Skip to main content

Solid State Polymorphism of Isotactic and Syndiotactic Polypropylene

  • Chapter
  • First Online:

Abstract

The crystal structure and polymorphism of isotactic (iPP) and syndioactic polypropylene (sPP) are illustrated, highlighting the rich variety of phase behavior of these polymers, the conditions of obtainment of the different polymorphs and the disorder phenomena occurring in the crystals. After description of the concepts of packing and conformational polymorphism occurring in the case of iPP and sPP respectively, the crystal structure of the different polymorphs of iPP and sPP are described. In particular, the main structural features relative to the monoclinc α-, the trigonal β- and the orthorhombic γ-forms, of iPP including the mesomorphic form, and the trigonal form which develops in random isotactic copolymers of propylene with pentene or hexene units, are described at first, the chain conformation in all these polymorphs being the 3/1 helix. Then, the complex polymorphism of sPP and the crystal structure of the orthorhombic helical form I and II, the orthorhombic trans-planar form III, the monoclininc form IV, and the trans-planar and helical mesophases are illustrated. The implications of the crystal structure with the final properties are outlined for these polymers, the great fortune of which was the almost simultaneous discovery of the polymerization catalyst systems and the structural elucidation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Natta G, Pino P, Corradini P et al (1955) Crystalline high polymers of α-olefins. J Am Chem Soc 77:1708–1710. https://doi.org/10.1021/ja01611a109

    Article  CAS  Google Scholar 

  2. Natta G, Corradini P (1960) Structure and properties of isotactic polypropylene. Il Nuovo Cimento 15:40–51. https://doi.org/10.1007/BF02731859

    Article  CAS  Google Scholar 

  3. Kaminsky W (ed) (2013) Polyolefins: 50 years after Ziegler and Natta I. Polyethylene and Polypropylene Adv Polym Sci 257. https://doi.org/10.1007/978-3-642-40808-3

  4. Kaminsky W (ed) (2013) Polyolefins: 50 years after Ziegler and Natta II. Polyolefins by metallocenes and other single-site catalysts. Adv Polym Sci 258. https://doi.org/10.1007/978-3-642-40805-2

  5. Brückner S, Meille SV, Petraccone V et al (1991) Polymorphism in isotactic polypropylene. Prog Polym Sci 16:361–404. https://doi.org/10.1016/0079-6700(91)90023-E

    Article  Google Scholar 

  6. De Rosa C, Auriemma F (2006) Structure and physical properties of syndiotactic polypropylene: a highly crystalline thermoplastic elastomer. Prog Polym Sci 31:145. https://doi.org/10.1016/j.progpolymsci.2005.11.002

    Article  CAS  Google Scholar 

  7. Corradini P (1968) The stereochemistry of macromolecules. In: Ketley AD (ed) Marcel Dekker Inc., New York, p 1. https://doi.org/10.1002/9781119044123

  8. Kakudo M, Kasai N (1972) X-ray diffraction by polymers. Elsevier, New York. ISBN 0444410317

    Google Scholar 

  9. Tadokoro H (1979) Structure of crystalline polymers. Wiley, New York. ISBN 0894643495

    Google Scholar 

  10. De Rosa C, Auriemma F (2013) Crystal structures of polymers. In: Piorkowska E, Rutledge GC (eds) Handbook of polymer crystallization.Wiley, Hoboken. https://doi.org/10.1002/9781118541838.ch2

  11. De Rosa C, Auriemma F (2014) Crystals and crystallinity in polymers. Diffraction analysis of ordered and disordered crystals. Wiley, Hoboken. https://doi.org/10.1002/9781118690444

    Book  Google Scholar 

  12. De Rosa C (2004) Chain conformation, crystal structures, and structural disorder in stereoregular polymers. Top Stereochem 24:71. ISBN: 0471054976

    Google Scholar 

  13. Corradini P, Auriemma F, De Rosa C (2006) Crystals and crystallinity in polymeric materials. Acc Chem Res 39:314. https://doi.org/10.1021/ar040288n

    Article  CAS  Google Scholar 

  14. Auriemma F, De Rosa C, Corradini P (2005) Solid mesophases in semicrystalline polymers: structural analysis by diffraction techniques. Adv Polym Sci 181:1. https://doi.org/10.1007/b107169

    Article  CAS  Google Scholar 

  15. De Rosa C, Auriemma F (2011) Single site metallorganic polymerization catalysis as a method to probe the properties of polyolefins. Polym Chem 2:2155. https://doi.org/10.1039/c1py00129a

