Skip to main content

Feeding in Mammals: Comparative, Experimental, and Evolutionary Insights on Form and Function

  • Chapter
  • First Online:

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Using Hiiemae’s Process Model as a framework for integrating form and function across behavior, this chapter provides a synthesis of the kinematics and motor control of mammalian feeding. For each stage of feeding, i.e., from ingestion to swallowing, a review of the available experimental data is provided, highlighting common trends across mammals or unique examples related to derived anatomy or behavior. The goal is to bring together comparative, experimental, and behavioral data that are relevant for understanding evolutionary and functional trends in mammalian feeding and highlight some unique specializations of species or groups. Whereas the primary focus of this chapter is on feeding on solid foods, an overview of drinking is provided in light of some recent data on the mechanics of the tongue–liquid interface in different species. Finally, some prospects for future research on mammalian feeding are provided, emphasizing the role that recent technological advances can play in elucidating form-function links in mammalian feeding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal KR, Lucas PW, Prinz JF, Bruce IC (1997) Mechanical properties of foods responsible for resisting food breakdown in the human mouth. Arch Oral Biol 42(1):1–9

    CAS  PubMed  Google Scholar 

  • Agrawal KR, Lucas PW, Bruce IC, Prinz JF (1998) Food properties that influence neuromuscular activity during human mastication. J Dent Res 77(11):1931–1938

    CAS  PubMed  Google Scholar 

  • Aguirre LF, Herrel A, Van Damme R, Matthysen E (2003) The implications of food hardness for diet in bats

    Google Scholar 

  • Anapol F (1988) Morphological and videofluorographic study of the hyoid apparatus and its function in the rabbit (Oryctolagus cuniculus). J Morphol 195(2):141–157

    CAS  PubMed  Google Scholar 

  • Anderson K, Throckmorton GS, Buschang PH, Hayasaki H (2002) The effects of bolus hardness on masticatory kinematics. J Oral Rehabil 29(7):689–696

    CAS  PubMed  Google Scholar 

  • Ardran GM, Kemp FH (1951) The mechanism of swallowing. Proc R Soc Med 44(12):1038–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ardran GM, Kemp FH (1952) Some aspects of the mechanism of swallowing. Gastroenterol 78(6):347–349

    CAS  Google Scholar 

  • Ardran GM, Kemp FH, Ride WDL (1958) A radiographic analysis of mastication and swallowing in the domestic rabbit: Oryctolagus cuniculus (L). Proc Zool Soc 130:257–274

    Google Scholar 

  • Avivi-Arber L, Martin R, Lee JC, Sessle BJ (2011) Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions. Arch Oral Biol 56(12):1440–1465. https://doi.org/10.1016/j.archoralbio.2011.04.005

    Article  PubMed  Google Scholar 

  • Beecher RM (1979) Functional significance of the mandibular symphysis. J Morphol 159(1):117–130

    CAS  PubMed  Google Scholar 

  • Bhullar BS, Manafzadeh AR, Miyamae JA, Hoffman EA, Brainerd EL, Musinsky C, Crompton AW (2019) Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function. Nature 566:528–532. https://doi.org/10.1038/s41586-019-0940-x

    CAS  PubMed  Google Scholar 

  • Biewener AA, Soghikian GW, Crompton AW (1985) Regulation of respiratory airflow during panting and feeding in the dog. Respir Physiol 6(2):185–195

    Google Scholar 

  • Boas JEV, Paulli S (1908) The elephant’s head: studies in the comparative anatomy of the organs of the head of the Indian elephant and other mammals, Part I. Folio. Gustav Fisher, Copenhagen

    Google Scholar 

  • Boas JEV, Paulli S (1925) The elephant’s head: studies in the comparative anatomy of the organs of the head of the Indian elephant and other mammals, Part II. Folio. Gustav Fisher, Copenhagen

    Google Scholar 

  • Brainerd EL, Baier DB, Gatesy SM, Hedrick TL, Metzger KA, Gilbert SL, Crisco JJ (2010) X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J Exp Zool Ecol Genet Physiol 313A(5):262–279

    Google Scholar 

  • Bramble DM, Wake DB (1985) Feeding mechanisms of lower tetrapods. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 230–261

    Google Scholar 

  • Byrd KE (1981) Mandibular movement and muscle activity during mastication in the guinea pig (Cavia porcellus). J Morphol 170(2):147–169

    CAS  PubMed  Google Scholar 

  • Byrd KE, Milberg DJ, Luschei ES (1978) Human and macaque mastication: a quantitative study. J Dent Res 57(7–8):834–843

    CAS  PubMed  Google Scholar 

  • Casali DM, Martins-Santos E, Santos ALQ, Miranda FR, Mahecha GAB, Perini FA (2017) Morphology of the tongue of Vermilingua (Xenarthra: Pilosa) and evolutionary considerations. J Morphol 278(10):1380–1399. https://doi.org/10.1002/jmor.20718

    Article  PubMed  Google Scholar 

  • Crompton AW, Hiiemae K (1969) Functional occlusion in tribosphenic molars. Nat 222(194):678–679

    CAS  Google Scholar 

  • Crompton AW, Hiiemae K (1970) Molar occlusion and mandibular movements during occlusion in the American opossum Didelphis marsupialis. Zool J Linn Soc 49(1):21–47

    Google Scholar 

  • Crompton AW, Hylander WL (1986) Changes in mandibular function following the acquisition of a dentary-squamosal jaw articulation. In: Hotton M, MacLean P, Roth J, Roth E (eds) Ecology and biology of mammal-like reptiles. Smithsonian Institution Press, Washington, DC, pp 263–287

    Google Scholar 

  • Crompton AW, Jenkins FA Jr (1968) Molar occlusion in late triassic mammals. Biol Rev Camb Philos Soc 43(4):427–458

    CAS  PubMed  Google Scholar 

  • Crompton AW, Jenkins FA Jr (1973) Mammals from reptiles: a review of mammalian origins. Annu Rev Earth Planet Sci 1:131–155

    Google Scholar 

  • Crompton AW, Musinsky C (2011) How dogs lap: ingestion and intraoral transport in Canis familiaris. Biol Let 7(6):882–884. https://doi.org/10.1098/rsbl.2011.0336

    Article  CAS  Google Scholar 

  • Crompton AW, Parker P (1978) Evolution of the mammalian masticatory apparatus. Am Sci 66(2):192–201

