scholar 

  88. Ritvo ER, Freeman BR Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report. Am J Psychiatry. 1986;143(7):862–66.

    Google Scholar 

  89. Williams RS, Hauser SL. Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. Arch Neurol. 1980;37(12):749–53.

    Article  PubMed  Google Scholar 

  90. Wegiel J, et al. Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum. Acta Neuropathol Commun. 2014;2:141.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Skefos J, et al. Regional alterations in purkinje cell density in patients with autism. PLoS ONE. 2014;9(2):e81255.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fatemi SH, et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 2002;22(2):171–5.

    Article  PubMed  Google Scholar 

  93. Fatemi SH, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11(3):777–807.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Guerin P, et al. Neuropathological study of a case of autistic syndrome with severe mental retardation. Develop Med Child Neurol. 1996;38(3):203–11.

    Article  PubMed  Google Scholar 

  95. Raymond GV, Bauman ML, Kemper TL. Hippocampus in autism: a Golgi analysis. Acta Neuropathol. 1996;91(1):117–9.

    Article  PubMed  Google Scholar 

  96. Schumann CM, Amaral DG. Stereological analysis of amygdala neuron number in autism. J Neurosci. 2006;26(29):7674–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Casanova MF, et al. Minicolumnar pathology in autism. Neurology. 2002;58(3):428–32.

    Article  PubMed  Google Scholar 

  98. Casanova MF, et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006;112(3):287–303.

    Article  PubMed  Google Scholar 

  99. McKavanagh R, Buckley E, Chance SA. Wider minicolumns in autism: a neural basis for altered processing? Brain. 2015;138(Pt 7):2034–45.

    Article  PubMed  Google Scholar 

  100. Stoner R, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014;370(13):1209–19.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bauman ML, Kemper TL. Is autism a progressive process? Neurology. 1997;48(Suppl):285.

    Google Scholar 

  102. Redcay E, Courchesne E. When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry. 2005;58(1):1–9.

    Article  PubMed  Google Scholar 

  103. Bauman ML. Microscopic neuroanatomic abnormalities in autism. Pediatrics. 1991;87(5 Pt 2):791–6.

    PubMed  Google Scholar 

  104. Gaffney GR, Tsai LY, et al. Cerebellar structure in autism. Am J Dis Child. 1987;141(12):1330–2.

    PubMed  Google Scholar 

  105. Murakami JW, et al. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 1989;46(6):689–94.

    Article  PubMed  Google Scholar 

  106. Courchesne E, et al. Abnormal neuroanatomy in a nonretarded person with autism. Unusual findings with magnetic resonance imaging. Arch Neurol. 1987;44(3):335–41.

    Article  PubMed  Google Scholar 

  107. Courchesne E, et al. Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England J Med. 1988;318(21):1349–54.

    Article  Google Scholar 

  108. Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.

    Article  PubMed  Google Scholar 

  109. Ciesielski KT, et al. Hypoplasia of cerebellar vermis in autism and childhood leukemia in 5th International Child Neurology Congress. Tokyo, Japan: Karger; 1990.

    Google Scholar 

  110. Ciesielski KT, Knight JE. Cerebellar abnormality in autism: a nonspecific effect of early brain damage? Acta Neurobiol Exp. 1994;54(2):151–4.

    Google Scholar 

  111. Ciesielski KT, et al. Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia. 1997;35(5):643–55.

    Article  PubMed  Google Scholar 

  112. Courchesne E, et al. Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. Am J Roentgenol. 1994;162(1):123–30.

    Article  Google Scholar 

  113. Courchesne E, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57(2):245–54.

    Article  PubMed  Google Scholar 

  114. Hashimoto T, et al. Development of the brainstem and cerebellum in autistic patients. J Autism Develop Disord. 1995;25:1–18.

    Article  Google Scholar 

  115. Kates WR, et al. Neuroanatomical and neurocognitive differences in a pair of monozygous twins discordant for strictly defined autism. Annal Neurol. 1998;43(6):782–91.

    Article  PubMed  Google Scholar 

  116. Levitt JG, et al. Cerebellar vermis lobules VIII-X in autism. Prog Neuro-Psychopharmacol Biol Psychiatry. 1999;23(4):625–33.

    Article  Google Scholar 

  117. Saitoh O, et al. Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology. 1995;45(2):317–24.

    Article  PubMed  Google Scholar 

  118. Zilbovicius M, et al. Hypoplasia of vermal lobules I-V, but not of lobules VI-VII, in childhood autism. Neurology. 1995;45(Suppl. 4):A162.

    Google Scholar 

  119. Kaufmann WE, et al. Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J Child Neurol. 2003;18(7):463–70.

    Article  PubMed  Google Scholar 

  120. McAlonan GM, et al. Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain. 2002;125(Pt 7):1594–606.

    Article  PubMed  Google Scholar 

  121. Miles JH, Hillman RE. Value of a clinical morphology examination in autism [see comments]. Am J Med Genet. 2000;91(4):245–53.

    Article  PubMed  Google Scholar 

  122. D’Mello AM, et al. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin. 2015;7:631–9.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Holttum JR, et al. Magnetic resonance imaging of the posterior fossa in autism. Biol Psychiatry. 1992;32(12):1091–101.

    Article  PubMed  Google Scholar 

  124. Piven J, et al. An MRI study of autism: the cerebellum revisited [see comments]. Neurology. 1997;49(2):546–51.

    Article  PubMed  Google Scholar 

  125. Filipek PA. Quantitative magnetic resonance imaging in autism: the cerebellar vermis. Curr Opinion Neurol. 1995;8(2):134–8.

    Article  Google Scholar 

  126. Sparks BF, et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology. 2002;59(2):184–92.

    Article  PubMed  Google Scholar 

  127. Hardan AY, et al. Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry. 2001;40(6):666–72.

    Article  PubMed  Google Scholar 

  128. Courchesne E, Townsend J, Saitoh O. The brain in infantile autism: posterior fossa structures are abnormal [see comments]. Neurology. 1994;44(2):214–23.

    Article  PubMed  Google Scholar 

  129. Courchesne E, Press GA, Yeung-Courchesne R. Parietal lobe abnormalities detected with MR in patients with infantile autism [see comments]. Am J Roentgenol. 1993;160(2):387–93.

    Article  Google Scholar 

  130. Egaas B, Courchesne E, Saitoh O. Reduced size of corpus callosum in autism. Arch Neurol. 1995;52(8):794–801.

    Article  PubMed  Google Scholar 

  131. Manes F, et al. An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. J Neuropsychiatry Clin Neurosci. 1999;11(4):470–4.

    Article  PubMed  Google Scholar 

  132. Piven J, et al. An MRI study of the corpus callosum in autism. Am J Psychiatry. 1997;154(8):1051–6.

    Article  PubMed  Google Scholar 

  133. Hardan AY, et al. Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res. 2004;131(3):263–8.

    Article  PubMed  Google Scholar 

  134. Levitt JG, et al. Cortical sulcal maps in autism. Cereb Cortex. 2003;13(7):728–35.

    Article  PubMed  Google Scholar 

  135. Aylward EH, et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology. 1999;53(9):2145–50.

    Article  PubMed  Google Scholar 

  136. Pierce K, et al. Face processing occurs outside the fusiform ‘face area’ in autism: evidence from functional MRI. Brain. 2001;124(Pt 10):2059–73.

    Article  PubMed  Google Scholar 

  137. Herbert MR, et al. Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain. 2003;126(Pt 5):1182–92.

    Article  PubMed  Google Scholar 

  138. Howard MA, et al. Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. NeuroReport. 2000;11(13):2931–5.

    Article  PubMed  Google Scholar 

  139. Schumann CM, et al. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci. 2004;24(28):6392–401.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Saitoh O, Karns C, Courchesne E. Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area dentata in autism. Brain. 2001;124(7):1317–24.

    Article  PubMed  Google Scholar 

  141. Haznedar MM, et al. Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am J Psychiatry. 2000;157(12):1994–2001.

    Article  PubMed  Google Scholar 

  142. Piven J, et al. No difference in hippocampus volume detected on magnetic resonance imaging in autistic individuals. J Autism Dev Disord. 1998;28(2):105–10.

    Article  PubMed  Google Scholar 

  143. Osipowicz K, Bosenbark DD, Patrick KE. Cortical changes across the autism lifespan. Autism Res. 2015;8(4):379–85.

    Article  PubMed  Google Scholar 

  144. Aylward EH, et al. Effects of age on brain volume and head circumference in autism. Neurology. 2002;59(2):175–83.

    Article  PubMed  Google Scholar 

  145. Carper RA, et al. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage. 2002;16(4):1038–51.

    Article  PubMed  Google Scholar 

  146. Davidovitch M, Patterson B, Gartside P. Head circumference measurements in children with autism. J Child Neurol. 1996;11(5):389–93.

