Skip to main content

Crystallization of Polypropylene

  • Chapter
  • First Online:
Book cover Polypropylene Handbook

Abstract

Various aspects of polypropylene (PP) crystallization are discussed. The methods of studying the crystallization process and formed crystalline structure are presented. The polymorphism of crystals of polypropylene is presented and discussed. The general aspects of crystal nucleation and growth are recalled and typical structures crystallizing in polypropylene are characterized: single crystals, spherulites, shish-kebabs. The main elements of the nucleation theory are presented and the formation of spherulitic structure is discussed in more details. The crystallization of PP under special conditions has been reviewed. Nucleants for crystallization of polypropylene are briefly revoked. The melting of polypropylene is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wunderlich B (1973) Macromolecular physics. Crystal structure, morphology, defects, vol 1. Academic Press, New York, p 435

    Google Scholar 

  2. Sperling LH (2005) The crystalline state. In: Introduction to physical polymer science, pp 239–323. https://doi.org/10.1002/0471757128.ch6

  3. Wittmann JC, Lotz B (1985) Polymer decoration: the orientation of polymer folds as revealed by the crystallization of polymer vapors. J. Polym. Sci. Polym. Phys. Ed. 23(1):205–226. https://doi.org/10.1002/pol.1985.180230119

    Article  CAS  Google Scholar 

  4. Auriemma F, de Ballesteros OR, De Rosa C et al (2000) Structural disorder in the alpha form of isotactic polypropylene. Macromolecules 33(23):8764–8774. https://doi.org/10.1021/ma0002895

    Article  CAS  Google Scholar 

  5. Zhu P-w, Edward G (2004) Distribution of Shish-Kebab structure of isotactic polypropylene under shear in the presence of nucleating agent. Macromolecules 37(7):2658–2660. https://doi.org/10.1021/ma0358374

  6. Eckstein A, Suhm J, Friedrich C, Maier RD, Sassmannshausen J, Bochmann M, Mulhaupt R (1998) Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts. Macromolecules 31(4):1335–1340. https://doi.org/10.1021/ma971270d

  7. Galeski A (1994) Nucleation in polypropylene. In: J. Karger-Kocsis (ed) Polypropylene: structures, properties and blends. Chapman & Hall, London, pp 25–49

    Google Scholar 

  8. Supaphol P, Spruiell JE (2000) Thermal properties and isothermal crystallization of syndiotactic polypropylenes: Differential scanning calorimetry and overall crystallization kinetics. J Appl Polym Sci 75(1):44–59. https://doi.org/10.1002/(sici)1097-4628(20000103)75:1%3c44:Aid-app6%3e3.0.Co;2-1

    Article  CAS  Google Scholar 

  9. Miller RL, Seeley EG (1982) Crystallization kinetics of syndiotactic polypropylene. J Polym Sci Part B Polym Phys 20(12):2297–2307. https://doi.org/10.1002/pol.1982.180201210

    Article  CAS  Google Scholar 

  10. Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc, Dalton Trans 9:1413–1418. https://doi.org/10.1039/A800056E

    Article  Google Scholar 

  11. Crist B, Schultz JM (2016) Polymer spherulites: a critical review. Prog Polym Sci 56:1–63. https://doi.org/10.1016/j.progpolymsci.2015.11.006

    Article  CAS  Google Scholar 

  12. Yamada K, Matsumoto S, Tagashira K, Hikosaka M (1998) Isotacticity dependence of spherulitic morphology of isotactic polypropylene. Polymer 39:5327–5333. https://doi.org/10.1016/S0032-3861(97)10208-7

    Article  CAS  Google Scholar 

  13. Lezak E, Bartczak Z, Galeski A (2006) Plastic deformation behavior of beta-phase isotactic polypropylene in plane-strain compression at room temperature. Polymer 47(26):8562–8574. https://doi.org/10.1016/j.polymer.2006.10.016

    Article  CAS  Google Scholar 

  14. Rozanski A, Galeski A (2015) Crystalline lamellae fragmentation during drawing of polypropylene. Macromolecules 48(15):5310–5322. https://doi.org/10.1021/acs.macromol.5b01180

    Article  CAS  Google Scholar 

  15. Suetsugu Y, Kikutani T, Kyu T et al (1990) An experimental technique for characterizing dispersion in compounds of particulates in thermoplastics using small-angle light scattering. Colloid Polym Sci 268(2):118–131. https://doi.org/10.1007/bf01513190

    Article  CAS  Google Scholar 

  16. Okada T, Saito H, Inoue T (1992) Time resolved light scattering studies on the early stages of crystallization in isotactic polypropylene. Macromolecules 25:1908–1911

    Article  CAS  Google Scholar 

  17. Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158

    Article  Google Scholar 

  18. Hobbs JK, Farrance OE, Kailas L (2009) How atomic force microscopy has contributed to our understanding of polymer crystallization. Polymer 50(18):4281–4292. https://doi.org/10.1016/j.polymer.2009.06.021

    Article  CAS  Google Scholar 

  19. Thomann R, Wang C, Kressler J et al (1996) On the phase of isotactic polypropylene. Macromolecules 29:8425–8434. https://doi.org/10.1021/ma951885f

    Article  CAS  Google Scholar 

  20. Vancso GJ, Beekmans LGM, Pearce R et al (1999) From microns to nanometers: morphology development in semicrystalline polymers by scanning force microscopy. J Macromol Sci Phys B38(5–6):491–503. https://doi.org/10.1080/00222349908248115

    Article  CAS  Google Scholar 

  21. Trifonova-van Haerigan D, Varga J, Ehrenstein GW, Vancso GJ (2000) Features of the hedritic morphology of beta-isotactic polypropylene studied by atomic force microscopy. J Polym Sci B Polym Phys 38:672–681. https://doi.org/10.1002/(SICI)1099-0488(20000301)38:5%3c672:AID-POLB4%3e3.0.CO;2-P