    Article  CAS  Google Scholar 

  16. Bruckner S, Meille SV (1989) Non-parallel chains in crystalline γ-isotactic polypropylene Nature 340:455. https://doi.org/10.1038/340301a0

    Article  CAS  Google Scholar 

  17. Meille SV, Bruckner S, Porzio W (1990) γ-Isotactic polypropylene. A structure with nonparallel chain axes. Macromolecules 23:4114. https://doi.org/10.1021/ma00220a014

    Article  CAS  Google Scholar 

  18. Lotz B, Kopp S, Dorset L (1994) Original crystal structure of polymers with ternary helixes C R Acad Sci Paris 319:187. ISSN: 1251-8069

    Google Scholar 

  19. Dorset DL, McCourt MP, Kopp S et al (1998) Isotactic polypropylene, β-phase: a study in frustration. Polymer 39:6331–6337. https://doi.org/10.1016/s0032-3861(97)10160-4

  20. Stocker W, Schumaker M, Graff S et al (1998) Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly(propylene), β phase. Macromolecules 31:807. https://doi.org/10.1021/ma971345d

  21. Meille SV, Ferro DR, Bruckner S et al (1994) Structure of β-isotactic polypropylene: a long-standing structural puzzle. Macromolecules 27:2615. https://doi.org/10.1021/ma00087a034

    Article  CAS  Google Scholar 

  22. Ewen JA (1984) Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts. J Am Chem Soc 106:6355. https://doi.org/10.1021/ja00333a041

  23. Kaminsky W, Kulper K, Brintzinger HH et al (1985) Polymerization of propene and butene with a chiral zirconocene and methylaluminoxane as cocatalyst. Angew Chem 97:507. https://doi.org/10.1002/anie.198505071

    Article  CAS  Google Scholar 

  24. Ewen JA, Jones RL, Razavi A et al (1988) Syndiospecific propylene polymerizations with Group IVB metallocenes. J Am Chem Soc 110:6255. https://doi.org/10.1021/ja00226a056

    Article  CAS  Google Scholar 

  25. Corradini P, Guerra G (1992) Polymorphism in polymers. Adv Polym Sci 100:182. https://doi.org/10.1007/BFb0051637

    Article  CAS  Google Scholar 

  26. Natta G, Corradini P (1960) Structure of crystalline polyhydrocarbons. Nuovo Cimento Suppl 15:9. https://doi.org/10.1007/BF02731858

    Article  CAS  Google Scholar 

  27. Huggins ML (1945) Comparison of the structures of stretched linear polymers. J Chem Phys 13:37. https://doi.org/10.1063/1.1723965

    Article  CAS  Google Scholar 

  28. Bunn CW (1942) Molecular structure and rubber-like elasticity I. The crystal structures of β gutta-percha, rubber and polychloroprene. Proc Roy Soc (London) A180:67. https://doi.org/10.1098/rspa.1942.0024

  29. Pauling L, Corey RB, Branson HR (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37:205. https://doi.org/10.1073/pnas.37.4.205

    Article  CAS  Google Scholar 

  30. IUPAC Commission on Macromolecules Nomenclature (1979) Pure Appl Chem 51:1101. https://doi.org/10.1351/pac198355071101

    Article  Google Scholar 

  31. IUPAC Commission on Macromolecules Nomenclature (1981) Pure Appl Chem 53:733. https://doi.org/10.1351/pac198153030733

  32. Recommendations IUPAC (2011) Definitions of terms relating to crystalline polymers. Pure Appl Chem 83:1831–1871. https://doi.org/10.1351/PAC-REC-10-11-13

    Article  CAS  Google Scholar 

  33. Corradini P, Giunchi G, Petraccone V et al (1980) Structural variations in crystalline isotactic polypropylene (alpha-form) as a function of thermal treatments. Gazz Chim Ital 110:413. ISSN:0016-5603

    Google Scholar 

  34. Auriemma F, Ruiz de Ballesteros O, De Rosa C et al (2000) Structural disorder in the α form of isotactic polypropylene. Macromolecules 33:8764. https://doi.org/10.1021/ma0002895

    Article  CAS  Google Scholar 

  35. Corradini P, De Rosa C, Guerra G et al (1992) On the chain conformation of the syndiotactic vinyl polymers. Gazz Chim It 122:305. ISSN:0016-5603