    Article  PubMed  Google Scholar 

  147. Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism. JAMA. 2003;290(3):337–44.

    Article  PubMed  Google Scholar 

  148. Herbert MR. Large brains in autism: the challenge of pervasive abnormality. Neuroscientist. 2005;11(5):417–40.

    Article  PubMed  Google Scholar 

  149. Carper RA, Courchesne E. Localized enlargement of the frontal cortex in early autism. Biol Psychiatry. 2005;57(2):126–33.

    Article  PubMed  Google Scholar 

  150. Courchesne E, Campbell K, Solso S. Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res. 2011;1380:138–45.

    Article  PubMed  Google Scholar 

  151. Lange N, et al. Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years. Autism Res. 2015;8(1):82–93.

    Article  PubMed  Google Scholar 

  152. Zielinski BA, et al. Longitudinal changes in cortical thickness in autism and typical development. Brain. 2014;137(Pt 6):1799–812.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Schumann CM, et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci. 2010;30(12):4419–27.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Akshoomoff N, Pierce K, Courchesne E. The neurobiological basis of autism from a developmental perspective. Dev Psychopathol. 2002;14(3):613–34.

    Article  PubMed  Google Scholar 

  155. Belmonte MK, et al. Autism and abnormal development of brain connectivity. J Neurosci. 2004;24(42):9228–31.

    Article  PubMed  PubMed Central  Google Scholar 

  156. McAlonan GM, et al. Mapping the brain in autism: a voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain. 2005;128(Pt 2):268–76.

    PubMed  Google Scholar 

  157. Cheng Y, et al. Atypical development of white matter microstructure in adolescents with autism spectrum disorders. Neuroimage. 2010;50(3):873–82.

    Article  PubMed  Google Scholar 

  158. Ke X, et al. White matter impairments in autism, evidence from voxel-based morphometry and diffusion tensor imaging. Brain Res. 2009;1265:171–7.

    Article  PubMed  Google Scholar 

  159. Shukla DK, et al. White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry. 2010;49(12):1269–78, 1278 e1–2.

    Google Scholar 

  160. Shukla DK, Keehn B, Muller RA. Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder. J Child Psychol Psychiatry. 2011;52(3):286–95.

    Article  PubMed  Google Scholar 

  161. Solso S, et al. Diffusion tensor imaging provides evidence of possible axonal overconnectivity in frontal lobes in autism spectrum disorder toddlers. Biol Psychiatry. 2016;79(8):676–84.

    Article  PubMed  Google Scholar 

  162. Barnea-Goraly N, et al. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry. 2004;55(3):323–6.

    Article  PubMed  Google Scholar 

  163. Lee JE, et al. Diffusion tensor imaging of white matter in the superior temporal gyrus and temporal stem in autism. Neurosci Lett. 2007;424(2):127–32.

    Article  PubMed  Google Scholar 

  164. Rilling JK, Insel TR. Differential expansion of neural projection systems in primate brain evolution. NeuroReport. 1999;10(7):1453–9.

    Article  PubMed  Google Scholar 

  165. Zhang K, Sejnowski TJ A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci USA. 2000;97(10):5621–6.

    Article  Google Scholar 

  166. Jancke L, et al. The relationship between corpus callosum size and forebrain volume. Cereb Cortex. 1997;7(1):48–56.

    Article  PubMed  Google Scholar 

  167. Lewis J, Courchesne E, Elman J. Growth trajectories and cortico-cortical connections. The 37th Annual Gatlinburg Conference: On Research & Theory in Intellectual & Developmental Disabilities. 2004; San Diego, CA.

    Google Scholar 

  168. Lewis J, Elman J, Courchesne E. Brain overgrowth and reduced long-distance connectivity in autism. The 11th Annual Meeting of the Organization for Human Brain Mapping. 2005; Toronto.

    Google Scholar 

  169. Lewis JD, Elman JL. Growth-related neural reorganization and the autism phenotype: a test of the hypothesis that altered brain growth leads to altered connectivity. Dev Sci. 2008;11(1):135–55.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lewis JD, et al. Network efficiency in autism spectrum disorder and its relation to brain overgrowth. Front Hum Neurosci. 2013;7:845.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lewis JD, et al. Callosal fiber length and interhemispheric connectivity in adults with autism: brain overgrowth and underconnectivity. Hum Brain Mapp. 2013;34(7):1685–95.

    Article  PubMed  Google Scholar 

  172. Bernhardt BC, et al. Neuroimaging-based phenotyping of the autism spectrum. Curr Top Behav Neurosci. 2017;30:341–55.

    Article  PubMed  Google Scholar 

  173. Mash LE, et al. Multimodal approaches to functional connectivity in autism spectrum disorders: an integrative perspective. Dev Neurobiol; 2017.

    Google Scholar 

  174. Li D, Karnath HO, Xu X. Candidate biomarkers in children with autism spectrum disorder: a review of MRI studies. Neurosci Bull. 2017;33(2):219–37.

    Article  PubMed  PubMed Central  Google Scholar 

  175. O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE. 2017;12(5):e0175870.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Rane P, et al. Connectivity in autism: a review of MRI connectivity studies. Harv Rev Psychiatry. 2015;23(4):223–44.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Duan X, et al. Resting-state functional under-connectivity within and between large-scale cortical networks across three low-frequency bands in adolescents with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2017;79(Pt B):434–41.

    Article  PubMed  Google Scholar 

  178. Chen H, et al. Intrinsic functional connectivity variance and state-specific under-connectivity in autism. Hum Brain Mapp. 2017;38(11):5740–55.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Falahpour M, et al. Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time. Brain Connect. 2016;6(5):403–14.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Abbott AE, et al. Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity: a functional connectivity MRI study. Soc Cogn Affect Neurosci. 2018;13(1):32–42.

    Article  PubMed  Google Scholar 

  181. Abbott AE, et al. Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cereb Cortex. 2016;26(10):4034–45.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Keown CL, et al. Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Rep. 2013;5(3):567–72.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Nair A, et al. Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain. 2013;136(Pt 6):1942–55.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Tomasi D, Volkow ND Reduced local and increased long-range functional connectivity of the thalamus in autism spectrum disorder. Cereb Cortex; 2017.

    Google Scholar 

  185. Belmonte MK, Yurgelun-Todd DA. Functional anatomy of impaired selective attention and compensatory processing in autism. Brain Res Cogn Brain Res. 2003;17(3):651–64.

    Article  PubMed  Google Scholar 

  186. Haist F, et al. The functional neuroanatomy of spatial attention in autism spectrum disorder. Development Neuropsychol. 2005;27(3):425–58.

    Article  Google Scholar 

  187. Just MA, et al. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951–61.

    Article  PubMed  Google Scholar 

  188. Just MA, et al. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004;127:1811–21.

    Article  PubMed  Google Scholar 

  189. Koshino H, et al. Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage. 2005;24(3):810–21.

    Article  PubMed  Google Scholar 

  190. Ring HA, et al. Cerebral correlates of preserved cognitive skills in autism: a functional MRI study of embedded figures task performance. Brain. 1999;122(Pt 7):1305–15.

    Article  PubMed  Google Scholar 

  191. Pillai AS, et al, Altered task-related modulation of long-range connectivity in children with autism. Autism Res 2017.

    Google Scholar 

  192. Keehn B, et al. Functional connectivity for an “Island of sparing” in autism spectrum disorder: An fMRI study of visual search. Hum Brain Mapp. 2012.

    Google Scholar 

  193. Ramot M, et al, Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback. Elife 2017;6.

    Google Scholar 

  194. Baron-Cohen SH, Tager-Flusberg, Cohen D, Understanding other minds: perspectives from autism, ed. S. Baron-Cohen H, Tager-Flusberg, Cohen D 1993;Oxford: Oxford University Press.

    Google Scholar 

  195. Baron-Cohen S. Mindblindness: An Essay on Autism and Theory of Mind. Cambridge, MA: MIT Press; 1995.

    Book  Google Scholar 

  196. Baron-Cohen S, Belmonte MK. Autism: a window onto the development of the social and the analytic brain. Annual Rev Neurosci. 2005;28:109–26.