    Article  Google Scholar 

  22. Androsch R, Wunderlich B (2001) Reversible crystallization and melting at the lateral surface of isotactic polypropylene crystals. Macromolecules 34(17):5950–5960. https://doi.org/10.1021/ma010260g

    Article  CAS  Google Scholar 

  23. Beckett DR, Chalmers JM, Mackenzie MW et al (1985) the far-infra-red spectra of crystalline isotactic polypropylene polymorphs. Eur Polymer J 21(10):849–852. https://doi.org/10.1016/0014-3057(85)90162-4

    Article  CAS  Google Scholar 

  24. Chalmers JM, Edwards HGM, Lees JS et al (1991) Raman-spectra of polymorphs of isotactic polypropylene. J Raman Spectrosc 22(11):613–618. https://doi.org/10.1002/jrs.1250221104

    Article  CAS  Google Scholar 

  25. Lotz B (2014) A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules 47:7612–7624. https://doi.org/10.1021/ma5009868

    Article  CAS  Google Scholar 

  26. Norton DR, Keller A (1985) The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 26:704–716. https://doi.org/10.1016/0032-3861(85)90108-9

    Article  CAS  Google Scholar 

  27. Meille SV, Ferro DR, Bruckner S, Lovinger AJ, Padden FJ (1994) Structure of beta-isotactic polypropylene—a long-standing structural puzzle. Macromolecules 27:2615–2622. https://doi.org/10.1021/ma00087a034

    Article  CAS  Google Scholar 

  28. Lotz B, Kopp S, Dorset D (1994) An original crystal-structure of polymers with ternary helices. C R Acad Sci Ser II 319(2):187–192

    CAS  Google Scholar 

  29. Sowinski P, Piorkowska E, Boyer SAE et al (2016) Nucleation of crystallization of isotactic polypropylene in the gamma form under high pressure in nonisothermal conditions. Eur Polymer J 85:564–574. https://doi.org/10.1016/j.eurpolymj.2016.10.055

    Article  CAS  Google Scholar 

  30. Keith HD, Padden FJ, Walter NM et al (1959) Evidence for a second crystal form of polypropylene. J Appl Phys 30(10):1485–1488. https://doi.org/10.1063/1.1734986

    Article  CAS  Google Scholar 

  31. Li JX, Cheung WL, Jia DM (1999) A study on the heat of fusion of beta-polypropylene. Polymer 40(5):1219–1222. https://doi.org/10.1016/s0032-3861(98)00345-0

    Article  CAS  Google Scholar 

  32. Marigo A, Marega C, Causin V et al (2004) Influence of thermal treatments, molecular weight, and molecular weight distribution on the crystallization of beta-isotactic polypropylene. J Appl Polym Sci 91(2):1008–1012. https://doi.org/10.1002/app.13260

    Article  CAS  Google Scholar 

  33. Lovinger AJ, Chua JO, Gryte CC (1977) Studies on alpha and beta forms of isotactic polypropylene by crystallization in a temperature-gradient. J Polym Sci Part B Polym Phys 15(4):641–656. https://doi.org/10.1002/pol.1977.180150405

    Article  CAS  Google Scholar 

  34. Pawlak A, Piorkowska E (2001) Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym Sci 279(10):939–946. https://doi.org/10.1007/s003960100519

    Article  CAS  Google Scholar 

  35. Varga J (1986) Melting memory effect of the beta-modification of polypropylene. J Therm Anal 31(1):165–172. https://doi.org/10.1007/bf01913897

    Article  CAS  Google Scholar 

  36. Varga J (1989) Beta-modification of polypropylene and its 2-component systems. J Therm Anal 35(6):1891–1912. https://doi.org/10.1007/bf01911675

    Article  CAS  Google Scholar 

  37. Lotz B, Fillon B, Thierry A et al (1991) Low Tc growth transitions in isotactic polypropylene—beta to alpha and alpha to smectic phases. Polym Bull 25(1):101–105

    CAS  Google Scholar 

  38. Lotz B, Graff S, Straupe C et al (1991) Single-crystals of gamma-phase isotactic polypropylene—combined diffraction and morphological support for a structure with nonparallel chains. Polymer 32(16):2902–2910. https://doi.org/10.1016/0032-3861(91)90185-l

    Article  CAS  Google Scholar 

  39. Lotz B, Graff S, Wittmann JC (1986) Crystal morphology of the gamma-(triclinic) phase of isotactic polypropylene and its relation to the alpha-phase. J Polym Sci Part B Polym Phys 24(9):2017–2032. https://doi.org/10.1002/polb.1986.090240909

    Article  CAS  Google Scholar 

  40. Morrow DR, Newman BA (1968) Crystallization of low-molecular-weight polypropylene fractions. J Appl Phys 39(11):4944–4950. https://doi.org/10.1063/1.1655891

    Article  CAS  Google Scholar 

  41. Alamo RG, Kim MH, Galante MJ et al (1999) Structural and kinetic factors governing the formation of the gamma polymorph of isotactic polypropylene. Macromolecules 32(12):4050–4064. https://doi.org/10.1021/ma981849r

    Article  CAS  Google Scholar 

  42. Thomann R, Semke H, Maier RD et al (2001) Influence of stereoirregularities on the formation of the gamma-phase in isotactic polypropene. Polymer 42(10):4597–4603. https://doi.org/10.1016/s0032-3861(00)00675-3

    Article  CAS  Google Scholar 

  43. De Rosa C, Auriemma F, Circelli T et al (2002) Crystallization of the alpha and gamma forms of isotactic polypropylene as a tool to test the degree of segregation of defects in the polymer chains. Macromolecules 35(9):3622–3629. https://doi.org/10.1021/ma0116248