    Google Scholar 

  36. Natta G, Pasquon I, Corradini P et al (1960) Propylene linear high polymers with syndiotactic structure. Rend Fis Acc Lincei 28:539

    CAS  Google Scholar 

  37. Corradini P, Natta G, Ganis P et al (1967) Crystal structure of syndiotactic polypropylene. J Polym Sci Part C 16:2477. ISSN:0360-8905

    Google Scholar 

  38. Natta G, Peraldo M, Allegra G (1964) Crystalline modification of syndiotactic polypropylene having a zig-zag chain conformation. Makromol Chem 75:215. https://doi.org/10.1002/macp.1964.020750120

    Article  CAS  Google Scholar 

  39. Chatani Y, Maruyama H, Noguchi K et al (1990) Crystal structure of the planar zigzag form of syndiotactic polypropylene. J Polym Sci Part C 28:393. https://doi.org/10.1002/pol.1990.140281301

    Article  CAS  Google Scholar 

  40. Chatani Y, Maruyama H, Asanuma T et al (1991) Structure of a new crystalline phase of syndiotactic polypropylene. J Polym Sci: Polym Phys Ed 29:1649. https://doi.org/10.1002/polb.1991.090291310

    Article  CAS  Google Scholar 

  41. Auriemma F, De Rosa C, Ruiz de Ballesteros O et al (1998) On the form IV of syndiotactic polypropylene J Polym Sci Polym Phys Ed 36:395. https://doi.org/10.1002/(sici)1099-0488(199802)36:3%3c395::aid-polb1%3e3.0.co;2-r

  42. De Rosa C, Corradini P (1993) Crystal structure of syndiotactic polypropylene. Macromolecules 26:5711. https://doi.org/10.1021/ma00073a028

    Article  Google Scholar 

  43. Auriemma F, De Rosa C, Corradini P (1993) Analysis of the disorder occurring in the crystal structure of syndiotactic polypropylene. Macromolecules 26:5719. https://doi.org/10.1021/ma00073a029

    Article  CAS  Google Scholar 

  44. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134. https://doi.org/10.1002/macp.1964.020750113

    Article  CAS  Google Scholar 

  45. Natta G, Corradini P (1955) Crystal structure of a new type of polypropylene. Atti Accad Naz Lincei-Memorie 4:73

    CAS  Google Scholar 

  46. Natta G, Peraldo M, Corradini P (1959) Modificazione mesomorfa smettica del polipropilene isotattico. Rend Fis Acc Lincei 26:14

    CAS  Google Scholar 

  47. Slichter WP, Mandell ER (1958) Molecular motion in polypropylene, isotactic and atactic. J Appl Phys 29:1438. https://doi.org/10.1063/1.1722964

    Article  CAS  Google Scholar 

  48. Corradini P, Petraccone V, De Rosa C et al (1986) On the structure of the quenched mesomorphic phase of isotactic polypropylene. Macromolecules 19:2699. https://doi.org/10.1021/ma00165a006

    Article  CAS  Google Scholar 

  49. Corradini P, De Rosa C, Guerra G et al (1989) Comments on the possibility that the mesomorphic form of isotactic polypropylene is composed of small crystals of the β crystalline form. Polymer 30:281. ISSN: 02636476

    Google Scholar 

  50. Guerra G, Petraccone V, De Rosa C et al. (1985) X-ray analysis on unoriented and oriented samples of the quenched form of isotactic polypropylene Makromol. Chem., Rapid Commun. 6:573. https://doi.org/10.1002/marc.1985.030060811

  51. De Rosa C, Auriemma F, Corradini P et al (2006) Crystal structure of the trigonal form of isotactic polypropylene as an example of density-driven polymer structure. J Am Chem Soc 128:80–81. https://doi.org/10.1021/ja0572957

    Article  CAS  Google Scholar 

  52. De Rosa C, Dello Iacono S, Auriemma F et al (2006) Crystal structure of isotactic propylene–hexene popolymers: the trigonal form of isotactic polypropylene. Macromolecules 39:6098–6109. https://doi.org/10.1021/ma0606354

    Article  CAS  Google Scholar 

  53. Lotz B, Ruan J, Thierry A et al (2006) A structure of copolymers of propene and hexene isomorphous to isotactic poly(1-butene) form I. Macromolecules 39:5777. https://doi.org/10.1021/ma052314i