    Article  Google Scholar 

  197. Russell J, Cognitive Theories of Autism, in Cognitive Deficits in Brain Disorders, Harrison JE, Owen AM (eds.) 2002, Martin Dunitz: London. p. 295–323.

    Google Scholar 

  198. Hill EL, Frith U. Understanding autism: insights from mind and brain. Philos Trans R Soc Lond B Biol Sci. 2003;358(1430):281–9.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Levy F. Theories of autism. Aust N Z J Psychiatry. 2007;41(11):859–68.

    Article  PubMed  Google Scholar 

  200. Russell J. Autism as an executive disorder. Oxford: Oxford University Press; 1997.

    Google Scholar 

  201. Ozonoff S, Pennington BF, Rogers SJ. Executive function deficits in high-functioning autistic individuals: relationship to theory of mind. J Child Psychol Psychiatry. 1991;32(7):1081–105.

    Article  PubMed  Google Scholar 

  202. Frith U, Happe F. Autism: beyond “theory of mind”. Cognition. 1994;50(1–3):115–32.

    Article  PubMed  Google Scholar 

  203. Frith U. Autism: explaining the enigma. Oxford: Blackwell; 1989.

    Google Scholar 

  204. Happe FG. Studying weak central coherence at low levels: children with autism do not succumb to visual illusions. A research note. J Child Psychol Psychiatry. 1996;37(7):873–7.

    Article  PubMed  Google Scholar 

  205. Kana RK, Libero LE, Moore MS. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Phys Life Rev. 2011;8(4):410–37.

    Article  PubMed  Google Scholar 

  206. Piven J, Elison JT, Zylka MJ. Toward a conceptual framework for early brain and behavior development in autism. Mol Psychiatry. 2017;22(10):1385–94.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Vasa RA, Mostofsky SH, Ewen JB. The Disrupted Connectivity Hypothesis of Autism Spectrum Disorders: Time for the Next Phase in Research. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(3):245–52.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Horwitz B, et al. The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Arch Neurol. 1988;45(7):749–55.

    Article  PubMed  Google Scholar 

  209. van Bon BW, et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol Psychiatry. 2016;21(1):126–32.

    Article  PubMed  Google Scholar 

  210. Wolff JJ, et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatry. 2012;169(6):589–600.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Sacrey LA, Bryson SE, Zwaigenbaum L. Prospective examination of visual attention during play in infants at high-risk for autism spectrum disorder: a longitudinal study from 6 to 36 months of age. Behav Brain Res. 2013;256:441–50.

    Article  PubMed  Google Scholar 

  213. Bryson S, et al, Impaired disengagement of attention and its relationship to emotional distress in infants at high-risk for autism spectrum disorder. J Clin Exp Neuropsychol, 2017;1–15.

    Google Scholar 

  214. Elison JT, et al. Frontolimbic neural circuitry at 6 months predicts individual differences in joint attention at 9 months. Dev Sci. 2013;16(2):186–97.

    Article  PubMed  Google Scholar 

  215. Elsabbagh M, et al. Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol Psychiatry. 2013;74(3):189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Elsabbagh M, et al. Visual orienting in the early broader autism phenotype: disengagement and facilitation. J Child Psychol Psychiatry. 2009;50(5):637–42.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Sacrey LA, et al. Impairments to visual disengagement in autism spectrum disorder: a review of experimental studies from infancy to adulthood. Neurosci Biobehav Rev. 2014;47:559–77.

    Article  PubMed  Google Scholar 

  218. Townsend J, Courchesne E. Parietal damage and narrow “spotlight” spatial attention. J Cogn Neurosci. 1994;6(3):220–32.

    Article  PubMed  Google Scholar 

  219. Song Y, et al. Can They See It? The Functional Field of View Is Narrower in Individuals with Autism Spectrum Disorder. PLoS ONE. 2015;10(7):e0133237.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Lovaas OI, Koegel RL, Schreibman L. Stimulus overselectivity in autism: a review of research. Psychol Bull. 1979;86(6):1236–54.

    Article  PubMed  Google Scholar 

  221. Lovaas OI, et al. Selective responding by autistic children to multiple sensory input. J Abnorm Psychol. 1971;77(3):211–22.

    Article  PubMed  Google Scholar 

  222. Liss M, et al. Sensory and attention abnormalities in autistic spectrum disorders. Autism. 2006;10(2):155–72.

    Article  PubMed  Google Scholar 

  223. Townsend, J., B. Keehn, and M. Westerfield, Abstraction of Mind: Attention in autism, in Cognitive Neuroscience of Attention, M. Posner, Editor. 2012, Guilford Press: New York. p. 357–373.

    Google Scholar 

  224. Wainwright JA, Bryson SE. Visual-spatial orienting in autism. J Autism Dev Disord. 1996;26(4):423–38.

    Article  PubMed  Google Scholar 

  225. Wainwright-Sharp JA, Bryson SE. Visual orienting deficits in high-functioning people with autism. J Autism Dev Disord. 1993;23(1):1–13.

    Article  PubMed  Google Scholar 

  226. Kawakubo Y, et al. Electrophysiological abnormalities of spatial attention in adults with autism during the gap overlap task. Clin Neurophysiol. 2007;118(7):1464–71.

    Article  PubMed  Google Scholar 

  227. Harris N, et al. Neuroanatomic contributions to slowed orienting of attention in children with autism. Cogn Brain Res. 1999;8:61–71.

    Article  Google Scholar 

  228. Townsend J, et al. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci. 1999;19(13):5632–43.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Townsend J, Courchesne E, Egaas B. Slowed orienting of covert visual-spatial attention in autism: Specific deficits associated with cerebellar and parietal abnormality. Dev Psychopathol. 1996;8(3):503–84.

    Article  Google Scholar 

  230. Mann TA, Walker P. Autism and a deficit in broadening the spread of visual attention. J Child Psychol Psychiatry. 2003;44(2):274–84.

    Article  PubMed  Google Scholar 

  231. Burack JA. Selective attention deficits in persons with autism: preliminary evidence of an inefficient attentional lens. J Abnorm Psychol. 1994;103(3):535–43.

    Article  PubMed  Google Scholar 

  232. Ronconi L, et al. Zoom-out attentional impairment in children with autism spectrum disorder. Cortex. 2013;49(4):1025–33.

    Article  PubMed  Google Scholar 

  233. Landry R, Bryson SE. Impaired disengagement of attention in young children with autism. J Child Psychol Psychiatry. 2004;45(6):1115–22.

    Article  PubMed  Google Scholar 

  234. Keehn B, Joseph RM. Impaired prioritization of novel onset stimuli in autism spectrum disorder. Journal of Child Psychololgy and Psychiatry, and Allied Disciplines. 2008;49(12):1296–303.

    Article  Google Scholar 

  235. Keehn B, et al. Attentional networks in children and adolescents with autism spectrum disorder. Journal of Child Psychololgy and Psychiatry, and Allied Disciplines. 2010;51(11):1251–9.

    Article  Google Scholar 

  236. Fan J, et al. Testing the behavioral interaction and integration of attentional networks. Brain Cogn. 2009;70(2):209–20.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Fan J, et al. Testing the efficiency and independence of attentional networks. Journal of Cognitve Neuroscience. 2002;14(3):340–7.

    Article  Google Scholar 

  238. Keehn B, Muller RA, Townsend J. Atypical attentional networks and the emergence of autism. Neurosci Biobehav Rev. 2013;37(2):164–83.

    Article  PubMed  Google Scholar 

  239. Tardif C, et al. Slowing down presentation of facial movements and vocal sounds enhances facial expression recognition and induces facial-vocal imitation in children with autism. J Autism Dev Disord. 2007;37(8):1469–84.

    Article  PubMed  Google Scholar 

  240. Loveland KA, Landry SH. Joint attention and language in autism and developmental language delay. J Autism Dev Disord. 1986;16(3):335–49.

    Article  PubMed  Google Scholar 

  241. Roeyers H, Van Oost P, Bothuyne S. Immediate imitation and joint attention in young children with autism. Developmental Psychopathology. 1998;10(3):441–50.

    Article  Google Scholar 

  242. Tronick, E., Affectivity and sharing, in Social interchange in infancy: Affect cognition and communication, E.Z. Tronick, Editor. 1982, University Park Press: Baltimore, MD.

    Google Scholar 

  243. Dawson G, et al. Children with autism fail to orient to naturally occurring social stimuli. J Autism Dev Disord. 1998;28(6):479–85.