    Article  CAS  Google Scholar 

  44. Mezghani K, Phillips PJ (1998) The gamma-phase of high molecular weight isotactic polypropylene: III. The equilibrium melting point and the phase diagram. Polymer 39(16):3735–3744. https://doi.org/10.1016/s0032-3861(97)10121-5

    Article  CAS  Google Scholar 

  45. Mezghani K, Phillips PJ (1997) The gamma-phase of high molecular weight isotactic polypropylene. 2. The morphology of the gamma-form crystallized at 200 MPa. Polymer 38(23):5725–5733. https://doi.org/10.1016/s0032-3861(97)00131-6

    Article  CAS  Google Scholar 

  46. Yang SG, Chen YH, Deng BW et al (2017) Window of pressure and flow to produce beta-crystals in lsotactic polypropylene mixed with beta-nucleating agent. Macromolecules 50(12):4807–4816. https://doi.org/10.1021/acs.macromol.7b00041

    Article  CAS  Google Scholar 

  47. Lotz B (2014) A new epsilon crystal modification found in stereodefective lsotactic polypropylene samples. Macromolecules 47(21):7612–7624. https://doi.org/10.1021/ma5009868

    Article  CAS  Google Scholar 

  48. Rieger B, Mu X, Mallin DT et al (1990) Degree of stereochemical control of rac-Et ind 2ZrCl2 MAO catalyst and properties of anisotactic polypropylenes. Macromolecules 23(15):3559–3568. https://doi.org/10.1021/ma00217a005

    Article  CAS  Google Scholar 

  49. Liu Q, Sun XL, Li HH et al (2013) Orientation-induced crystallization of isotactic polypropylene. Polymer 54(17):4404–4421. https://doi.org/10.1016/j.polymer.2013.04.066

    Article  CAS  Google Scholar 

  50. Piccarolo S, Saiu M, Brucato V et al (1992) Crystallization of polymer melts under fast cooling. 2. High-purity IPP. J Appl Polym Sci 46(4):625–634. https://doi.org/10.1002/app.1992.070460409

    Article  CAS  Google Scholar 

  51. Saraf R, Porter RS (1985) Considerations on the structure of smectic polypropylene. Mol Cryst Liq Cryst 2(3–4):85–93

    CAS  Google Scholar 

  52. Mileva D, Androsch R, Cavallo D et al (2012) Structure formation of random isotactic copolymers of propylene and 1-hexene or 1-octene at rapid cooling. Eur Polymer J 48(6):1082–1092. https://doi.org/10.1016/j.eurpolymj.2012.03.009

    Article  CAS  Google Scholar 

  53. Natta G (1960) Alti polimeri lineari del propilene aventi struttura sindiotattica. Accad Naz Lincei Rend Sci Fis Mat Nat XXVIII 5:539–544

    Google Scholar 

  54. De Rosa C, Auriemma F (2006) Structure and physical properties of syndiotactic polypropylene: a highly crystalline thermoplastic elastomer. Prog Polym Sci 31(2):145–237. https://doi.org/10.1016/j.progpolymsci.2005.11.002

    Article  CAS  Google Scholar 

  55. Lotz B, Lovinger AJ, Cais RE (1988) Crystal-structure and morphology of syndiotactic polypropylene single-crystals. Macromolecules 21(8):2375–2382. https://doi.org/10.1021/ma00186a013

    Article  CAS  Google Scholar 

  56. Rastogi S, La Camera D, van der Burgt F et al (2001) Polymorphism in syndiotactic polypropylene: thermodynamic stable regions for form I and form II in pressure-temperature phase diagram. Macromolecules 34(22):7730–7736. https://doi.org/10.1021/ma0109119

    Article  CAS  Google Scholar 

  57. Zhang J, Yang D, Thierry A et al (2001) Isochiral form II of syndiotactic polypropylene produced by epitaxial crystallization. Macromolecules 34(18):6261–6267. https://doi.org/10.1021/ma010758i

    Article  CAS  Google Scholar 

  58. De Rosa C, Corradini P (1993) Crystal-structure of syndiotactic polypropylene. Macromolecules 26(21):5711–5718. https://doi.org/10.1021/ma00073a028

    Article  Google Scholar 

  59. De Rosa C, Auriemma F, Vinti V (1998) On the form II of syndiotactic polypropylene. Macromolecules 31(21):7430–7435. https://doi.org/10.1021/ma980789m

    Article  Google Scholar 

  60. Chatani Y, Maruyama H, Asanuma T et al (1991) Structure of a new crystalline phase of syndiotactic polypropylene. J Polym Sci Part B Polym Phys 29(13):1649–1652. https://doi.org/10.1002/polb.1991.090291310

    Article  CAS  Google Scholar 

  61. Auriemma F, De Rosa C, De Ballesteros OR et al (1998) On the form IV of syndiotactic polypropylene. J Polym Sci Part B Polym Phys 36(3):395–402. https://doi.org/10.1002/(sici)1099-0488(199802)36:3%3c395:Aid-polb1%3e3.0.Co;2-r

    Article  CAS  Google Scholar 

  62. Burns JR, Turnbull D (1966) Kinetics of crystal nucleation in molten isotactic polypropylene. J Appl Phys 37(11):4021–4026. https://doi.org/10.1063/1.1707969

    Article  CAS  Google Scholar 

  63. Koutsky JA, Walton AG, Baer E (1967) Nucleation of polymer droplets. J Appl Phys 38(4):1832–1839. https://doi.org/10.1063/1.1709769