    CAS  PubMed  Google Scholar 

  • Crompton AW, Lieberman DE, Owerkowicz T, Baudinette RV, Skinner J (2008) Motor control of masticatory movements in the Southern hairy-nosed wombat (Lasiorihinus latifron). In: Vinyard CJ, Ravosa MJ, Wall CE (eds) Primate craniofacial function and biology. Springer, New York, pp 83–111

    Google Scholar 

  • Crompton AW, Owerkowicz T, Skinner J (2010) Masticatory motor pattern in the koala (Phascolarctos cinereus): a comparison of jaw movements in marsupial and placental herbivores. J Exp Zool Ecol Genet Physiol 313(9):564–578

    Google Scholar 

  • Davis JS (2014) Functional morphology of mastication in musteloid carnivorans. Ohio University, Athens, OH

    Google Scholar 

  • Davis JS, Williams SH (2017) The influence of diet on masticatory motor patterns in musteloid carnivorans: an analysis of jaw adductor activity in ferrets (Mustela putorius furo) and kinkajous (Potos flavus). J Exp Zool Ecol Genet Physiol 327:551–561. https://doi.org/10.1002/jez.2141

    Article  Google Scholar 

  • Davis JS, Nicolay C, W., Williams SH (2010) A comparative study of incisor procumbency and mandibular morphology in vampire bats. J Morphol 271(7):853–862

    Google Scholar 

  • De Gueldre G, De Vree F (1984) Movements of the mandibles and tongue during mastication and swallowing in Pteropus giganteus (Megachiroptera): a cineradiographical study. J Morphol 179(1):95–114. https://doi.org/10.1002/jmor.1051790109

    Article  Google Scholar 

  • De Gueldre G, De Vree F (1988) Quantitative electromyography of the masticatory muscles of Pteropus giganteus (Megachiroptera). J Morphol 196(1):73–106

    PubMed  Google Scholar 

  • De Gueldre G, De Vree F (1989) Electromyography of mastication in Pteropus giganteus. Prog Zool 35:135–138

    Google Scholar 

  • de Jong WC, Koolstra JH, Korfage JA, van Ruijven LJ, Langenbach GE (2009) The daily habitual in vivo strain history of a non-weight-bearing bone. Bone 46(1):196–202. https://doi.org/10.1016/j.bone.2009.10.026

    Article  PubMed  Google Scholar 

  • De Vree F, Gans C (1976) Mastication in pygmy goats (Capra hircus). Ann Société R Zool Belg 105(3–4):255–306

    Google Scholar 

  • Domingue B, Dellow DB, TN (1991) The efficiency of chewing during eating and ruminating in goats and sheep. Br J Nutr 65:355–363

    Google Scholar 

  • Dessem D, Druzinsky RE (1992) Jaw-muscle activity in ferrets, Mustela putorius furo. J Morphol 213(2):275–286

    CAS  PubMed  Google Scholar 

  • Dominy NJ (2004) Fruits, fingers, and fermentation: the sensory cues available to foraging primates. Integr Comp Biol 44(4):295–303. https://doi.org/10.1093/icb/44.4.295

    Article  PubMed  Google Scholar 

  • Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nat 410(6826):363–366

    CAS  Google Scholar 

  • Dominy NJ, Lucas PW, Osorio D, Yamashita N (2001) The sensory ecology of primate food perception. Evoluntunary Anthropol 10:171–186

    Google Scholar 

  • Doran GA (1975) Review of the evolution and phylogeny of the mammalian tongue. Acta Anat 91(1):118–129

    CAS  PubMed  Google Scholar 

  • Doran GA, Allbrook DB (1973) The tongue and associated structures in two species of African pangolins, Manis gigantea and Manis tricuspis. J Mammal 54(4):887–899

    CAS  PubMed  Google Scholar 

  • Doran GA, Baggett H (1970) The vascular stiffening mechanism in the tongue of the echidna (Tachyglossus aculeatus). Anat Rec 167(2):197–204. https://doi.org/10.1002/ar.1091670207

    Article  CAS  PubMed  Google Scholar 

  • Doran GA, Baggett H (1971a) Structural and functional classification of mammalian tongues. J Mammal 52(2):427–429. https://doi.org/10.2307/1378685

    PubMed  Google Scholar 

  • Doran GA, Baggett HA (1971b) Unusual aspects of tongue structure in honey-possum, Tarsipes spencerae. J Anat 108:209–210

    Google Scholar 

  • Doty RW, Bosma JF (1956) An electromyographic analysis of reflex deglutition. J Neurophysiol 19(1):44–60

    CAS  PubMed  Google Scholar 

  • Druzinsky RE (1985) Anatomy and EMG of the masseter of Aplodontia rufa. Fortschr Zool 30:281–283

    Google Scholar 

  • Dumont ER, O’Neal R (2004) Food hardness and feeding behavior in old world fruit bats (Pteropodidae). J Mammal 85(1):8–14. https://doi.org/10.1644/BOS-107

    Article  Google Scholar 

  • Dutra EH, Caria PHF, Rafferty KL, Herring SW (2010) The buccinator during mastication: a functional and anatomical evaluation in minipigs. Arch Oral Biol 55(9):627–638

    PubMed  PubMed Central  Google Scholar 

  • Ewer RF (1968) Ethology of mammals. Plenum Press, New York

    Google Scholar 

  • Fish DR, Mendel FC (1982) Mandibular movement patterns relative to food types in common tree shrews (Tupaia glis). Am J Phys Anthropol 58(3):255–269

    CAS  PubMed  Google Scholar 

  • Franks HA (1983) The mechanisms of intra-oral transport of mammals. Harvard University, Cambridge, MA

    Google Scholar 

  • Franks HA, Crompton AW, German RZ (1984) Mechanism of intraoral transport in macaques. Am J Phys Anthropol 65(3):275–282

    CAS  PubMed  Google Scholar 

  • Franks HA, German RZ, Crompton AW, Hiiemae KM (1985) Mechanism of intra-oral transport in a herbivore, the hyrax (Procavia syriacus). Arch Oral Biol 30(7):539–544

    CAS  PubMed  Google Scholar 

  • Freeman PW (1995) Nectarivorous feeding mechanisms in bats. Biol J Linn Soc 56(3):439–463

    Google Scholar 

  • Frey R, Hoffmann R (1996) Evolutionary morphology of the proboscideal nose of Guenther’s dikdik. Zool Anz 235:31–51

    Google Scholar 

  • Frey R, Hoffmann R (1997) Skull, proboscis musculature and preorbital gland in the saiga antelope and Guenther’s dikdik (Mammalia, Artiodactyla, Bovidae). Zool Anz 235:183–199