    Article  CAS  Google Scholar 

  54. De Rosa C, Auriemma F, Talarico G et al (2007) Structure of isotactic propylene-pentene copolymers. Macromolecules 40:8531–8532. https://doi.org/10.1021/ma701985m

    Article  CAS  Google Scholar 

  55. De Rosa C, Auriemma F, Ruiz de Ballesteros O et al (2012) Crystal structure of the trigonal form of isotactic propylene–pentene copolymers: an example of the principle of entropy–density driven phase formation in polymers. Macromolecules 45:2749–2763. https://doi.org/10.1021/ma201849w

    Article  CAS  Google Scholar 

  56. De Rosa C, Auriemma F, Di Girolamo R et al (2010) A new mesophase of isotactic polypropylene in copolymers of propylene with long branched comonomers. Macromolecules 43:8559. https://doi.org/10.1021/ma101543d

    Article  CAS  Google Scholar 

  57. Palza H, López-Majada J, Quijada R et al (2005) Metallocenic copolymers of isotactic propylene and 1-octadecene: crystalline structure and mechanical behavior. Macromol Chem Phys 206:1221. https://doi.org/10.1002/macp.200500036

    Article  CAS  Google Scholar 

  58. Lotz B (2014) A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules 47:7612–7624. https://doi.org/10.1021/ma5009868

    Article  CAS  Google Scholar 

  59. Rieger B, Mu X, Mallin DT et al (1990) Degree of stereochemical control of racemic ethylenebis(indenyl)zirconium dichloride/methyl aluminoxane catalyst and properties of anisotactic polypropylenes. Macromolecules 23:3559–3568. https://doi.org/10.1021/ma00217a005

    Article  CAS  Google Scholar 

  60. Mencik Z (1972) Crystal structure of isotactic polypropylene. J Macromol Sci Phys 6:101. https://doi.org/10.1080/00222347208224792

    Article  CAS  Google Scholar 

  61. Hikosaka M, Seto T (1973) Order of the molecular chains in isotactic polypropylene crystals. Polym J 5:111. https://doi.org/10.1295/polymj.5.111

    Article  CAS  Google Scholar 

  62. Guerra G, Petraccone V, Corradini P et al (1984) Crystalline order and melting behavior of isotactic polypropylene (α form) J Polym Sci:  Polym Phys 22:1029. https://doi.org/10.1002/pol.1984.180220608

  63. De Rosa C, Guerra G, Napolitano R et al (1984) Conditions for the α1-α2 transition in isotactic polypropylene samples. Eur Polym J 20:937. https://doi.org/10.1016/0014-3057(84)90073-9

    Article  Google Scholar 

  64. De Rosa C, Guerra G, Napolitano R et al (1985) Conditions for the α1-α2 transition in isotactic polypropylene samples. J Therm Anal 30:1331. ISSN:0368-4466

    Google Scholar 

  65. Natta G, Corradini P, Bassi IW (1960) Crystal structure of isotactic poly(1-butene). Nuovo Cimento. Suppl 15:52. https://doi.org/10.1007/BF02731860

    Article  CAS  Google Scholar 

  66. Natta G, Corradini P (1955) Crystal structure of isotactic polystyrenes. Makromol Chem 16:77. ISSN:0025-116X

    Google Scholar 

  67. Natta G, Corradini P, Bassi IW (1960) Crystal structure of isotactic polystyrene. Nuovo Cimento Suppl 15:68. https://doi.org/10.1007/BF02731861

    Article  CAS  Google Scholar 

  68. Kardos JL, Christiansen AW, Baer E (1966) Structure of pressure crystallized polypropylene. J Polym Sci A-2:777. ISSN:0098-1273

    Google Scholar 

  69. Pal KD, Morrow DR, Sauer JA (1966) Interior morphology of bulk polypropylene. Nature 211:514. https://doi.org/10.1038/211514a0

    Article  CAS  Google Scholar 

  70. Mezghani K, Phillips PJ (1998) The γ-phase of high molecular weight isotactic polypropylene: III. The equilibrium melting point and the phase diagram. Polymer 39:3735–3744. https://doi.org/10.1016/S0032-3861(97)10121-5

    Article  CAS  Google Scholar 

  71. Mezghani K, Phillips PJ (1997) The γ-phase of high molecular weight isotactic polypropylene. II. The morphology of the γ-form crystallized at 200 MPa. Polymer 38:5725–5733. https://doi.org/10.1016/S0032-3861(97)00131-6