    Article  CAS  Google Scholar 

  64. Fillon B, Wittmann JC, Lotz B et al (1993) Self-nucleation and recrystallization of isotactic polypropylene (alpha-phase) investigated by differential scanning calorimetry. J Polym Sci Part B Polym Phys 31(10):1383–1393. https://doi.org/10.1002/polb.1993.090311013

    Article  CAS  Google Scholar 

  65. Clark EJ, Hoffman JD (1984) Regime-III crystallization in polypropylene. Macromolecules 17(4):878–885. https://doi.org/10.1021/ma00134a058

    Article  CAS  Google Scholar 

  66. Hoffman JD, Miller RL (1988) Test of the reptation concept—crystal-growth rate as a function of molecular-weight in polyethylene crystallized from the melt. Macromolecules 21(10):3038–3051. https://doi.org/10.1021/ma00188a024

    Article  CAS  Google Scholar 

  67. Crist B (2013) Structure of polycrystalline aggregates. In: Piorkowska R, Routledge G (ed) Handbook of polymer crystallization. Wiley, New Jersey, pp 73–124

    Chapter  Google Scholar 

  68. Xiao ZG, Sun Q, Xue G et al (2003) Thermal behavior of isotactic polypropylene freeze-extracted from solutions with varying concentrations. Eur Polymer J 39(5):927–931. https://doi.org/10.1016/s0014-3057(02)00313-0

    Article  CAS  Google Scholar 

  69. Xiao ZG, Sun N (2016) Crystallization behavior for metallocene-catalyzed isotactic polypropylene in alkane solvents of various molecular sizes. J Therm Anal Calorim 124(1):295–303. https://doi.org/10.1007/s10973-015-5146-3

    Article  CAS  Google Scholar 

  70. Morrow DR, Sauer JA, Woodward AE (1965) Dilute solution-grown polypropylene single crystals. J Polym Sci Part B Polym Lett 3(6):463–466. https://doi.org/10.1002/pol.1965.110030608

    Article  CAS  Google Scholar 

  71. Kojima M (1967) Morphology of polypropylene crystals. I. Dilute solution-grown lamellar crystals. J Polym Sci Part A-2 Polym Phys 5(3):597–613. https://doi.org/10.1002/pol.1967.160050316

    Article  CAS  Google Scholar 

  72. Kojima M (1967) Solution-grown lamellar crystals of thermally decomposed isotactic polypropylene. J Polym Sci Part B Polym Lett 5(3):245–250. https://doi.org/10.1002/pol.1967.110050307

    Article  CAS  Google Scholar 

  73. Padden FJ, Keith HD (1966) Crystallization in thin films of isotactic polypropylene. J Appl Phys 37(11):4013–4020. https://doi.org/10.1063/1.1707968

    Article  Google Scholar 

  74. Patel GN, Patel RD (1970) Single crystals of high polymers by film formation. J Polym Sci Part A-2 Polym Phys 8(1):47–59. https://doi.org/10.1002/pol.1970.160080104

    Article  CAS  Google Scholar 

  75. Martuscelli E, Pracella M, Zambelli A (1980) Properties of solution-grown crystals of fractions of isotactic polypropylene with different degrees of stereoregularity. J Polym Sci Part B Polym Phys 18(3):619–636. https://doi.org/10.1002/pol.1980.180180320

    Article  CAS  Google Scholar 

  76. Yamada K, Kajioka H, Nozaki K et al (2011) Morphology and growth of single crystals of isotactic polypropylene from the melt. J Macromol Sci Part B Phys 50(2):236–247. https://doi.org/10.1080/00222341003648847

    Article  CAS  Google Scholar 

  77. Prud’homme RE (2016) Crystallization and morphology of ultrathin films of homopolymers and polymer blends. Prog Polym Sci 54–55:214–231. https://doi.org/10.1016/j.progpolymsci.2015.11.001

    Article  CAS  Google Scholar 

  78. Zhang B, Chen JJ, Liu BC et al (2017) Morphological changes of isotactic polypropylene crystals grown in thin films. Macromolecules 50(16):6210–6217. https://doi.org/10.1021/acs.macromol.7b01381

    Article  CAS  Google Scholar 

  79. Zhang GJ, Lee PC, Jenkins S et al (2014) The effect of confined spherulite morphology of high-density polyethylene and polypropylene on their gas barrier properties in multilayered film systems. Polymer 55(17):4521–4530. https://doi.org/10.1016/j.polymer.2014.07.009

    Article  CAS  Google Scholar 

  80. Tsukruk VV, Reneker DH (1995) Surface morphology of syndiotactic polypropylene single crystals observed by atomic force microscopy. Macromolecules 28(5):1370–1376. https://doi.org/10.1021/ma00109a007

    Article  CAS  Google Scholar 

  81. Bu ZZ, Yoon Y, Ho RM et al (1996) Crystallization, melting, and morphology of syndiotactic polypropylene fractions. 3. Lamellar single crystals and chain folding. Macromolecules 29(20):6575–6581. https://doi.org/10.1021/ma9603793

    Article  CAS  Google Scholar 

  82. Zhou W, Cheng SZD, Putthanarat S et al (2000) Crystallization, melting and morphology of syndiotactic polypropylene fractions. 4. In situ lamellar single crystal growth and melting in different sectors. Macromolecules 33(18):6861–6868. https://doi.org/10.1021/ma000802e

    Article  CAS  Google Scholar 

  83. Marchetti A, Martuscelli E (1974) Effect of chain defects on morphology and thermal-behavior of solution-grown single-crystals of syndiotactic polypropylene. J Polym Sci Part B Polym Phys 12(8):1649–1666. https://doi.org/10.1002/pol.1974.180120812