    Google Scholar 

  • Fujii JA, Ralls K, Tinker MT (2015) Ecological drivers of variation in tool-use frequency across sea otter populations. Behav Ecol 26(2):519–526. https://doi.org/10.1093/beheco/aru220

    Article  Google Scholar 

  • German RZ, Crompton AW (1996) Ontogeny of suckling mechanisms in opossums (Didelphis virginiana). Brain Behav Evol 48(3):157–164

    CAS  PubMed  Google Scholar 

  • German R, Cromptom A (2000) The Ontogeny of Feeding in Mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates, Academic Press, New York, p 449–457

    Google Scholar 

  • German RZ, Franks HA (1991) Timing in the movement of jaws, tongue, and hyoid during feeding in the hyrax, Procavia syriacus. J Exp Zool 257(1):34–42

    CAS  PubMed  Google Scholar 

  • German RZ, Saxe SA, Crompton AW, Hiiemae KM (1989) Food transport through the anterior oral cavity in macaques. Am J Phys Anthropol 80(3):369–377

    CAS  PubMed  Google Scholar 

  • German RZ, Crompton AW, Levitch LC, Thexton AJ (1992) The mechanism of suckling in two species of infant mammal: miniature pigs and long-tailed macaques. J Exp Zool 261(3):322–330

    CAS  PubMed  Google Scholar 

  • German RZ, Crompton AW, Thexton AJ (2009) Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol 102(2):1017–1025

    PubMed  PubMed Central  Google Scholar 

  • Gintof C, Konow N, Ross CF, Sanford CP (2010) Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes. J Exp Biol 213(11):1868–1875

    PubMed  Google Scholar 

  • Gonzalez-Terrazas TP, Medellin RA, Knornschild M, Tschapka M (2012) Morphological specialization influences nectar extraction efficiency of sympatric nectar-feeding bats. J Exp Biol 215:3989–3996. https://doi.org/10.1242/jeb.068494

    Article  PubMed  Google Scholar 

  • Gordon JG, McAllister IK (1970) The circadian rhythm of rumination. J Agric Sci 74:291–297

    Google Scholar 

  • Gorniak GC (1977) Feeding in golden hamsters, Mesocricetus auratus. J Morphol 154(3):427–458

    CAS  PubMed  Google Scholar 

  • Greet DG, de Vree F (1984) Movements of the mandibles and tongue during mastication and swallowing in Pteropus giganteus (Megachiroptera): a cineradiographical study. J Morphol 179(1):95–114

    CAS  PubMed  Google Scholar 

  • Grossnickle DM (2017) The evolutionary origin of jaw yaw in mammals. Sci Rep 7:45094. https://doi.org/10.1038/srep45094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanawa S, Tsuboi A, Watanabe M, Sasaki K (2008) EMG study for perioral facial muscles function during mastication. J Oral Rehabil 35(3):159–170. https://doi.org/10.1111/j.1365-2842.2007.01747.x

    Article  CAS  PubMed  Google Scholar 

  • Harper CJ, Swartz SM, Brainerd EL (2013) Specialized bat tongue is a hemodynamic nectar mop. Proc Natl Acad Sci USA 110(22):8852–8857. https://doi.org/10.1073/pnas.1222726110

    Article  PubMed  PubMed Central  Google Scholar 

  • Herring SW (1976) The dynamics of mastication in pigs. Arch Oral Biol 21(8):473–480

    CAS  PubMed  Google Scholar 

  • Herring SW, Scapino RP (1973) Physiology of feeding in miniature pigs. J Morphol 141(4):427–460

    CAS  PubMed  Google Scholar 

  • Herring SW, Wineski LE (1986) Development of the masseter muscle and oral behavior in the pig. J Exp Zool 237(2):191–207

    CAS  PubMed  Google Scholar 

  • Herring SW, Rafferty KL, Liu ZJ, Marshall CD (2001) Jaw muscles and the skull in mammals: the biomechanics of mastication. Comp Biochem Physiol Mol Integr Physiol 131(1):207–219

    CAS  Google Scholar 

  • Hiiemae KM (1976) Masticatory movements in primitive mammals. In: Anderson DJ, Matthews B (eds) Mastication. John Wright and Sons Ltd, Bristol, pp 105–118

    Google Scholar 

  • Hiiemae KM (1978) Mammalian mastication: a review of the activity of the jaw muscles and the movements they produce in chewing. In: Butler P, Joysey K (eds) Studies on the development, structure and function of teeth. Academic Press, London, pp 359–398

    Google Scholar 

  • Hiiemae K (2000) Feeding in mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, New York, pp 411–448

    Google Scholar 

  • Hiiemae K (2004) Mechanisms of food reduction, transport and deglutition: how the texture of food affects feeding behavior. J Texture Stud 35(2):171–200. https://doi.org/10.1111/j.1745-4603.2004.tb00832.x

    Article  Google Scholar 

  • Hiiemae KM, Ardran GM (1968) A cinefluorographic study of mandibular movement during feeding in the rat (Rattus norvegicus). J Zool 154:139–154

    Google Scholar 

  • Hiiemae KM, Crompton AW (1985) Mastication, food transport, and swallowing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 262–290

    Google Scholar 

  • Hiiemae KM, Kay RF (1972) Trends in the evolution of primate mastication. Nat 240(5382):486–487

    Google Scholar 

  • Hiiemae KM, Palmer JB (1999) Food transport and bolus formation during complete feeding sequences on foods of different initial consistency. Dysphagia 14(1):31–42. https://doi.org/10.1007/PL00009582

    Article  CAS  PubMed  Google Scholar 

  • Hiiemae KM, Thexton A, Cromptom AW (1978) Intrao-oral food transport: the fundamental mechanism in feeding. In: Carlson DS, McNamara J (eds) Muscle adaptation in the craniofacial region. Monograph No. 8. Craniofacial Growth Series. Ann Arbor Press, Ann Arbor, pp 181–208

    Google Scholar 

  • Hiiemae KH, Thexton A, McGarrick J, Cromptom AW (1981) The movement of the cat hyoid during feeding. Arch Oral Biol 26(2):65–81

    CAS  PubMed  Google Scholar 

  • Hiiemae KM, Hayenga SM, Reese A (1995) Patterns of tongue and jaw movement in a cinefluorographic study of feeding in the macaque. Arch Oral Biol 40(3):229–246

    CAS  PubMed  Google Scholar 

  • Hocking DP, Marx FG, Park T, Fitzgerald EMG, Evans AR (2017) A behavioural framework for the evolution of feeding in predatory aquatic mammals. P Roy Soc B-Biol Sci 284(1850). https://doi.org/10.1098/rspb.2016.2750