    Article  PubMed  Google Scholar 

  244. Allen G, Courchesne E. Attention function and dysfunction in autism. Frontiers in Bioscience. 2001;6:D105–19.

    Article  PubMed  Google Scholar 

  245. Murphy JW, et al. Susceptibility to distraction in autism spectrum disorder: probing the integrity of oscillatory alpha-band suppression mechanisms. Autism Res. 2014;7(4):442–58.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Soriano MF, et al, Autism: hard to switch from details to the whole. J Abnorm Child Psychol. 2017.

    Google Scholar 

  247. Courchesne E, Akshoomoff N, Townsend J. Recent advances in autism. Curr Opin Pediatr. 1990;2:685–93.

    Article  Google Scholar 

  248. Bast N, Poustka L, Freitag CM. The locus coeruleus-norepinephrine system as pacemaker of attention - a developmental mechanism of derailed attentional function in autism spectrum disorder. Eur J Neurosci. 2018;47(2):115–25.

    Article  PubMed  Google Scholar 

  249. Courchesne E, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci. 1994;108(5):848–65.

    Article  PubMed  Google Scholar 

  250. Akshoomoff NA, Courchesne E. Intramodality shifting attention in children with damage to the cerebellum. J Cogn Neurosci. 1994;6:388–99.

    Article  PubMed  Google Scholar 

  251. Sokhadze EM, et al, Atypical processing of novel distracters in a visual oddball task in autism spectrum disorder. Behav Sci (Basel), 2017. 7(4).

    Article  PubMed Central  Google Scholar 

  252. Reed P, McCarthy J. Cross-modal attention-switching is impaired in autism spectrum disorders. J Autism Dev Disord. 2012;42(6):947–53.

    Article  PubMed  Google Scholar 

  253. Townsend J, et al. Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Cogn Brain Res. 2001;11(1):127–45.

    Article  Google Scholar 

  254. Silk TJ, et al. Visuospatial processing and the function of prefrontal-parietal networks in autism spectrum disorders: a functional MRI study. Am J Psychiatry. 2006;163(8):1440–3.

    Article  PubMed  Google Scholar 

  255. Courchesne E. Abnormal early brain development in autism. Mol Psychiatry. 2002;7(Suppl 2):S21–3.

    Article  PubMed  Google Scholar 

  256. Johnson MH. Autism as an adaptive common variant pathway for human brain development. Dev Cogn Neurosci. 2017;25:5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Leekam SR, et al. The Diagnostic Interview for Social and Communication Disorders: algorithms for ICD-10 childhood autism and Wing and Gould autistic spectrum disorder. J Child Psychol Psychiatry. 2002;43(3):327–42.

    Article  PubMed  Google Scholar 

  258. Wing L, et al. The Diagnostic Interview for Social and Communication Disorders: background, inter-rater reliability and clinical use. J Child Psychol Psychiatry. 2002;43(3):307–25.

    Article  PubMed  Google Scholar 

  259. Dunn W. Sensory profile. San Antonio, TX: The Psychological Corporation; 1999.

    Google Scholar 

  260. Wing L. The handicaps of autistic children–a comparative study. J Child Psychol Psychiatry. 1969;10(1):1–40.

    Article  PubMed  Google Scholar 

  261. Kern JK, et al. The pattern of sensory processing abnormalities in autism. Autism. 2006;10(5):480–94.

    Article  PubMed  Google Scholar 

  262. Leekam SR, et al. Describing the sensory abnormalities of children and adults with autism. J Autism Dev Disord. 2007;37(5):894–910.

    Article  PubMed  Google Scholar 

  263. Rogers SJ, Hepburn S, Wehner E. Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. J Autism Dev Disord. 2003;33(6):631–42.

    Article  PubMed  Google Scholar 

  264. Minshew NJ, Hobson JA. Sensory sensitivities and performance on sensory perceptual tasks in high-functioning individuals with autism. J Autism Dev Disord, 2008.

    Google Scholar 

  265. Little LM, Dean E, Tomchek S, Dunn W. Sensory processing patterns in autism, attention deficit hyperactivity disorder, and typical development. Phys Occup Ther Pediatr, 2017: p. 1–12.

    Google Scholar 

  266. Perez Repetto L, Jasmin E, Fombonne E, Gisel E, Couture M. Longitudinal study of sensory features in children with autism spectrum disorder. Autism Res Treat. 2017. 2017:1–8.

    Article  Google Scholar 

  267. Davis RA, et al. Subjective perceptual distortions and visual dysfunction in children with autism. J Autism Dev Disord. 2006;36(2):199–210.

    Article  PubMed  Google Scholar 

  268. Kern JK, et al. Sensory correlations in autism. Autism. 2007;11(2):123–34.

    Article  PubMed  Google Scholar 

  269. Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci. 2017;18(11):671–84.

    Article  PubMed  Google Scholar 

  270. Little, J.A., Vision in children with autism spectrum disorder: a critical review. Clin Exp Optom, 2018.

    Google Scholar 

  271. Otto-Meyer, S., et al., Children with autism spectrum disorder have unstable neural responses to sound. Exp Brain Res, 2018.

    Google Scholar 

  272. Simon DM, Wallace MT. Dysfunction of sensory oscillations in Autism Spectrum Disorder. Neurosci Biobehav Rev. 2016;68:848–61.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Marco EJ, et al. Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res. 2011;69(5 Pt 2):48R–54R.

    Article  PubMed  PubMed Central  Google Scholar 

  274. O’Riordan M, Passetti F. Discrimination in autism within different sensory modalities. J Autism Dev Disord. 2006;36(5):665–75.

    Article  PubMed  Google Scholar 

  275. Cascio C, et al. Tactile perception in adults with autism: a multidimensional psychophysical study. J Autism Dev Disord. 2008;38(1):127–37.

    Article  PubMed  Google Scholar 

  276. Guclu B, et al. Tactile sensitivity of normal and autistic children. Somatosens Mot Res. 2007;24(1–2):21–33.

    Article  PubMed  Google Scholar 

  277. Tommerdahl M, et al. Vibrotactile adaptation fails to enhance spatial localization in adults with autism. Brain Res. 2007;1154:116–23.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Dakin S, Frith U. Vagaries of visual perception in autism. Neuron. 2005;48(3):497–507.

    Article  PubMed  Google Scholar 

  279. Shah A, Frith U. Why do autistic individuals show superior performance on the block design task? J Child Psychol Psychiatry. 1993;34(8):1351–64.

    Article  PubMed  Google Scholar 

  280. Jarrold C, Gilchrist ID, Bender A. Embedded figures detection in autism and typical development: preliminary evidence of a double dissociation in relationships with visual search. Developmental Science. 2005;8(4):344–51.

    Article  PubMed  Google Scholar 

  281. Jolliffe T, Baron-Cohen S. Are people with autism and Asperger syndrome faster than normal on the Embedded Figures Test? J Child Psychol Psychiatry. 1997;38(5):527–34.

    Article  PubMed  Google Scholar 

  282. Plaisted K, O’Riordan M, Baron-Cohen S. Enhanced visual search for a conjunctive target in autism: a research note. J Child Psychol Psychiatry. 1998;39(5):777–83.

    Article  PubMed  Google Scholar 

  283. O’Riordan MA, et al. Superior visual search in autism. J Exp Psychol Hum Percept Perform. 2001;27(3):719–30.

    Article  PubMed  Google Scholar 

  284. O’Riordan MA. Superior visual search in adults with autism. Autism. 2004;8(3):229–48.

    Article  PubMed  Google Scholar 

  285. Brosnan MJ, et al. Gestalt processing in autism: failure to process perceptual relationships and the implications for contextual understanding. J Child Psychol Psychiatry. 2004;45(3):459–69.

    Article  PubMed  Google Scholar 

  286. Mottron L, Belleville S, Menard E. Local bias in autistic subjects as evidenced by graphic tasks: perceptual hierarchization or working memory deficit? J Child Psychol Psychiatry. 1999;40(5):743–55.

    Article  PubMed  Google Scholar 

  287. Bertone, A., et al., Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 2005.

    Google Scholar 

  288. Ropar D, Mitchell P. Are individuals with autism and Asperger’s syndrome susceptible to visual illusions? J Child Psychol Psychiatry. 1999;40(8):1283–93.

    Article  PubMed  Google Scholar 

  289. Bonnel A, et al. Enhanced pitch sensitivity in individuals with autism: a signal detection analysis. J Cogn Neurosci. 2003;15(2):226–35.