    Article  CAS  Google Scholar 

  84. Lovinger AJ, Davis DD, Lotz B (1991) Temperature-dependence of structure and morphology of syndiotactic polypropylene and epitaxial relationships with isotactic polypropylene. Macromolecules 24(2):552–560. https://doi.org/10.1021/ma00002a033

    Article  CAS  Google Scholar 

  85. Hoffman JD, Frolen LJ, Ross GS et al (1975) Growth-rate of spherulites and axialites from melt in polyethylene fractions—regime-1 and regime-2 crystallization. J Res Nat Bur Stan Sect A Phys Chem 79(6):671–699. https://doi.org/10.6028/jres.079A.026

    Article  Google Scholar 

  86. Kovacs AJ, Gonthier A (1972) Crystallization and fusion of self-seeded polymers. 2. Growth-rate, morphology and isothermal thickening of single-crystals of low molecular-weight poly(ethylene-oxide) fractions. Kolloid Z Z Polym 250(5):530–552. https://doi.org/10.1007/bf01507524

    Article  CAS  Google Scholar 

  87. Khoury F, Passaglia E (1976). In: Hannay NB (ed) Treatise on solid state chemistry. Crystalline and noncrystalline solids, vol 3. Plenum, New York

    Google Scholar 

  88. Bassett DC (1981) Principles of polymer morphology. Cambridge University Press, New York

    Google Scholar 

  89. Keith HD, Padden FJ (1963) A phenomenological theory of spherulitic crystallization. J Appl Phys 34(8):2409–2421. https://doi.org/10.1063/1.1702757

    Article  CAS  Google Scholar 

  90. White HM, Bassett DC, Jaaskelainen P (2009) A quantitative electron-microscopic investigation of alpha-phase lamellae in isotactic polypropylene fractions. Polymer 50(23):5559–5564. https://doi.org/10.1016/j.polymer.2009.09.038

    Article  CAS  Google Scholar 

  91. Pawlak A, Galeski A (1990) Stability of spherulite growth-rate. J Polym Sci Part B Polym Phys 28(10):1813–1821. https://doi.org/10.1002/polb.1990.090281012

    Article  CAS  Google Scholar 

  92. Nakamura K, Shimizu S, Umemoto S et al (2008) Temperature dependence of crystal growth rate for alpha and beta forms of isotactic polypropylene. Polym J 40(9):915–922. https://doi.org/10.1295/polymj.PJ2007231

    Article  CAS  Google Scholar 

  93. Padden FJ, Keith HD (1959) Spherulitic crystallization in polypropylene. J Appl Phys 30(10):1479–1484. https://doi.org/10.1063/1.1734985

    Article  CAS  Google Scholar 

  94. Li JX, Cheung WL (1999) RuO4 staining and lamellar structure of alpha- and beta-PP. J Appl Polym Sci 72(12):1529–1538. https://doi.org/10.1002/(sici)1097-4628(19990620)72:12%3c1529:Aid-app4%3e3.0.Co;2-u

    Article  CAS  Google Scholar 

  95. Keith HD, Padden FJ (1996) Banding in polyethylene and other spherulites. Macromolecules 29(24):7776–7786. https://doi.org/10.1021/ma960634j

    Article  CAS  Google Scholar 

  96. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27(10):2557–2579. https://doi.org/10.1007/bf00540671

    Article  CAS  Google Scholar 

  97. Varga J, Ehrenstein GW (1997) High-temperature hedritic crystallization of the beta-modification of isotactic polypropylene. Colloid Polym Sci 275(6):511–519. https://doi.org/10.1007/s003960050113

    Article  CAS  Google Scholar 

  98. Bai HW, Wang Y, Zhang ZJ et al (2009) Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with beta-phase nucleating agent. Macromolecules 42(17):6647–6655. https://doi.org/10.1021/ma9001269

    Article  CAS  Google Scholar 

  99. Rodriguez-Arnold J, Bu ZZ, Cheng SZD et al (1994) Crystallization, melting and morphology of syndiotactic polypropylene fractions. 2. Linear crystal-growth rate and crystal morphology. Polymer 35(24):5194–5201. https://doi.org/10.1016/0032-3861(94)90469-3

    Article  CAS  Google Scholar 

  100. Monks AW, White HM, Bassett DC (1996) On shish-kebab morphologies in crystalline polymers. Polymer 37(26):5933–5936. https://doi.org/10.1016/s0032-3861(96)00626-x

    Article  CAS  Google Scholar 

  101. Han R, Nie M, Wang Q (2015) Control over beta-form hybrid shish-kebab crystals in polypropylene pipe via coupled effect of self-assembly beta nucleating agent and rotation extrusion. J Taiwan Inst Chem Eng 52:158–164. https://doi.org/10.1016/j.jtice.2015.02.002

    Article  CAS  Google Scholar 

  102. Schultz JM, Lin JS, Hendricks RW et al (1981) Annealing of polypropylene films crystallized from a highly extended melt. J Polym Sci Part B Polym Phys 19(4):609–620. https://doi.org/10.1002/pol.1981.180190405

    Article  CAS  Google Scholar 

  103. Petermann J, Gohil RM, Schultz JM et al (1982) The kinetics of defect clustering in fibrillar polypropylene crystals. J Polym Sci Part B Polym Phys 20(3):523–534. https://doi.org/10.1002/pol.1982.180200313

    Article  CAS  Google Scholar 

  104. Balzano L, Ma Z, Cavallo D et al (2016) Molecular aspects of the formation of shish-kebab in isotactic polypropylene. Macromolecules 49(10):3799–3809. https://doi.org/10.1021/acs.macromol.6b00428

    Article  CAS  Google Scholar 

  105. Nogales A, Hsiao BS, Somani RH et al (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer 42(12):5247–5256. https://doi.org/10.1016/s0032-3861(00)00919-8