    PubMed  PubMed Central  Google Scholar 

  • Hongo A, Toukura Y, Choque JL, Aro JA, Yamamoto N (2007) The role of a cleft upper lip of alpacas in foraging extremely short grasses evaluated by grazing impulse. Small Rumin Res 69(1–3):108–114. https://doi.org/10.1016/j.smallrumres.2005.12.020

    Article  Google Scholar 

  • Hooper AP, Welch JG (1983) Chewing efficiency and body size in kid goats. J Dairy Sci 66:2551–2556

    CAS  PubMed  Google Scholar 

  • Howell DJ, Hodgkin N (1976) Feeding adaptations in the hairs and tongues of nectar-feeding bats. J Morphol 148(3):329–339. https://doi.org/10.1002/jmor.1051480305

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhang G, Herring SW (1994) Age changes in mastication in the pig. Comp Biochem Physiol Comp Physiol 107(4):647–654

    CAS  PubMed  Google Scholar 

  • Hylander WL (1979) Mandibular function in Galago crassicaudatus and Macaca fascicularis: an in vivo approach to stress analysis of the mandible. J Morphol 159(2):253–296. https://doi.org/10.1002/jmor.1051590208

    Article  CAS  PubMed  Google Scholar 

  • Hylander WL, Johnson KR, Crompton AW (1987) Loading patterns and jaw movements during mastication in Macaca fascicularis: a bone-strain, electromyographic, and cineradiographic analysis. Am J Phys Anthropol 72(3):287–314

    CAS  PubMed  Google Scholar 

  • Hylander WL, Ravosa MJ, Ross CF, Wall CE, Johnson KR (2000) Symphyseal fusion and jaw-adductor muscle force: an EMG study. Am J Phys Anthropol 112(4):469–492. https://doi.org/10.1002/1096-8644(200008)112:4%3c469:AID-AJPA5%3e3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  • Hylander WL, Vinyard CJ, Ravosa MJ, Ross CF, Wall CE, Johnson KR (2004) Jaw adductor force and symphyseal fusion. In: Anapol F, German RZ, Jablonski NG (eds) Shaping primate evolution: papers in honor of Charles Oxnard. Cambridge University Press, Cambridge, pp 229–257

    Google Scholar 

  • Hylander WL, Wall CE, Vinyard CJ, Ross C, Ravosa MJ, Williams SH, Johnson KR (2005) Temporalis function in anthropoids and strepsirrhines: an EMG study. Am J Phys Anthropol 128(1):35–56. https://doi.org/10.1002/ajpa.20058

    Article  PubMed  Google Scholar 

  • Hylander WL, Vinyard CJ, Wall CE, Williams SH, Johnson KR (2011) Functional and evolutionary significance of the recruitment and firing patterns of the jaw adductors during chewing in Verreaux’s sifaka (Propithecus verreauxi). Am J Phys Anthropol 145(4):531–547. https://doi.org/10.1002/ajpa.21529

    Article  PubMed  Google Scholar 

  • Iinuma M, Yoshida S, Funakoshi M (1991) Development of masticatory muscles and oral behavior from suckling to chewing in dogs. Comp Biochem Physiol A 100(4):789–794

    CAS  PubMed  Google Scholar 

  • Inoue M, Harasawa Y, Yamamura K, Ariyasinghe S, Yamada Y (2004) Effects of food consistency on the pattern of extrinsic tongue muscle activities during mastication in freely moving rabbits. Neurosci Lett 368(2):192–196

    CAS  PubMed  Google Scholar 

  • Iriarte-Diaz J, Reed DA, Ross CF (2011) Sources of variance in temporal and spatial aspects of jaw kinematics in two species of primates feeding on foods of different properties. Integr Comp Biol 51(2):307–319

    PubMed  Google Scholar 

  • Ishida R, Palmer JB, Hiiemae KM (2002) Hyoid motion during swallowing: factors affecting forward and upward displacement. Dysphagia 17(4):262–272. https://doi.org/10.1007/s00455-002-0064-5

    Article  PubMed  Google Scholar 

  • Iwaniuk AN, Whishaw IQ (1999) How skilled are the skilled limb movements of the raccoon (Procyon lotor)? Behav Brain Res 99:35–44

    CAS  PubMed  Google Scholar 

  • Kakizaki Y, Uchida K, Yamamura K, Yamada Y (2002) Coordination between the masticatory and tongue muscles as seen with different foods in consistency and in reflex activities during natural chewing. Brain Res 929(2):210–217

    CAS  PubMed  Google Scholar 

  • Kallen FC, Gans C (1972) Mastication in the little brown bat, Myotis lucifugus. J Morphol 136(4):385–420

    CAS  PubMed  Google Scholar 

  • Kawai N, Tanaka E, Langenbach GE, van Wessel T, Brugman P, Sano R, van Eijden TM, Tanne K (2007) Daily jaw muscle activity in freely moving rats measured with radio-telemetry. Eur J Oral Sci 115(1):15–20

    PubMed  Google Scholar 

  • Kay RF, Hiiemae K (1974a) Jaw movement and tooth use in recent and fossil primates. Am J Phys Anthropol 40(2):227–256

    CAS  PubMed  Google Scholar 

  • Kay RF, Hiiemae K (1974b) Mastication in Galago crassicaudatus: a cineflurographic and occlusal study. In: Martin R, Doyle G, Walker A (eds) Prosimian biology. Duckworth, London, pp 501–530

    Google Scholar 

  • Kienle SS, Law CJ, Costa DP, Berta A, Mehta RS (2017) Revisiting the behavioural framework of feeding in predatory aquatic mammals. Proc Biol Sci 284:20171035. https://doi.org/10.1098/rspb.2017.1035

    Article  PubMed  PubMed Central  Google Scholar 

  • Kier WM, Smith KK (1989) Trunks, tongues, and tentacles: moving with skeletons of muscles. Am Sci 77:29–35

    Google Scholar 

  • Kiltie RA (1982) Bite force as a basis for niche differentiation between rain forest peccaries. Biotropica 14:188–195

    Google Scholar 

  • King SJ, Arrigo-Nelson SJ, Pochron ST, Semprebon GM, Godfrey LR, Wright PC, Jernvall J (2005) Dental senescence in a long-lived primate links infant survival to rainfall. Proc Natl Acad Sci USA 102(46):16579–16583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinzey WG, Norconk MA (1990) Hardness as a basis of fruit choice in two sympatric primates. Am J Phys Anthropol 81(1):5–15