    Article  CAS  Google Scholar 

  72. Brückner S, Phillips PJ, Mezghani K et al (1997) On the crystallization of γ-isotactic polypropylene. A high pressure study. Macromol Rapid Commun 18:1–7. https://doi.org/10.1002/marc.1997.030180101

    Article  Google Scholar 

  73. Lotz B, Graff S, Wittmann JC (1986) Crystal morphology of the γ (triclinic) phase of isotactic polypropylene and its relation to the α phase. J Polym Sci Polym Phys Ed 24:2017. https://doi.org/10.1002/polb.1986.090240909

    Article  CAS  Google Scholar 

  74. Kojima M (1967) Solution-γ grown lamellar crystals of thermally decomposed isotactic polypropylene. J Polym Sci B5:245. ISSN:0360-6384

    Google Scholar 

  75. Kojima M (1968) Morphology of polypropylene crystals. III. Lamellar crystals of thermally decomposed polypropylene. J Polym Sci A-2:1255. ISSN:0098-1273

    Google Scholar 

  76. Morrow DR, Newman BA (1968) Crystallization of low-molecular-weight polypropylene fractions. J Appl Phys 39:4944–50. https://doi.org/10.1063/1.1655891

    Article  CAS  Google Scholar 

  77. Natta G, Mazzanti G, Crespi G et al (1957) Polimeri isotattici e polimeri a stereoblocchi del propilene. Chimica e Industria Milan 39:275. ISSN:0009-4315

    Google Scholar 

  78. Turner-Jones A (1971) Development of the γ-crystal form in random copolymers of propylene and their analysis by differential scanning calorimetry and X-ray methods. Polymer 12:487. https://doi.org/10.1016/0032-3861(71)90031-0

    Article  CAS  Google Scholar 

  79. Mezghani K, Phillips PJ (1995) γ-Phase in propylene copolymers at atmospheric pressure. Polymer 36:2407–411. https://doi.org/10.1016/0032-3861(95)97341-C

    Article  CAS  Google Scholar 

  80. Resconi L, Cavallo L, Fait A et al (2000) Selectivity in propene polymerization with metallocene catalysts. Chem Rev 100:1253. https://doi.org/10.1021/cr9804691

    Article  CAS  Google Scholar 

  81. Fischer D, Mülhaupt R (1994) The influence of regio- and stereoirregularities on the crystallization behavior of isotactic poly(propylene)s prepared with homogeneous group IVa metallocene/methylaluminoxane Ziegler-Natta catalysts. Macromol Chem Phys 195:1433–41. https://doi.org/10.1002/macp.1994.021950426

    Article  CAS  Google Scholar 

  82. Thomann R, Wang C, Kressler J et al (1996) On the γ-phase of isotactic polypropylene. Macromolecules 29:8425. https://doi.org/10.1021/ma951885f

    Article  CAS  Google Scholar 

  83. Alamo RG, Kim MH, Galante MJ et al (1999) Structural and kinetic factors governing the formation of the γ polymorph of isotactic polypropylene. Macromolecules 32:4050. https://doi.org/10.1021/ma981849r

    Article  CAS  Google Scholar 

  84. VanderHart DL, Alamo RG, Nyden MR et al (2000) Observation of resonances associated with stereo and regio defects in the crystalline regions of isotactic polypropylene: toward a determination of morphological partitioning. Macromolecules 33:6078. https://doi.org/10.1021/ma992041p

    Article  CAS  Google Scholar 

  85. Thomann R, Semke H, Maier RD et al (2001) Influence of stereoirregularities on the formation of the γ-phase in isotactic polypropene. Polymer 42:4597. https://doi.org/10.1016/S0032-3861(00)00675-3

    Article  CAS  Google Scholar 

  86. Auriemma F, De Rosa C, Boscato T et al (2001) The oriented γ form of isotactic polypropylene. Macromolecules 34:4815. https://doi.org/10.1021/ma0100504

    Article  CAS  Google Scholar 

  87. Auriemma F, De Rosa C (2002) Crystallization of metallocene-made isotactic polypropylene: disordered modifications intermediate between the α and γ forms. Macromolecules 35:9057. https://doi.org/10.1021/ma020648r

    Article  CAS  Google Scholar 

  88. De Rosa C, Auriemma F, Circelli T et al (2002) Crystallization of the α and γ forms of isotactic polypropylene as a tool to test the degree of segregation of defects in the polymer chains. Macromolecules 35:3622. https://doi.org/10.1021/ma0116248