    Article  CAS  Google Scholar 

  106. Ania F, Rueda DR, Balta-Calleja FJ et al (2000) Time resolved USAXS study of the shish-kebab structure in PE: annealing and melt crystallization. J Mater Sci 35(20):5199–5205. https://doi.org/10.1023/a:1004864606257

    Article  CAS  Google Scholar 

  107. Hoffman JD, Davis GT, Lauritzen JI (1976) Crystalline and noncrystalline solids. In: Hannay NB (ed) Treatise on solid state chemistry, vol 3. Plenum, New York

    Google Scholar 

  108. Hoffman JD (1983) Regime-III crystallization in melt-crystallized polymers—the variable cluster model of chain folding. Polymer 24(1):3–26. https://doi.org/10.1016/0032-3861(83)90074-5

    Article  CAS  Google Scholar 

  109. DiMarzio EA, Guttman CM, Hoffman JD (1979) Is crystallization from the melt controlled by melt viscosity and entanglement effects. Faraday Discuss 68:210–217. https://doi.org/10.1039/dc9796800210

    Article  Google Scholar 

  110. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17(1):71–73. https://doi.org/10.1063/1.1747055

    Article  CAS  Google Scholar 

  111. Cheng SZD, Lotz B (2005) Enthalpic and entropic origins of nucleation barriers during polymer crystallization: the Hoffman-Lauritzen theory and beyond. Polymer 46(20):8662–8681. https://doi.org/10.1016/j.polymer.2005.03.125

    Article  CAS  Google Scholar 

  112. Lauritzen JI, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bur Stand Sect A Phys Chem 64(1):73–102. https://doi.org/10.6028/jres.064A.007

    Article  Google Scholar 

  113. Hoffman JD, Lauritzen JI (1961) Crystallization of bulk polymers with chain folding—theory of growth of lamellar spherulites. J Res Natl Bur Stand A 65(4):297-+. https://doi.org/10.6028/jres.065a.035

    Article  Google Scholar 

  114. Lauritzen JI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44(10):4340–4352. https://doi.org/10.1063/1.1661962

    Article  CAS  Google Scholar 

  115. Hoffman JD, Miller RL (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38(13):3151–3212. https://doi.org/10.1016/s0032-3861(97)00071-2

    Article  CAS  Google Scholar 

  116. Hoffman JD (1982) Role of reptation in the rate of crystallization of polyethylene fractions from the melt. Polymer 23(5):656–670. https://doi.org/10.1016/0032-3861(82)90048-9

    Article  CAS  Google Scholar 

  117. Cheng SZD, Janimak JJ, Zhang A et al (1990) Regime transitions in fractions of isotactic polypropylene. Macromolecules 23(1):298–303. https://doi.org/10.1021/ma00203a051

    Article  CAS  Google Scholar 

  118. Rodriguez-Arnold J, Zhang AQ, Cheng SZD et al (1994) Crystallization, melting and morphology of syndiotactic polypropylene fractions. 1. Thermodynamic properties, overall crystallization and melting. Polymer 35(9):1884–1895. https://doi.org/10.1016/0032-3861(94)90978-4

    Article  CAS  Google Scholar 

  119. Pawlak A, Piorkowska E (1999) Effect of negative pressure on melting behavior of spherulites in thin films of several crystalline polymers. J Appl Polym Sci 74(6):1380–1385. https://doi.org/10.1002/(sici)1097-4628(19991107)74:6%3c1380:Aid-app9%3e3.0.Co;2-m

    Article  CAS  Google Scholar 

  120. Galeski A, Koenczoel L, Piorkowska E et al (1987) Acoustic-emission during polymer crystallization. Nature 325(6099):40–41. https://doi.org/10.1038/325040a0

    Article  CAS  Google Scholar 

  121. Galeski A, Piorkowska E, Koenczoel L et al (1990) Acoustic-emission during crystallization of polymers. J Polym Sci Part B Polym Phys 28(7):1171–1186. https://doi.org/10.1002/polb.1990.090280714

    Article  CAS  Google Scholar 

  122. Schultz JM (1984) Microstructural aspects of failure in semicrystalline polymers. Polym Eng Sci 24(10):770–785. https://doi.org/10.1002/pen.760241007

    Article  CAS  Google Scholar 

  123. Monasse B, Haudin JM (1986) Thermal-dependence of nucleation and growth-rate in polypropylene by non isothermal calorimetry. Colloid Polym Sci 264(2):117–122. https://doi.org/10.1007/bf01414836

    Article  CAS  Google Scholar 

  124. Nowacki R, Kolasinska J, Piorkowska E (2001) Cavitation during isothermal crystallization of isotactic polypropylene. J Appl Polym Sci 79(13):2439–2448. https://doi.org/10.1002/1097-4628(20010328)79:13%3c2439:Aid-app1051%3e3.0.Co;2-%23

    Article  CAS  Google Scholar 

  125. Supaphol P, Spruiell JE (2000) Regime crystallization in syndiotactic polypropylenes: re-evaluation of the literature data. Polymer 41(3):1205–1216. https://doi.org/10.1016/s0032-3861(99)00254-2

    Article  CAS  Google Scholar 

  126. Tranchida D, Mileva D, Resconi L et al (2015) Molecular and thermal characterization of a nearly perfect isotactic poly(propylene). Macromol Chem Phys 216(22):2171–2178. https://doi.org/10.1002/macp.201500189

    Article  CAS  Google Scholar 

  127. Galeski S, Piorkowska E, Rozanski A et al (2016) Crystallization kinetics of polymer fibrous nanocomposites. Eur Polymer J 83:181–201. https://doi.org/10.1016/j.eurpolymj.2016.08.002