    CAS  PubMed  Google Scholar 

  • Kojola I, Helle T, Huhta E, Nivo A (1998) Foraging conditions, tooth wear and herbivore body reserves: a study of female reindeer. Oecol 117:26–30

    Google Scholar 

  • Laitman JT, Crelin ES, Conlogue GJ (1977) The function of the epiglottis in monkey and man. Yale J Biol Med 50(1):43–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakars TC, Herring SW (1980) Ontogeny of oral function in hamsters (Mesocricetus auratus). J Morphol 165(3):237–254

    CAS  PubMed  Google Scholar 

  • Langenbach GEJ, van Eijden TMGJ (2001) Mammalian feeding motor patterns. Amer Zool 41(6):1338–1351. https://doi.org/10.1093/icb/41.6.1338

    Article  Google Scholar 

  • Langenbach GE, Weijs WA, Brugman P, van Eijden TM (2001) A longitudinal electromyographic study of the postnatal maturation of mastication in the rabbit. Arch Oral Biol 46(9):811–820

    CAS  PubMed  Google Scholar 

  • Langenbach GE, Van Wessel T, Brugman P, Van Eijden TM (2004) Variation in daily masticatory muscle activity in the rabbit. J Dent Res 83(1):55–59

    CAS  PubMed  Google Scholar 

  • Larson JE, Herring SW (1996) Movement of the epiglottis in mammals. Am J Phys Anthropol 100(1):71–82

    CAS  PubMed  Google Scholar 

  • Lieberman DE, Crompton AW (2000) Why fuse the mandibular symphysis? A comparative analysis. Am J Phys Anthropol 112(4):517–540

    CAS  PubMed  Google Scholar 

  • Logan M, Sanson G (2002) The association of tooth wear with sociality of free-ranging male koalas (Phascolarctos cinereus Goldfuss). Aust J Zool Suppl Ser 50:621–626

    Google Scholar 

  • Lucas PW, Turner IM, Dominy NJ, Yamashita N (2000) Mechanical defenses to herbivory. Ann Bot 86:913–920

    Google Scholar 

  • Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001) Dual origin of tribosphenic mammals. Nat 409(6816):53–57

    CAS  PubMed  Google Scholar 

  • Luo ZX, Kielan-Jaworowska Z, Cifelli RL (2004) Evolution of dental replacement in mammals. Bull Carnegie MusM Nat Hist 36:159–175. https://doi.org/10.2992/0145-9058(2004)36%5b159:EODRIM%5d2.0.CO;2

    Article  Google Scholar 

  • Matsuda I, Clauss M, Tuuga A, Sugau J, Hanya G, Yumoto T, Bernard H, Hummel J (2017) Factors affecting leaf selection by foregut-fermenting proboscis monkeys: new insight from in vitro digestibility and toughness of leaves. Sci Rep 7:42774. https://doi.org/10.1038/srep42774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarland DH, Lund JP (1993) An investigation of the coupling between respiration, mastication, and swallowing in the awake rabbit. J Neurophysiol 69(1):95–108

    CAS  PubMed  Google Scholar 

  • Menegaz RA, Baier DB, Metzger KA, Herring SW, Brainerd EL (2015) XROMM analysis of tooth occlusion and temporomandibular joint kinematics during feeding in juvenile miniature pigs. J Exp Biol 218:2573–2584. https://doi.org/10.1242/jeb.119438

    Article  PubMed  Google Scholar 

  • Miyawaki K, Hirose H, Ushijima T, Sawashima M (1975) A preliminary report on the electromyographic study of the activity of lingual muscles. Ann Bull Res Inst Logop Phoniat 9:91–106

    Google Scholar 

  • Montuelle SJ, Olson R, Curtis H, Sidote J, Williams SH (2018a) Flexibility of feeding movements in pigs: effects of changes in food toughness and stiffness on the timing of jaw movements. J Exp Biol 221. https://doi.org/10.1242/jeb.168088

    PubMed  PubMed Central  Google Scholar 

  • Montuelle SJ, Olson R, Davis JS, Curtis H, Williams SH (2018b) Pitch, roll and yaw: hemimandible movements and symphyseal function during chewing in musteloid carnivorans. In: Paper presented at the annual meeting of the society for integrative and comparative biology, San Francisco, CA, Jan 3–7, 2018

    Google Scholar 

  • Muchhala N (2006) Nectar bat stows huge tongue in its rib cage. Nat 444(7120):701–702. https://doi.org/10.1038/444701a

    CAS  PubMed  Google Scholar 

  • Naganuma K, Inoue M, Yamamura K, Hanada K, Yamada Y (2001a) Tongue and jaw muscle activities during chewing and swallowing in freely behaving rabbits. Brain Res 915(2):185–194

    CAS  PubMed  Google Scholar 

  • Naganuma K, Inoue M, Yamamura K, Hanada K, Yamada Y (2001b) Tongue and jaw muscle activities during chewing and swallowing in freely behaving rabbits. Brain Res 915(2):185–194

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Iriarte-Diaz J, Arce-McShane F, Orsbon CP, Brown KA, Eastment M, Avivi-Arber L, Sessle BJ, Inoue M, Hatsopoulos NG, Ross CF, Takahashi K (2017) Sagittal plane kinematics of the jaw and hyolingual apparatus during swallowing in Macaca mulatta. Dysphagia. https://doi.org/10.1007/s00455-017-9812-4

    PubMed  PubMed Central  Google Scholar 

  • Obrez A (1996) Mandibular molar teeth and the development of mastication in the miniature pig (Sus scrofa). Acta Anat (Basel) 156(2):99–111

    CAS  Google Scholar 

  • Offermans M, De Vree F (1990) Mastication in Springhares, Pedetes capensis: a cineradiographic study. J Morphol 205(3):353–368

    PubMed  Google Scholar 

  • Offermans M, De Vree F (1993) Electromyography and mechanics of mastication in the springhare, Pedetes capensis (Rodentia, Pedeitdae). Belg J Zool 123(2):231–260

    Google Scholar 

  • Ootaki S, Yamamura K, Inoue M, Amarasena JK, Kurose M, Yamada Y (2004) Activity of peri-oral facial muscles and its coordination with jaw muscles during ingestive behavior in awake rabbits. Brain Res 1001(1–2):22–36

    CAS  PubMed  Google Scholar 

  • Oron U, Crompton AW (1985) A cineradiographic and electromyographic study of mastication in Tenrec ecaudatus. J Morphol 185(2):155–182. doi:http://onlinelibrary.wiley.com/doi/10.1002/jmor.1051850203/pdf