    Article  PubMed  Google Scholar 

  290. Skoff BF, Mirsky AF, Turner D. Prolonged brainstem transmission time in autism. Psychiatry Res. 1980;2(2):157–66.

    Article  PubMed  Google Scholar 

  291. Tanguay PE, et al. Auditory brainstem evoked responses in autistic children. Arch Gen Psychiatry. 1982;39(2):174–80.

    Article  PubMed  Google Scholar 

  292. Maziade M, et al. Prolongation of brainstem auditory-evoked responses in autistic probands and their unaffected relatives. Arch Gen Psychiatry. 2000;57(11):1077–83.

    Article  PubMed  Google Scholar 

  293. Wong V, Wong SN. Brainstem auditory evoked potential study in children with autistic disorder. J Autism Dev Disord. 1991;21(3):329–40.

    Article  PubMed  Google Scholar 

  294. Grillon C, Courchesne E, Akshoomoff N. Brainstem and middle latency auditory evoked potentials in autism and developmental language disorder. J Autism Dev Disord. 1989;19(2):255–69.

    Article  PubMed  Google Scholar 

  295. Courchesne E, et al. Functioning of the brain-stem auditory pathway in non-retarded autistic individuals. Electroencephalogr Clin Neurophysiol. 1985;61(6):491–501.

    Article  PubMed  Google Scholar 

  296. Kwon S, et al. Electrophysiologic assessment of central auditory processing by auditory brainstem responses in children with autism spectrum disorders. J Korean Med Sci. 2007;22(4):656–9.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Orekhova EV, et al. Sensory gating in young children with autism: Relation to age, IQ, and EEG gamma oscillations. Neurosci Lett. 2008;434(2):218–23.

    Article  PubMed  Google Scholar 

  298. Kemner C, et al. Normal P50 gating in children with autism. J Clin Psychiatry. 2002;63(3):214–7.

    Article  PubMed  Google Scholar 

  299. Perry W, et al. Sensorimotor gating deficits in adults with autism. Biol Psychiatry. 2007;61(4):482–6.

    Article  PubMed  Google Scholar 

  300. Kemner C, et al. Auditory event-related brain potentials in autistic children and three different control groups. Biol Psychiatry. 1995;38(3):150–65.

    Article  PubMed  Google Scholar 

  301. Ceponiene R, et al. Speech-sound-selective auditory impairment in children with infantile autism: they can perceive but do not attend. Proc Natl Acad Sci. 2003;100:5567–72.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Tecchio F, et al. Auditory sensory processing in autism: a magnetoencephalographic study. Biol Psychiatry. 2003;54(6):647–54.

    Article  PubMed  Google Scholar 

  303. Kaldy Z, et al. The Mechanisms Underlying the ASD Advantage in Visual Search. J Autism Dev Disord. 2016;46(5):1513–27.

    Article  PubMed  PubMed Central  Google Scholar 

  304. Milne E, et al. Visual search performance is predicted by the degree to which selective attention to features modulates the ERP between 350 and 600ms. Neuropsychologia. 2013;51(6):1109–18.

    Article  PubMed  Google Scholar 

  305. Samson F, et al. Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks? J Autism Dev Disord. 2006;36(1):65–76.

    Article  PubMed  Google Scholar 

  306. Manjaly ZM, et al. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents. Neuroimage. 2007;35(1):283–91.

    Article  PubMed  Google Scholar 

  307. Mottron L, et al. Veridical mapping in the development of exceptional autistic abilities. Neurosci Biobehav Rev. 2013;37(2):209–28.

    Article  PubMed  Google Scholar 

  308. Haas RH, et al. Neurologic abnormalities in infantile autism. J Child Neurol. 1996;11(2):84–92.

    Article  PubMed  Google Scholar 

  309. Hilton CL, et al. Motor impairment in sibling pairs concordant and discordant for autism spectrum disorders. Autism. 2012;16(4):430–41.

    Article  PubMed  Google Scholar 

  310. Mattard-Labrecque C, Amor L Ben, Couture MM. Children with Autism and Attention Difficulties: A Pilot Study of the Association between Sensory, Motor, and Adaptive Behaviors. J Can Acad Child Adolesc Psychiatry. 2013;22(2):139–46.

    PubMed  PubMed Central  Google Scholar 

  311. Mostofsky SH, et al. Evidence for a deficit in procedural learning in children and adolescents with autism: implications for cerebellar contribution. J Int Neuropsychol Soc. 2000;6(7):752–9.

    Article  PubMed  Google Scholar 

  312. Sumner E, Leonard HC, Hill EL. Overlapping Phenotypes in Autism Spectrum Disorder and Developmental Coordination Disorder: A Cross-Syndrome Comparison of Motor and Social Skills. J Autism Dev Disord. 2016;46(8):2609–20.

    Article  PubMed  PubMed Central  Google Scholar 

  313. Miller M, et al. Dyspraxia, motor function and visual-motor integration in autism. Behav Brain Res. 2014;269:95–102.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Chukoskie L, Townsend J, Westerfield M. Motor skill in autism spectrum disorders: a subcortical view. Int Rev Neurobiol. 2013;113:207–49.

    Article  PubMed  Google Scholar 

  315. Mostofsky SH, et al. Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders. J Int Neuropsychol Soc. 2006;12(3):314–26.

    Article  PubMed  Google Scholar 

  316. Chang CH, et al. Visual tasks and postural sway in children with and without autism spectrum disorders. Res Dev Disabil. 2010;31(6):1536–42.

    Article  PubMed  Google Scholar 

  317. Fournier KA, et al. Decreased static and dynamic postural control in children with autism spectrum disorders. Gait Posture. 2010;32(1):6–9.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Kohen-Raz R, Volkmar FR, Cohen DJ. Postural control in children with autism. J Autism Dev Disord. 1992;22(3):419–32.

    Article  PubMed  Google Scholar 

  319. Minshew NJ, et al. Underdevelopment of the postural control system in autism. Neurology. 2004;63(11):2056–61.

    Article  PubMed  Google Scholar 

  320. Molloy CA, Dietrich KN, Bhattacharya A. Postural stability in children with autism spectrum disorder. J Autism Dev Disord. 2003;33(6):643–52.

    Article  PubMed  Google Scholar 

  321. Travers BG, et al. Motor difficulties in autism spectrum disorder: linking symptom severity and postural stability. J Autism Dev Disord. 2013;43(7):1568–83.

    Article  PubMed  Google Scholar 

  322. Graham SA, et al. The Influence of Task Difficulty and Participant Age on Balance Control in ASD. J Autism Dev Disord. 2015;45(5):1419–27.

    Article  PubMed  Google Scholar 

  323. Hallett M, et al. Locomotion of autistic adults. Arch Neurol. 1993;50(12):1304–8.

    Article  PubMed  Google Scholar 

  324. Esposito G, et al. Analysis of unsupported gait in toddlers with autism. Brain Dev. 2011;33(5):367–73.

    Article  PubMed  Google Scholar 

  325. Rinehart NJ, et al. Gait function in newly diagnosed children with autism: Cerebellar and basal ganglia related motor disorder. Dev Med Child Neurol. 2006;48(10):819–24.

    Article  PubMed  Google Scholar 

  326. Rinehart NJ, et al. Gait function in high-functioning autism and Asperger’s disorder: evidence for basal-ganglia and cerebellar involvement? Eur Child Adolesc Psychiatry. 2006;15(5):256–64.

    Article  PubMed  Google Scholar 

  327. Shetreat-Klein M, Shinnar S, Rapin I. Abnormalities of joint mobility and gait in children with autism spectrum disorders. Brain Dev. 2014;36(2):91–6.

    Article  PubMed  Google Scholar 

  328. Nobile M, et al. Further evidence of complex motor dysfunction in drug naive children with autism using automatic motion analysis of gait. Autism. 2011;15(3):263–83.

    Article  PubMed  Google Scholar 

  329. Vernazza-Martin S, et al. Goal directed locomotion and balance control in autistic children. J Autism Dev Disord. 2005;35(1):91–102.

    Article  PubMed  Google Scholar 

  330. Vilensky JA, Damasio AR, Maurer RG. Gait disturbances in patients with autistic behavior: a preliminary study. Arch Neurol. 1981;38(10):646–9.

    Article  PubMed  Google Scholar 

  331. Weiss MJ, et al. Gait analysis of teenagers and young adults diagnosed with autism and severe verbal communication disorders. Front Integr Neurosci. 2013;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  332. Schmitz C, et al. Motor control and children with autism: deficit of anticipatory function? Neurosci Lett. 2003;348(1):17–20.