    Article  CAS  Google Scholar 

  128. Rhoades AM, Wonderling N, Gohn A et al (2016) Effect of cooling rate on crystal polymorphism in beta-nucleated isotactic polypropylene as revealed by a combined WAXS/FSC analysis. Polymer 90:67–75. https://doi.org/10.1016/j.polymer.2016.02.047

    Article  CAS  Google Scholar 

  129. Zia Q, Androsch R, Radusch HJ et al (2006) Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47(24):8163–8172. https://doi.org/10.1016/j.polymer.2006.09.038

    Article  CAS  Google Scholar 

  130. Piorkowska E (1995) Nonisothermal crystallization of polymers. 1. The background of the mathematical-description of spherulitic pattern-formation. J Phys Chem 99(38):14007–14015. https://doi.org/10.1021/j100038a036

    Article  CAS  Google Scholar 

  131. Piorkowska E, Galeski A, Haudin JM (2006) Critical assessment of overall crystallization kinetics theories and predictions. Prog Polym Sci 31(6):549–575. https://doi.org/10.1016/j.progpolymsci.2006.05.001

    Article  CAS  Google Scholar 

  132. Balbontin G, Dainelli D, Galimberti M et al (1992) Thermal-behavior of highly stereoregular syndiotactic polypropene from homogeneous catalysts. Makromol Chem Macromol Chem Phys 193(3):693–703

    Article  CAS  Google Scholar 

  133. Rozanski A, Monasse B, Szkudlarek E et al (2009) Shear-induced crystallization of isotactic polypropylene based nanocomposites with montmorillonite. Eur Polymer J 45(1):88–101. https://doi.org/10.1016/j.eurpolymj.2008.10.011

    Article  CAS  Google Scholar 

  134. Kumaraswamy G, Issaian AM, Kornfield JA (1999) Shear-enhanced crystallization in isotactic polypropylene. 1. Correspondence between in situ rheo-optics and ex situ structure determination. Macromolecules 32(22):7537–7547. https://doi.org/10.1021/ma990772j

    Article  CAS  Google Scholar 

  135. Hayashi Y, Matsuba G, Zhao YF et al (2009) Precursor of shish-kebab in isotactic polystyrene under shear flow. Polymer 50(9):2095–2103. https://doi.org/10.1016/j.polymer.2009.03.008

    Article  CAS  Google Scholar 

  136. Hamad FG, Colby RH, Milner ST (2015) Lifetime of flow-induced precursors in isotactic polypropylene. Macromolecules 48(19):7286–7299. https://doi.org/10.1021/acs.macromol.5b01408

    Article  CAS  Google Scholar 

  137. Tribout C, Monasse B, Haudin JM (1996) Experimental study of shear-induced crystallization of an impact polypropylene copolymer. Colloid Polym Sci 274(3):197–208. https://doi.org/10.1007/bf00665636

    Article  CAS  Google Scholar 

  138. Jay F, Haudin JM, Monasse B (1999) Shear-induced crystallization of polypropylenes: effect of molecular weight. J Mater Sci 34(9):2089–2102. https://doi.org/10.1023/a:1004563827491

    Article  CAS  Google Scholar 

  139. Somani RH, Yang L, Hsiao BS (2006) Effects of high molecular weight species on shear-induced orientation and crystallization of isotactic polypropylene. Polymer 47(15):5657–5668. https://doi.org/10.1016/j.polymer.2004.12.066

    Article  CAS  Google Scholar 

  140. Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42(4):355–364. https://doi.org/10.1007/s00397-002-0247-x

    Article  CAS  Google Scholar 

  141. Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat-transfer conditions. Prog Polym Sci 15(4):629–714. https://doi.org/10.1016/0079-6700(90)90008-o

    Article  CAS  Google Scholar 

  142. Haudin JM, Duplay C, Monasse B et al (2002) Shear-induced crystallization of polypropylene. Growth enhancement and rheology in the crystallization range. Macromol Symp 185:119–133. https://doi.org/10.1002/1521-3900(200208)185:1%3c119:Aid-masy119%3e3.0.Co;2-k

    Article  CAS  Google Scholar 

  143. Vleeshouwers S, Meijer HEH (1996) A rheological study of shear induced crystallization. Rheol Acta 35(5):391–399. https://doi.org/10.1007/bf00368990

    Article  CAS  Google Scholar 

  144. Jerschow P, Janeschitz-Kriegl H (1997) The role of long molecules and nucleating agents in shear induced crystallization of isotactic polypropylenes. Int Polym Process 12(1):72–77. https://doi.org/10.3139/217.970072

    Article  CAS  Google Scholar 

  145. Liedauer S, Eder G, Janeschitz-Kriegl H et al (1993) On the kinetics of shear-induced crystallization in polypropylene. Int Polym Process 8(3):236–244. https://doi.org/10.3139/217.930236

    Article  CAS  Google Scholar 

  146. Kimata S, Sakurai T, Nozue Y et al (2007) Molecular basis of the shish-kebab morphology in polymer crystallization. Science 316(5827):1014–1017. https://doi.org/10.1126/science.1140132

    Article  CAS  Google Scholar 

  147. Smith P, Pennings AJ (1976) Unidirectional solidification of isotactic polypropylene. Eur Polymer J 12(11):781–784. https://doi.org/10.1016/0014-3057(76)90070-7

    Article  CAS  Google Scholar 

  148. Zhang YF, Li D, Chen QJ (2017) Preparation and nucleation effects of nucleating agent hexahydrophthalic acid metal salts for isotactic polypropylene. Colloid Polym Sci 295(10):1973–1982. https://doi.org/10.1007/s00396-017-4176-8

    Article  CAS  Google Scholar 

  149. Mathieu C, Thierry A, Wittmann JC et al (2002) Specificity and versatility of nucleating agents toward isotactic polypropylene crystal phases. J Polym Sci Part B Polym Phys 40(22):2504–2515. https://doi.org/10.1002/polb.10309