  • Overdorff DJ, Strait SG (1998) Seed handling by three prosimian primates in southeastern Madagascar: implications for seed dispersal. Am J Primatol 45(1):69–82

    CAS  PubMed  Google Scholar 

  • Palmer JB, Rudin NJ, Lara G, Crompton AW (1992) Coordination of mastication and swallowing. Dysphagia 7(4):187–200

    CAS  PubMed  Google Scholar 

  • Palmer JB, Hiiemae KM, Liu J (1997) Tongue-jaw linkages in human feeding: a preliminary videofluorographic study. Arch Oral Biol 42(6):429–441

    CAS  PubMed  Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (1998a) Factors affecting food comminution during chewing in ruminants: a review. Biol J Linn Soc 63(2):233–256

    Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (1998b) The influence of molar occlusal surface area on the voluntary intake, digestion, chewing behaviour and diet selection of red deer (Cervus elaphus). J Zool 245(3):307–316

    Google Scholar 

  • Prinz JF, Lucas PW (1997) An optimization model for mastication and swallowing in mammals. Proc Biol Sci 264(1389):1715–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ram Y, Ross CF (2018) Evaluating the triplet hypothesis during rhythmic mastication in primates. J Exp Biol 221: jeb165985. https://doi.org/10.1242/jeb.165985

    Google Scholar 

  • Reed DA, Ross CF (2010) The influence of food material properties on jaw kinematics in the primate, Cebus. Arch Oral Biol 55:946–962

    PubMed  Google Scholar 

  • Reghem E, Tia B, Bels V, Pouydebat E (2011) Food prehension and manipulation in Microcebus murinus (Prosimii, Cheirogaleidae). Folia Primatol 82:177–188

    CAS  Google Scholar 

  • Reilly SM, McBrayer LD, White TD (2001) Prey processing in amniotes: biomechanical and behavioral patterns of food reduction. Comp Biochem Physiol Mol Integr Physiol 128(3):397–415

    CAS  Google Scholar 

  • Reis PM, Jung S, Aristoff JM, Stocker R (2010) How cats lap: water uptake by Felis catus. Sci 330(6008):1231–1234. https://doi.org/10.1126/science.1195421

    Article  CAS  Google Scholar 

  • Reiss KZ (2000) Feeding in Mymecophagus Mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, New York, pp 459–486

    Google Scholar 

  • Ross CF, Iriarte-Diaz J (2014) What does feeding system morphology tell us about feeding? Evol Anthropol 23(3):105–120. https://doi.org/10.1002/evan.21410

    Article  PubMed  Google Scholar 

  • Ross CF, Dharia R, Herring SW, Hylander WL, Liu ZJ, Rafferty KL, Ravosa MJ, Williams SH (2007a) Modulation of mandibular loading and bite force in mammals during mastication. J Exp Biol 210:1046–1063. https://doi.org/10.1242/jeb.02733

    Article  PubMed  Google Scholar 

  • Ross CF, Eckhardt A, Herrel A, Hylander WL, Metzger KA, Schaerlaeken V, Washington RL, Williams SH (2007b) Modulation of intra-oral processing in mammals and lepidosaurs. Integr Comp Biol 47(1):118–136. https://doi.org/10.1093/icb/icm044

    Article  PubMed  Google Scholar 

  • Ross CF, Washington RL, Eckhardt A, Reed DA, Vogel ER, Dominy NJ, Machanda ZP (2009) Ecological consequences of scaling of chew cycle duration and daily feeding time in primates. J Hum Evol 56(6):570–585

    PubMed  Google Scholar 

  • Ross CF, Baden AL, Georgi J, Herrel A, Metzger KA, Reed DA, Schaerlaeken V, Wolff MS (2010) Chewing variation in lepidosaurs and primates. J Exp Biol 213(4):572–584

    CAS  PubMed  Google Scholar 

  • Ross CF, Iriarte-Diaz J, Reed DA, Stewart TA, Taylor AB (2016) In vivo bone strain in the mandibular corpus of Sapajus during a range of oral food processing behaviors. J Hum Evol 98:36–65. https://doi.org/10.1016/j.jhevol.2016.06.004

    Article  PubMed  Google Scholar 

  • Rowe TB (2016) The emergence of mammals. In: Kaas J (ed) Evolution of nervous systems, vol 2, 2d edn. Academic Press, Cambridge, MA, pp 1–52

    Google Scholar 

  • Rowe-Rowe D (1977) Prey capture and feeding behaviour of South African otters. Lammergeyer 23:13–21

    Google Scholar 

  • Schwartz G, Enomoto S, Valiquette C, Lund JP (1989) Mastication in the rabbit: a description of movement and muscle activity. J Neurophysiol 62(1):273–287

    CAS  PubMed  Google Scholar 

  • Shoshani J (1996) Skeletal and other basic anatomical features of elephants. In: Shoshani J, Tassy P (eds) The proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford University Press, New York, pp 9–20

    Google Scholar 

  • Skogland T (1988) Tooth wear by food limitation and its life history consequences in wild reindeer. Oikos 51(2):238–242

    Google Scholar 

  • Smith KK (1992) The evolution of the mammalian pharynx. Zool J Linean Soc 104:313–349

    Google Scholar 

  • Smith KK (1994) Are neuromotor systems conserved in evolution? Brain Behav Evol 43(6):293–305

    CAS  PubMed  Google Scholar 

  • Smith JM, Savage RJG (1959) The mechanics of mammalian jaws. Sch Sci Rev 141:289–301

    Google Scholar 

  • Solounias N, Fortelius M, Freeman P (1994) Molar wear rates in ruminants: a new approach. Ann Zool Fennini 31:219–227

    Google Scholar 

  • Stover K, Williams S (2010) Intraspecific scaling of chewing cycle length and jaw-muscle activity in goats, alpacas and horses. In: Paper presented at the annual meeting of the society for integrative and comparative biology, Seattle, WA, Jan 3–7, 2010

    Google Scholar 

  • Stover KK, Sidote J, Williams SH (2017) An ontogenetic perspective on symphyseal fusion, occlusion and mandibular loading in alpacas (Vicugna pacos). Zool (Jena) 124:95–105. https://doi.org/10.1016/j.zool.2017.06.006

    Article  Google Scholar 

  • Teaford M, Byrd KE (1989) Differences in tooth wear as an indicator of changes in jaw movement in the guinea pig Cavia porcellus. Arch Oral Biol 34(12):929–936