    Article  PubMed  Google Scholar 

  333. Rinehart NJ, et al. An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: further evidence for a motor planning deficit. J Autism Dev Disord. 2006;36(6):757–67.

    Article  PubMed  PubMed Central  Google Scholar 

  334. Cattaneo, L., et al., Impairment of actions chains in autism and its possible role in intention understanding. Proc Natl Acad Sci U S A, 2007. 104(45): p. 17825–30.

    Google Scholar 

  335. Fabbri-Destro M, et al. Planning actions in autism. Exp Brain Res. 2009;192(3):521–5.

    Article  PubMed  Google Scholar 

  336. Glazebrook C, et al. The role of vision for online control of manual aiming movements in persons with autism spectrum disorders. Autism. 2009;13(4):411–33.

    Article  PubMed  Google Scholar 

  337. Glazebrook CM, Elliott D, Lyons J. A kinematic analysis of how young adults with and without autism plan and control goal-directed movements. Mot Control. 2006;10(3):244–64.

    Article  Google Scholar 

  338. Mari M, et al. The reach-to-grasp movement in children with autism spectrum disorder. Philos Trans R Soc Lond B Biol Sci. 2003;358(1430):393–403.

    Article  PubMed  PubMed Central  Google Scholar 

  339. Campione GC, et al. Three-Dimensional Kinematic Analysis of Prehension Movements in Young Children with Autism Spectrum Disorder: New Insights on Motor Impairment. J Autism Dev Disord. 2016;46(6):1985–99.

    Article  PubMed  Google Scholar 

  340. Goldman S, et al. Motor stereotypies in children with autism and other developmental disorders. Dev Med Child Neurol. 2009;51(1):30–8.

    Article  PubMed  Google Scholar 

  341. Green, D., et al., Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine and Child Neurolology, 2009.

    Google Scholar 

  342. Provost B, Heimerl S, Lopez BR. Levels of gross and fine motor development in young children with autism spectrum disorder. Phys Occup Ther Pediatr. 2007;27(3):21–36.

    Article  PubMed  Google Scholar 

  343. David FJ, et al. Coordination of precision grip in 2-6 years-old children with autism spectrum disorders compared to children developing typically and children with developmental disabilities. Front Integr Neurosci. 2012;6:122.

    Article  PubMed  PubMed Central  Google Scholar 

  344. Lai MC, et al. A behavioral comparison of male and female adults with high functioning autism spectrum conditions. PLoS ONE. 2011;6(6):e20835.

    Article  PubMed  PubMed Central  Google Scholar 

  345. Fuentes CT, Mostofsky SH, Bastian AJ. Children with autism show specific handwriting impairments. Neurology. 2009;73(19):1532–7.

    Article  PubMed  PubMed Central  Google Scholar 

  346. Kushki A, Chau T, Anagnostou E. Handwriting difficulties in children with autism spectrum disorders: a scoping review. J Autism Dev Disord. 2011;41(12):1706–16.

    Article  PubMed  Google Scholar 

  347. Fulkerson SC, Freeman WM. Perceptual-motor deficiency in autistic children. Percept Mot Skills. 1980;50(1):331–6.

    Article  PubMed  Google Scholar 

  348. Mayes SD, Calhoun SL. Ability profiles in children with autism: influence of age and IQ. Autism. 2003;7(1):65–80.

    Article  PubMed  Google Scholar 

  349. Klin A, et al. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry. 2002;59(9):809–16.

    Article  PubMed  Google Scholar 

  350. McPartland JC, et al. Patterns of visual attention to faces and objects in autism spectrum disorder. J Autism Dev Disord. 2011;41(2):148–57.

    Article  PubMed  PubMed Central  Google Scholar 

  351. Johnson BP, et al. A closer look at visually guided saccades in autism and Asperger’s disorder. Front Integr Neurosci. 2012;6:99.

    Article  PubMed  PubMed Central  Google Scholar 

  352. Luna B, et al. Maturation of executive function in autism. Biol Psychiatry. 2007;61(4):474–81.

    Article  PubMed  Google Scholar 

  353. Takarae Y, et al. Oculomotor abnormalities parallel cerebellar histopathology in autism. J Neurol Neurosurg Psychiatry. 2004;75(9):1359–61.

    Article  PubMed  PubMed Central  Google Scholar 

  354. Kuhn G, Kourkoulou A, Leekam SR. How magic changes our expectations about autism. Psychol Sci. 2010;21(10):1487–93.

    Article  PubMed  Google Scholar 

  355. Warlaumont AS, et al. A social feedback loop for speech development and its reduction in autism. Psychol Sci. 2014;25(7):1314–24.

    Article  PubMed  Google Scholar 

  356. Mody M, et al. Communication Deficits and the Motor System: Exploring Patterns of Associations in Autism Spectrum Disorder (ASD). J Autism Dev Disord. 2017;47(1):155–62.

    Article  PubMed  Google Scholar 

  357. Pusponegoro HD, et al. Gross Motor Profile and Its Association with Socialization Skills in Children with Autism Spectrum Disorders. Pediatr Neonatol. 2016;57(6):501–7.

    Article  PubMed  Google Scholar 

  358. Hudry K, et al. Early language profiles in infants at high-risk for autism spectrum disorders. J Autism Dev Disord. 2014;44(1):154–67.

    Article  PubMed  Google Scholar 

  359. Hudry K, et al. Preschoolers with autism show greater impairment in receptive compared with expressive language abilities. Int J Lang Commun Disord. 2010;45(6):681–90.

    Article  PubMed  Google Scholar 

  360. Kamio Y, et al. Atypical lexical/semantic processing in high-functioning autism spectrum disorders without early language delay. J Autism Dev Disord. 2007;37(6):1116–22.

    Article  PubMed  Google Scholar 

  361. Rapin I, et al. Subtypes of language disorders in school-age children with autism. Dev Neuropsychol. 2009;34(1):66–84.

    Article  PubMed  Google Scholar 

  362. Eigsti IM, et al. Language acquisition in autism spectrum disorders: A developmental review. Research in Autism Spectrum Disorders. 2011;5(2):681–91.

    Article  Google Scholar 

  363. Tager-Flusberg H, Joseph RM. Identifying neurocognitive phenotypes in autism. Philos Trans R Soc Lond B Biol Sci. 2003;358(1430):303–14.

    Article  PubMed  PubMed Central  Google Scholar 

  364. Bailey A, Phillips W, Rutter M. Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J Child Psychol Psychiatry. 1996;37:89–126.

    Article  PubMed  Google Scholar 

  365. Tager-Flusberg H. Strategies for conducting research on language in autism. J Autism Dev Disord. 2004;34:75–80.

    Article  PubMed  Google Scholar 

  366. Allen, D.A. and I. Rapin, Autistic children are also dysphasic, in Neurobiology of infantile autism, H. Naruse and E. Ornitz, Editors. 1992, Excerpta Medica: Amsterdam. p. 73–80.

    Google Scholar 

  367. Toichi M, Kamio Y. Verbal association for simple common words in high-functioning autism. J Autism Dev Disord. 2001;31:483–90.

    Article  PubMed  Google Scholar 

  368. Kamio Y, Toichi M. Dual access to semantics in autism: is pictorial access superior to verbal access? J Child Psychol Psychiatry. 2000;41:859–67.

    Article  PubMed  Google Scholar 

  369. Eskes GA, Bryson SE, McCormick TA. Comprehension of concrete and abstract words in autistic children. J Autism Dev Disord. 1990;20:61–73.

    Article  PubMed  Google Scholar 

  370. Frith U, Snowling M. Reading for meaning and reading for sound in autistic and dyslexic children. J Dev Psychol. 1983;1:329–42.

    Article  Google Scholar 

  371. Snowling M, Frith U. Comprehension in “hyperlexic” readers. J Exp Child Psychol. 1986;42:392–415.

    Article  PubMed  Google Scholar 

  372. Jolliffe T, Baron-Cohen S. Linguistic processing in high-functioning adults with autism or Asperger’s syndrome. Is global coherence impaired? Psychol Med. 2000;30:1169–87.

    Article  PubMed  Google Scholar 

  373. Dunn M, et al. Electrophysiologic correlates of semantic classification in autistic and normal children. Developmental Neuropsychology. 1999;16:79–99.

    Article  Google Scholar 

  374. Dunn MA, Bates JC. Developmental change in neutral processing of words by children with autism. J Autism Dev Disord. 2005;35(3):361–76.

    Article  PubMed  Google Scholar 

  375. Valdizan JR, et al. Cognitive evoked potentials in autistic children][Article in Spanish. Rev Neurol. 2003;36:425–8.