    Article  CAS  Google Scholar 

  150. Varga J, Mudra I, Ehrenstein GW (1999) Highly active thermally stable beta-nucleating agents for isotactic polypropylene. J Appl Polym Sci 74(10):2357–2368. https://doi.org/10.1002/(sici)1097-4628(19991205)74:10%3c2357:Aid-app3%3e3.0.Co;2-2

    Article  CAS  Google Scholar 

  151. Chen J, Schneider K, Kretzschmar B et al (2014) Nucleation and growth behavior of beta-nucleated iPP during shear induced crystallization investigated by in-situ synchrotron WAXS and SAXS. Polymer 55(21):5477–5487. https://doi.org/10.1016/j.polymer.2014.07.058

    Article  CAS  Google Scholar 

  152. Chen J, Schneider K, Gao S et al (2015) In-situ synchrotron X-ray studies of crystallization of beta-nucleated iPP subjected to a wide range of shear rates and shear temperatures. Polymer 76:182–190. https://doi.org/10.1016/j.polymer.2015.08.042

    Article  CAS  Google Scholar 

  153. Yamada K, Hikosaka M, Toda A et al (2003) Equilibrium melting temperature of isotactic polypropylene with high tacticity: 1. Determination by differential scanning calorimetry. Macromolecules 36(13):4790–4801. https://doi.org/10.1021/ma021206i

    Article  CAS  Google Scholar 

  154. Iijima M, Strobl G (2000) Isothermal crystallization and melting of isotactic polypropylene analyzed by time- and temperature-dependent small-angle X-ray scattering experiments. Macromolecules 33(14):5204–5214. https://doi.org/10.1021/ma000019m

    Article  CAS  Google Scholar 

  155. Xu J, Heck B, Ye HM et al (2016) Stabilization of nuclei of lamellar polymer crystals: insights from a comparison of the Hoffman-Weeks line with the crystallization line. Macromolecules 49(6):2206–2215. https://doi.org/10.1021/acs.macromol.5b02123

    Article  CAS  Google Scholar 

  156. Wunderlich B (1980) Macromolecular physics. Crystal melting, vol 3. Academic Press, New York

    Google Scholar 

  157. Mezghani K, Phillips PJ (1994) Equilibrium melting-point of deuterated polypropylene. Macromolecules 27(21):6145–6146. https://doi.org/10.1021/ma00099a032

    Article  CAS  Google Scholar 

  158. Cheng SZD, Janimak JJ, Zhang AQ et al (1991) Isotacticity effect on crystallization and melting in polypropylene fractions. 1. Crystalline-structures and thermodynamic property changes. Polymer 32(4):648–655. https://doi.org/10.1016/0032-3861(91)90477-z

    Article  CAS  Google Scholar 

  159. Hoffman JD, Weeks JJ (1962) Melting process and equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand Sect A-Phys Chem 66(JAN-F):13-+. https://doi.org/10.6028/jres.066a.003

    Article  Google Scholar 

  160. Philips RA, Wolkowicz MD (1996) In: Moore EP Jr (ed) Polypropylene handbook. Hanser Verlag, Munich

    Google Scholar 

  161. Xu JN, Srinivas S, Marand H et al (1998) Equilibrium melting temperature and undercooling dependence of the spherulitic growth rate of isotactic polypropylene. Macromolecules 31(23):8230–8242. https://doi.org/10.1021/ma980748q

    Article  CAS  Google Scholar 

  162. Mezghani K, Campbell RA, Phillips PJ (1994) Lamellar thickening and the equilibrium melting-point of polypropylene. Macromolecules 27(4):997–1002. https://doi.org/10.1021/ma00082a017

    Article  CAS  Google Scholar 

  163. Huang TW, Alamo RG, Mandelkern L (1999) Fusion of isotactic poly(propylene). Macromolecules 32(19):6374–6376. https://doi.org/10.1021/ma990092g

    Article  CAS  Google Scholar 

  164. Marand H, Xu JN, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-Weeks extrapolations. Macromolecules 31(23):8219–8229. https://doi.org/10.1021/ma980747y

    Article  CAS  Google Scholar 

  165. Monasse B, Haudin JM (1985) Growth transition and morphology change in polypropylene. Colloid Polym Sci 263(10):822–831. https://doi.org/10.1007/bf01412960

    Article  CAS  Google Scholar 

  166. De Rosa C, Auriemma F, Vinti V, Galimberti M (1998) Equilibrium melting temperature of syndiotactic polypropylene. Macromolecules 31(18):6206–6210. https://doi.org/10.1021/ma9805248

  167. Wang X, Hou WM, Zhou JJ et al (2007) Melting behavior of lamellae of isotactic polypropylene studied using hot-stage atomic force microscopy. Colloid Polym Sci 285(4):449–455. https://doi.org/10.1007/s00396-006-1586-4

    Article  CAS  Google Scholar 

  168. Alamo RG, Brown GM, Mandelkern L et al (1999) A morphological study of a highly structurally regular isotactic poly(propylene) fraction. Polymer 40(14):3933–3944. https://doi.org/10.1016/s0032-3861(98)00613-2

    Article  CAS  Google Scholar 

  169. White HM, Bassett DC (1997) On variable nucleation geometry and segregation in isotactic polypropylene. Polymer 38(22):5515–5520. https://doi.org/10.1016/s0032-3861(97)00110-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Pawlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pawlak, A., Galeski, A. (2019). Crystallization of Polypropylene. In: Karger-Kocsis, J., Bárány, T. (eds) Polypropylene Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-12903-3_4

Download citation

Publish with us

Policies and ethics