    CAS  PubMed  Google Scholar 

  • Teaford MF, Lucas PW, Ungar PS, Glander KE (2006) Mechanical defenses in leaves eaten by Costa Rican howling monkeys (Alouatta palliata). Am J Phys Anthropol 129(1):99–104

    CAS  PubMed  Google Scholar 

  • Thexton A (1981) Tongue and hyoid movements in the cat. In: Kawamura Y, Dubner R (eds) Oral-facial sensory and motor functions. Quintessence Publishing, Chicago, pp 301–321

    Google Scholar 

  • Thexton A (1984) Jaw, tongue and hyoid movement–a question of synchrony? Discussion paper. J R Soc Med 77(12):1010–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thexton AJ, Crompton AW (1989) Effect of sensory input from the tongue on jaw movement in normal feeding in the opossum. J Exp Zool 250(3):233–243. https://doi.org/10.1002/jez.1402500302

    Article  CAS  PubMed  Google Scholar 

  • Thexton AJ, Crompton AW (1998) The control of swallowing. In: Linden RWA (ed) The scientific basis of eating, vol 9. Front Oral Biol, Basel, pp 168–222

    Google Scholar 

  • Thexton AJ, Hiiemae KM (1977) A radiographic and electromyographic study of snapping and biting in the oppossum. Arch Oral Biol 22(5):303–308

    CAS  PubMed  Google Scholar 

  • Thexton A, Hiiemae KM (1997) The effect of food consistency upon jaw movement in the macaque: a cineradiographic study. J Dent Res 76(1):552–560

    CAS  PubMed  Google Scholar 

  • Thexton AJ, McGarrick JD (1988) Tongue movement of the cat during lapping. Arch Oral Biol 33(5):331–339

    CAS  PubMed  Google Scholar 

  • Thexton AJ, McGarrick JD (1989) Tongue movement in the cat during the intake of solid food. Arch Oral Biol 34(4):239–248

    CAS  PubMed  Google Scholar 

  • Thexton AJ, McGarrick JD (1994) The electromyographic activities of jaw and hyoid musculature in different ingestive behaviours in the cat. Arch Oral Biol 39(7):599–612

    CAS  PubMed  Google Scholar 

  • Thexton AJ, Hiiemae KM, Crompton AW (1980a) Food consistency and bite size as regulators of jaw movement during feeding in the cat. J Neurophysiol 44(3):456–474

    CAS  PubMed  Google Scholar 

  • Thexton AJ, Hiiemae KM, Crompton AW (1980b) Food consistency and bite size as regulators of jaw movement during feeding in the cat. J Neurophysiol 44(3):456–474

    CAS  PubMed  Google Scholar 

  • Thexton A, McGarrick J, Hiiemae K, Crompton A (1982) Hyo-mandibular relationships during feeding in the cat. Arch Oral Biol 27(10):793–801

    CAS  PubMed  Google Scholar 

  • Thexton AJ, Crompton AW, German RZ (1998) Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs. J Exp Zool 280(5):327–343

    CAS  PubMed  Google Scholar 

  • Trulsson M (2006) Sensory-motor function of human periodontal mechanoreceptors. J Oral Rehabil 33(4):262–273. https://doi.org/10.1111/j.1365-2842.2006.01629.x

    Article  CAS  PubMed  Google Scholar 

  • Trulsson M (2007) Force encoding by human periodontal mechanoreceptors during mastication. Arch Oral Biol 52(4):357–360

    PubMed  Google Scholar 

  • Trulsson M, Johansson RS (2002) Orofacial mechanoreceptors in humans: encoding characteristics and responses during natural orofacial behaviors. Behav Brain Res 135(1–2):27–33. doi:S0166432802001511 [pii]

    Google Scholar 

  • Turker KS, Sowman PF, Tuncer M, Tucker KJ, Brinkworth RS (2007) The role of periodontal mechanoreceptors in mastication. Arch Oral Biol 52(4):361–364. https://doi.org/10.1016/j.archoralbio.2006.11.014

    Article  PubMed  Google Scholar 

  • Turnbull WD (1970) Mammalian masticatory apparatus. Fieldiana: Geol 18:149–356

    Google Scholar 

  • van Wessel T, Langenbach GE, Kawai N, Brugman P, Tanaka E, van Eijden TM (2005) Burst characteristics of daily jaw muscle activity in juvenile rabbits. J Exp Biol 208(Pt 13):2539–2547

    PubMed  Google Scholar 

  • Vinyard CJ, Williams SH, Wall CE, Johnson KR, Hylander WL (2005) Jaw-muscle electromyography during chewing in Belanger’s treeshrews (Tupaia belangeri). Am J Phys Anthropol 127(1):26–45. https://doi.org/10.1002/ajpa.20176

    Article  PubMed  Google Scholar 

  • Vinyard CJ, Wall CE, Williams SH, Johnson KR, Hylander WL (2006) Masseter electromyography during chewing in ring-tailed lemurs (Lemur catta). Am J Phys Anthropol 130(1):85–95. https://doi.org/10.1002/ajpa.20307

    Article  PubMed  Google Scholar 

  • Vinyard CJ, Wall CE, Williams SH, Hylander WL (2008) Patterns of variation across primates in jaw-muscle electromyography during mastication. Integr Comp Biol 48(2):294–311. https://doi.org/10.1093/icb/icn071

    Article  PubMed  Google Scholar 

  • Vinyard CJ, Taylor AB, Teaford MF, Glander KE, Ravosa MJ, Rossie JB, Ryan TM, Williams SH (2011a) Are we looking for loads in all the right places? New research directions for studying the masticatory apparatus of New World monkeys. Anat Rec 294(12):2140–2157. https://doi.org/10.1002/ar.21512

    Article  Google Scholar 

  • Vinyard CJ, Williams SH, Wall CE, Doherty AH, Crompton AW, Hylander WL (2011b) A preliminary analysis of correlations between chewing motor patterns and mandibular morphology across mammals. Integr Comp Biol 51(2):260–270. https://doi.org/10.1093/icb/icr066

    Article  PubMed  PubMed Central  Google Scholar 

  • Wall CE, Vinyard CJ, Johnson KR, Williams SH, Hylander WL (2006) Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. Am J Phys Anthropol 129(2):215–224. https://doi.org/10.1002/ajpa.20290

    Article  PubMed  Google Scholar 

  • Wall CE, Vinyard CJ, Williams SH, Gapeyev V, Liu X, Lapp H, German RZ (2011) Overview of FEED, the feeding experiments end-user database. Integr Comp Biol 51(2):215–223