    PubMed  Google Scholar 

  376. Siegal M, Blades M. Language and auditory processing in autism. Trends Cogn Sci. 2003;7:378–80.

    Article  PubMed  Google Scholar 

  377. Ceponiene, R., et al., Speech-sound-selective auditory impairment in children with autism: they can perceive but do not attend. Proc Natl Acad Sci U S A, 2003. 100(9): p. 5567–72.

    Google Scholar 

  378. Gomot M, et al. Hypersensitivity to acoustic change in children with autism: electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology. 2002;39:577–84.

    Article  PubMed  Google Scholar 

  379. Lepisto T, et al. The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Res. 2005;1066(1–2):147–57.

    Article  PubMed  Google Scholar 

  380. Ferri R, et al. The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clin Neurophysiol. 2003;114:1671–80.

    Article  PubMed  Google Scholar 

  381. Müller RA, et al. Brain mapping of language and auditory perception in high-functioning autistic adults: a PET study. J Autism Dev Disord. 1999;29:19–31.

    Article  PubMed  Google Scholar 

  382. Marien P, et al. The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang. 2001;79(3):580–600.

    Article  PubMed  Google Scholar 

  383. Fiez JA, et al. PET activation of posterior temporal regions during auditory word presentation and verb generation. Cereb Cortex. 1996;6(1):1–10.

    Article  PubMed  Google Scholar 

  384. Fiez JA, et al. A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci. 1996;16(2):808–22.

    Article  PubMed  PubMed Central  Google Scholar 

  385. Justus T. The cerebellum and English grammatical morphology: evidence from production, comprehension, and grammaticality judgments. J Cogn Neurosci. 2004;16(7):1115–30.

    Article  PubMed  PubMed Central  Google Scholar 

  386. Marvel CL, Schwartz BL, Isaacs KL. Word production deficits in schizophrenia. Brain Lang. 2004;89(1):182–91.

    Article  PubMed  Google Scholar 

  387. Fabbro F, et al. Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins. Neuropsychologia. 2004;42(4):536–45.

    Article  PubMed  Google Scholar 

  388. Xiang H, et al. Involvement of the cerebellum in semantic discrimination: an fMRI study. Hum Brain Mapp. 2003;18(3):208–14.

    Article  PubMed  PubMed Central  Google Scholar 

  389. Gebhart AL, Petersen SE, Thach WT. Role of the posterolateral cerebellum in language. Ann N Y Acad Sci. 2002;978:318–33.

    Article  PubMed  Google Scholar 

  390. Bates, E., On the nature and nurture of language, in Frontiere della biologia [Frontiers of biology]. The brain of homo sapiens., R. Levi-Montalcini, et al., Editors. 2000, Giovanni Trecanni: Rome.

    Google Scholar 

  391. Brock J, et al. The temporal binding deficit hypothesis of autism. Dev Psychopathol. 2002;14:209–24.

    Article  PubMed  Google Scholar 

  392. Elman J, et al. Rethinking innateness: A connectionist perspective on development. Cambridge: MIT Press; 1996.

    Google Scholar 

  393. Cheour M, et al. Development of language-specific phoneme representations in the infant brain. Nat Neurosci. 1998;1(5):351–3.

    Article  PubMed  Google Scholar 

  394. Barsalou LW, et al. Grounding conceptual knowledge in modality-specific systems. Trends Cogn Sci. 2003;7:84–91.

    Article  PubMed  Google Scholar 

  395. Kutas M, Federmeier KD. Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences. 2000;4:463–70.

    Article  PubMed  Google Scholar 

  396. Righi, G., et al., Sensitivity to audio-visual synchrony and its relation to language abilities in children with and without ASD. Autism Res, 2018.

    Google Scholar 

  397. Boraston Z, Blakemore SJ. The application of eye-tracking technology in the study of autism. J Physiol. 2007;581(Pt 3):893–8.

    Article  PubMed  PubMed Central  Google Scholar 

  398. Dalton KM, et al. Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci. 2005;8(4):519–26.

    Article  PubMed  PubMed Central  Google Scholar 

  399. Pelphrey KA, et al. Visual scanning of faces in autism. J Autism Dev Disord. 2002;32(4):249–61.

    Article  PubMed  Google Scholar 

  400. Sterling, L., et al., The Role of Face Familiarity in Eye Tracking of Faces by Individuals with Autism Spectrum Disorders. J Autism Dev Disord, 2008.

    Google Scholar 

  401. van der Geest JN, et al. Looking at images with human figures: comparison between autistic and normal children. J Autism Dev Disord. 2002;32(2):69–75.

    Article  PubMed  Google Scholar 

  402. van der Geest JN, et al. Gaze behavior of children with pervasive developmental disorder toward human faces: a fixation time study. J Child Psychol Psychiatry. 2002;43(5):669–78.

    Article  PubMed  Google Scholar 

  403. Rutherford, M.D. and A.M. Towns, Scan Path Differences and Similarities During Emotion Perception in those With and Without Autism Spectrum Disorders. J Autism Dev Disord, 2008.

    Google Scholar 

  404. Anderson C, Colomboa J, DJ S. Visual Scanning and Pupillary Responses in Young Children with Autism Spectrum Disorder. J Clin Exp Neuropsychol. 2006;28:1238–56.

    Article  PubMed  Google Scholar 

  405. Spezio ML, et al. Abnormal use of facial information in high-functioning autism. J Autism Dev Disord. 2007;37(5):929–39.

    Article  PubMed  Google Scholar 

  406. Behrmann M, Thomas C, Humphreys K. Seeing it differently: visual processing in autism. Trends Cogn Sci. 2006;10(6):258–64.

    Article  PubMed  Google Scholar 

  407. Jemel B, Mottron L, Dawson M. Impaired face processing in autism: fact or artifact? J Autism Dev Disord. 2006;36(1):91–106.

    Article  PubMed  Google Scholar 

  408. Lopez B, Donnelly N, Hadwin JA, Leekam SR. Face processing in high-functioning adolescents with autism: Evidence for weak central coherence. Visual Cognition. 2004;11(6):673–88.

    Article  Google Scholar 

  409. Klin A, Jones W. Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism. Dev Sci. 2008;11(1):40–6.

    Article  PubMed  Google Scholar 

  410. Tegmark M. Social attention in ASD: A review and meta-analysis of eye-tracking studies. Res Dev Disabil. 2016;48:79–93.

    Article  Google Scholar 

  411. Guillon Q, et al. Visual social attention in autism spectrum disorder: insights from eye tracking studies. Neurosci Biobehav Rev. 2014;42:279–97.

    Article  PubMed  Google Scholar 

  412. Golarai G, Grill-Spector K, Reiss AL. Autism and the development of face processing. Clin Neurosci Res. 2006;6(3):145–60.

    Article  PubMed  PubMed Central  Google Scholar 

  413. Schultz RT, et al. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry. 2000;57(4):331–40.

    Article  PubMed  Google Scholar 

  414. Herbert MR. Neuroimaging in disorders of social and emotional functioning: what is the question? J Child Neurol. 2004;19(10):772–84.

    Article  PubMed  Google Scholar 

  415. Pierce K, et al. The brain response to personally familiar faces in autism: findings of fusiform activity and beyond. Brain. 2004;127(Pt 12):2703–16.

    Article  PubMed  Google Scholar 

  416. Gervais H, et al. Abnormal cortical voice processing in autism. Nat Neurosci. 2004;7(8):801–2.

    Article  PubMed  Google Scholar 

  417. Murias M, et al. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol Psychiatry. 2007;62(3):270–3.

    Article  PubMed  PubMed Central  Google Scholar 

  418. Wang AT, et al. Reading affect in the face and voice: neural correlates of interpreting communicative intent in children and adolescents with autism spectrum disorders. Arch Gen Psychiatry. 2007;64(6):698–708.

    Article  PubMed  PubMed Central  Google Scholar 

  419. Ospina MB, et al. Behavioural and Developmental Interventions for Autism Spectrum Disorder: A Clinical Systematic Review. PLoS ONE. 2008;3(11):e3755.

    Article  PubMed  PubMed Central  Google Scholar 

  420. Seida JK, et al. Systematic reviews of psychosocial interventions for autism: an umbrella review. Dev Med Child Neurol. 2009;51(2):95–104.

    Article  PubMed  Google Scholar 

  421. Mastergeorge, A.M., et al., Nonmedical interventions for autism spectrum disorders., in Autism Spectrum Disorders: A research review for practitioners, S.J.R. S. Ozonoff, & R.L. Hendren, Editor. 2003, American Psychiatric Publishing, Inc.: Arlington. p. 133–160.