    PubMed  PubMed Central  Google Scholar 

  • Weijs WA (1975) Mandibular movements of the albino rat during feeding. J Morphol 145(1):107–124

    CAS  PubMed  Google Scholar 

  • Weijs WA (1994) Evolutionary approach of masticatory motor patterns in mammals. In: Bels V, Chardon M, Vandewalle P (eds) Advances in comparative and environmental physiology, vol 18. Springer-Verlag, Berlin, pp 282–320

    Google Scholar 

  • Weijs WA, Dantuma R (1975) Electromyography and mechanics of mastication in the albino rat. J Morphol 146(1):1–33

    CAS  PubMed  Google Scholar 

  • Weijs WA, Brugman P, Grimbergen CA (1989) Jaw movements and muscle activity during mastication in growing rabbits. Anat Rec 224(3):407–416

    CAS  PubMed  Google Scholar 

  • Werth AJ (2000) Feeding in marine mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, New York, pp 487–526

    Google Scholar 

  • Westneat MW, Hall WG (1992) Ontogeny of feeding motor patterns in infant rats: an electromyographic analysis of suckling and chewing. Behav Neurosci 106(3):539–554

    CAS  PubMed  Google Scholar 

  • Williams SH (2004) Mastication in selenodont artiodactyls: an in vivo study of masticatory form and function in goats and alpacas. Ph.D., Duke University, Durham

    Google Scholar 

  • Williams SH, Vinyard CJ, Wall CE, Hylander WL (2007) Masticatory motor patterns in ungulates: a quantitative assessment of jaw-muscle coordination in goats, alpacas and horses. J Exp Zool A Ecol Genet Physiol 307(4):226–240. https://doi.org/10.1002/jez.362

    Article  PubMed  Google Scholar 

  • Williams S, Vinyard C, Glander K, Deffenbaugh M, Teaford M, Thompson C (2008a) Telemetry system for assessing jaw-muscle function in free-ranging primates. Int J Primatol 29(6):1441–1453

    Google Scholar 

  • Williams SH, Wall CE, Vinyard CJ, Hylander WL (2008b) Symphyseal fusion in selenodont artiodactyls: new insights from in vivo and comparative data. In: Vinyard CJ, Ravosa MJ, Wall CE (eds) Primate craniofacial function and biology. Springer, New York, pp 39–61

    Google Scholar 

  • Williams SH, Vinyard CJ, Wall CE, Hylander WL (2009) Mandibular corpus bone strain in goats and alpacas: implications for understanding the biomechanics of mandibular form in selenodont artiodactyls. J Anat 214(1):65–78. https://doi.org/10.1111/j.1469-7580.2008.01008.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams SH, Sidote J, Stover KK (2010) Occlusal development and masseter activity in Alpacas (Lama pacos). Anat Rec 293(1):126–134. https://doi.org/10.1002/ar.21016

    Article  Google Scholar 

  • Williams SH, Stover KK, Davis JS, Montuelle SJ (2011a) Mandibular corpus bone strains during mastication in goats (Capra hircus): a comparison of ingestive and rumination chewing. Arch Oral Biol 56(10):960–971. https://doi.org/10.1016/j.archoralbio.2011.02.014

    Article  PubMed  Google Scholar 

  • Williams SH, Vinyard CJ, Wall CE, Doherty AH, Crompton AW, Hylander WL (2011b) A preliminary analysis of correlated evolution in mammalian chewing motor patterns. Integr Comp Biol 51(2):247–259. https://doi.org/10.1093/icb/icr068

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter Y, von Helversen O (2003) Operational tongue length in phyllostomid nectar-feeding Bats. J Mammal 84(3):886–896. https://doi.org/10.1644/BWG-032

    Article  Google Scholar 

  • Witmer LM, Sampson SD, Solounias N (1999) The proboscis of tapirs (Mammalia: Perissodactyla): a case study in novel narial anatomy. J Zool 249:249–267. https://doi.org/10.1111/j.1469-7998.1999.tb00763.x

    Article  Google Scholar 

  • Wright W, Vincent JFV (1996) Herbivory and the mechanics of fracture in plants. Biol Rev Camb Philos Soc 71(3):401–413. https://doi.org/10.1111/j.1469-185X.1996.tb01280.x

    Article  Google Scholar 

  • Wright BW, Stevens NJ, Ulibarri L, O’Brien J, Covert HH, Nadler T (2005) Relationships between leaf toughness and food processing behavior among four Vietnam leaf monkeys. Integr Comp Biol 45(6):1212

    Google Scholar 

  • Wright P, King SJ, Baden A, Jernvall J (2008) Aging in wild female lemurs: sustained fertility with increased infant mortality. Interdiscip Top Gerontol 36:17–28. https://doi.org/10.1159/000137677

    Article  PubMed  Google Scholar 

  • Williams S (unpl. data)

    Google Scholar 

  • Yamashita N (2000) Mechanical thresholds as a criterion for food selection in two prosimian primate species. In: Proceedings of the third plant biomechanics conference. Theime Verlag, Stuttgart, pp 590–595

    Google Scholar 

  • Yamashita N (2003) Food procurement and tooth use in two sympatric lemur species. Am J Phys Anthropol 121(2):125–133

    PubMed  Google Scholar 

Download references

Acknowledgements

This chapter could not have been completed without numerous discussions on mammalian feeding over many years with my colleagues Drs. Chris Vinyard, Christine Wall, and Stéphane Montuelle. Their collaboration has enriched my understanding of the complexity of mammalian feeding. I am also appreciative of the energy and enthusiasm that my current and former students, especially Rachel Olson, Jasmine Croghan, Jillian Davis, and Charlotte Klimovich, bring to my lab. Their own interests and work have expanded my research in ways I could not anticipate. Finally, Drs. Fuzz Crompton, Rebecca German, Sue Herring, William Hylander, Matt Ravosa, and Callum Ross are much appreciated for their feedback throughout my career. Finally, I acknowledge the continued support from the National Science Foundation (NSF) for experimental research on mammalian feeding in my lab over approximately the last 15 years. Kinematic electromyographic and bone strain data included in this chapter were collected with National Science Foundation grants BCS-0720025, IOS-1456810, DBI-0922988, and IOS-0520855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan H. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, S.H. (2019). Feeding in Mammals: Comparative, Experimental, and Evolutionary Insights on Form and Function. In: Bels, V., Whishaw, I. (eds) Feeding in Vertebrates. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13739-7_18

Download citation

Publish with us

Policies and ethics