    Google Scholar 

  422. Deokar, A.M., M.B. Huff, and H.A. Omar, Clinical management of adolescents with autism. Pediatr Clin North Am, 2008. 55(5): p. 1147–57, viii.

    Article  PubMed  Google Scholar 

  423. French, L. and E.M.M. Kennedy, Research Review: Early intervention for infants and young children with, or at-risk of, autism spectrum disorder: a systematic review. J Child Psychol Psychiatry, 2017.

    Google Scholar 

  424. Lovaas OI, Smith T. A comprehensive behavioral theory of autistic children: paradigm for research and treatment. J Behav Ther Exp Psychiatry. 1989;20(1):17–29.

    Article  PubMed  Google Scholar 

  425. Lovaas OI. Behavioral treatment and normal educational and intellectual functioning in young autistic children. J Consult Clin Psychol. 1987;55(1):3–9.

    Article  PubMed  Google Scholar 

  426. Lovaas OI, Schreibman L, Koegel RL. A behavior modification approach to the treatment of autistic children. J Autism Child Schizophr. 1974;4(2):111–29.

    Article  PubMed  Google Scholar 

  427. Pierce K, Schreibman L. Increasing complex social behaviors in children with autism: effects of peer-implemented pivotal response training. J Appl Behav Anal. 1995;28(3):285–95.

    Article  PubMed  PubMed Central  Google Scholar 

  428. Pierce K, Schreibman L. Multiple peer use of pivotal response training to increase social behaviors of classmates with autism: results from trained and untrained peers. J Appl Behav Anal. 1997;30(1):157–60.

    Article  PubMed  PubMed Central  Google Scholar 

  429. McGee GG, et al. Promoting reciprocal interactions via peer incidental teaching. J Appl Behav Anal. 1992;25(1):117–26.

    Article  PubMed  PubMed Central  Google Scholar 

  430. McGee GG, et al. A modified incidental-teaching procedure for autistic youth: acquisition and generalization of receptive object labels. J Appl Behav Anal. 1983;16(3):329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  431. McGee GG, Krantz PJ, McClannahan LE. The facilitative effects of incidental teaching on preposition use by autistic children. J Appl Behav Anal. 1985;18(1):17–31.

    Article  PubMed  PubMed Central  Google Scholar 

  432. Bondy A, Frost L. The Picture Exchange Communication System. Behav Modif. 2001;25(5):725–44.

    Article  PubMed  Google Scholar 

  433. Bondy, A.S. and L.A. Frost, The picture exchange communication system. Semin Speech Lang, 1998. 19(4): p. 373–88; quiz 389; 424.

    Article  PubMed  Google Scholar 

  434. Lei J, Ventola P. Pivotal response treatment for autism spectrum disorder: current perspectives. Neuropsychiatr Dis Treat. 2017;13:1613–26.

    Article  PubMed  PubMed Central  Google Scholar 

  435. Schopler, E., G.B. Mesibov, and K. Hearsey, Structured teaching in the TEACCH system., in Learning and Cognition in Autism, E.S.G.B. Mesibov, Editor. 1995, Plenum: New York. p. 243–268.

    Google Scholar 

  436. Mesibov GB, Schopler E. The development of community-based programs for autistic adolescents. Child Health Care. 1983;12(1):20–4.

    Article  PubMed  Google Scholar 

  437. Greenspan S, Weider S. Developmental patterns and outcomes in infants and children with disorders in relating and communicating: a chart review of 200 cases of children with autistic spectrum diagnoses. Journal of Developmental and Learning Disprders. 1997;1:87–141.

    Google Scholar 

  438. Wieder S, Greenspan SI. Climbing the symbolic ladder in the DIR model through floor time/interactive play. Autism. 2003;7(4):425–35.

    Article  PubMed  Google Scholar 

  439. Bass JD, Mulick JA. Social play skill enhancement of children with autism using peers and siblings as therapists. Psychology in the Schools. 2007;44(7):727–35.

    Article  Google Scholar 

  440. Gray CA, Garand JD. Social stories: Improving responses of students with autism with accurate social information. Focus on Autistic Behavior. 1993;8:1–10.

    Article  Google Scholar 

  441. Quirmback LM, et al. Social stories: Mechanisms of effectiveness in increasing game play skills in children diagnosed with Autism Spectrum Disorder using a pretest posttest repeated measures randomized control group design. J Autism Dev Disord. 2009;39:299–321.

    Article  Google Scholar 

  442. Delano ME. Video modeling interventions for individuals with autism. Remedial and Special Education. 2007;28(1):33–42.

    Article  Google Scholar 

  443. Gates JA, Kang E, Lerner MD. Efficacy of group social skills interventions for youth with autism spectrum disorder: A systematic review and meta-analysis. Clin Psychol Rev. 2017;52:164–81.

    Article  PubMed  PubMed Central  Google Scholar 

  444. Piven J, Elison JT, Zylka MJ. Toward a conceptual framework for early brain and behavior development in autism. Mol Psychiatry. 2018;23(1):165.

    Article  PubMed  Google Scholar 

  445. Spaniol, M.M., et al., Attention Training in Autism as a Potential Approach to Improving Academic Performance: A School-Based Pilot Study. J Autism Dev Disord, 2017.

    Google Scholar 

  446. Achtman RL, Green CS, Bavelier D. Video games as a tool to train visual skills. Restor Neurol Neurosci. 2008;26(4–5):435–46.

    PubMed  PubMed Central  Google Scholar 

  447. Granek JA, Gorbet DJ, Sergio LE. Extensive video-game experience alters cortical networks for complex visuomotor transformations. Cortex. 2010;46(9):1165–77.

    Article  PubMed  Google Scholar 

  448. Mishra J, et al. Neural basis of superior performance of action videogame players in an attention-demanding task. J Neurosci. 2011;31(3):992–8.

    Article  PubMed  PubMed Central  Google Scholar 

  449. Chukoskie, L., M. Westerfield, and J. Townsend, A novel approach to training attention and gaze in ASD: A feasibility and efficacy pilot study. Dev Neurobiol, 2017.

    Google Scholar 

  450. Gerhard T, et al. National patterns in the outpatient pharmacological management of children and adolescents with autism spectrum disorder. J Clin Psychopharmacol. 2009;29(3):307–10.

    Article  PubMed  Google Scholar 

  451. Aman, M.G., et al., Treatment of inattention, overactivity, and impulsiveness in autism spectrum disorders. Child Adolesc Psychiatr Clin N Am, 2008. 17(4): p. 713–38, vii.

    Google Scholar 

  452. Stigler, K.A. and C.J. McDougle, Pharmacotherapy of irritability in pervasive developmental disorders. Child Adolesc Psychiatr Clin N Am, 2008. 17(4): p. 739–52, vii–viii.

    Article  PubMed  Google Scholar 

  453. Parikh MS, Kolevzon A, Hollander E. Psychopharmacology of aggression in children and adolescents with autism: a critical review of efficacy and tolerability. J Child Adolesc Psychopharmacol. 2008;18(2):157–78.

    Article  PubMed  Google Scholar 

  454. Filipek PA, Steinberg-Epstein R, Book TM. Intervention for autistic spectrum disorders. NeuroRx. 2006;3(2):207–16.

    Article  PubMed  PubMed Central  Google Scholar 

  455. Leskovec TJ, Rowles BM, Findling RL. Pharmacological treatment options for autism spectrum disorders in children and adolescents. Harv Rev Psychiatry. 2008;16(2):97–112.

    Article  PubMed  Google Scholar 

  456. Young LJ, Barrett CE. Neuroscience. Can oxytocin treat autism? Science. 2015;347(6224):825–6.

    Article  PubMed  PubMed Central  Google Scholar 

  457. Ebrahimi-Fakhari D, Sahin M. Autism and the synapse: emerging mechanisms and mechanism-based therapies. Curr Opin Neurol. 2015;28(2):91–102.

    Article  PubMed  Google Scholar 

  458. Marchetto MC, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry. 2017;22(6):820–35.

    Article  PubMed  Google Scholar 

  459. Budimirovic DB, et al. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J Neurodev Disord. 2017;9:14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne Townsend .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Townsend, J., Westerfield, M., Chukoskie, L. (2019). Autism Spectrum Disorder: A Cognitive Neuroscience Perspective. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-030-14895-9_12

Download citation

Publish with us

Policies and ethics