    Article  CAS  Google Scholar 

  89. De Rosa C, Auriemma F, Circelli T et al (2003) Stereoblock polypropylene from a metallocene catalyst with a hapto-flexible naphthyl-indenyl ligand. Macromolecules 36:3465. https://doi.org/10.1021/ma021684t

    Article  CAS  Google Scholar 

  90. De Rosa C, Auriemma F, Di Capua A et al (2004) Structure—property correlations in polypropylene from metallocene catalysts: stereodefective, regioregular isotactic polypropylene. J Am Chem Soc 126:17040. https://doi.org/10.1021/ja045684f

    Article  CAS  Google Scholar 

  91. De Rosa C, Auriemma F, Perretta C (2004) Structure and properties of elastomeric polypropylene from C2 and C2v-symmetric zirconocenes. The origin of crystallinity and elastic properties in poorly isotactic polypropylene. Macromolecules 37:6843. https://doi.org/10.1021/ma0493372

    Article  CAS  Google Scholar 

  92. De Rosa C, Auriemma F, De Lucia G et al (2005) From stiff plastic to elastic polypropylene: polymorphic transformations during plastic deformation of metallocene-made isotactic polypropylene. Polymer 46:9461. https://doi.org/10.1016/j.polymer.2005.07.028

    Article  CAS  Google Scholar 

  93. De Rosa C, Auriemma F, Paolillo M et al (2005) Crystallization behavior and mechanical properties of regiodefective, highly stereoregular isotactic polypropylene: effect of regiodefects versus stereodefects and influence of the molecular mass. Macromolecules 38:9143. https://doi.org/10.1021/ma051004x

    Article  CAS  Google Scholar 

  94. De Rosa C, Auriemma F (2006) Structural—mechanical phase diagram of isotactic polypropylene. J Am Chem Soc 128:11024. https://doi.org/10.1021/ja063464r

    Article  CAS  Google Scholar 

  95. De Rosa C, Auriemma F (2007) Stress-induced phase transitions in metallocene-made isotactic polypropylene. Lect Not Phys 714:345. https://doi.org/10.1007/3-540-47307-6_17

    Article  CAS  Google Scholar 

  96. Auriemma F, De Rosa C (2006) Stretching isotactic polypropylene: from “cross-β” to crosshatches, from γ Form to α form. Macromolecules 39:7635. https://doi.org/10.1021/ma0609127

    Article  CAS  Google Scholar 

  97. Auriemma F, De Rosa C, Corradi M (2007) Stereoblock polypropylene as a prototype example of elasticity via a flip-flop reorientation of crystals in a compliant matrix. Adv Mat 19:871. https://doi.org/10.1002/adma.200601296

    Article  CAS  Google Scholar 

  98. De Rosa C, Auriemma F, Spera C et al (2004) Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene: the role of the distribution of defects in the polymer chains. Macromolecules 37:1441. https://doi.org/10.1021/ma035295q

    Article  CAS  Google Scholar 

  99. De Rosa C, Auriemma F, Spera C (2004) Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene: the role of the chain microstructure. Macromol Symp 218:113. https://doi.org/10.1002/masy.200451412

    Article  CAS  Google Scholar 

  100. De Rosa C, Auriemma F, Spera C et al (2004) Crystallization properties of elastomeric polypropylene from alumina-supported tetraalkyl zirconium catalysts. Polymer 45:5875–5888. https://doi.org/10.1016/j.polymer.2004.06.037

    Article  CAS  Google Scholar 

  101. Lotz B, Wittmann J-C (1986) The molecular origin of lamellar branching in the α (monoclinic) form of isotactic polypropylene. J Polym Sci, Part B: Polym Phys 24:1541. https://doi.org/10.1002/polb.1986.090240712

    Article  CAS  Google Scholar 

  102. Stocker W, Maganov SN, Cantow H-J et al (1993) Contact faces of epitaxially crystallized α- and γ-phase isotactic polypropylene observed by atomic force microscopy. Macromolecules 26:5915. https://doi.org/10.1021/ma00074a013

    Article  CAS  Google Scholar 

  103. Wittmann J-C, Lotz B (1990) Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci 15:909. https://doi.org/10.1016/0079-6700(90)90025-V

    Article  CAS  Google Scholar 

  104. De Rosa C, Auriemma F, Resconi L (2005) Influence of chain microstructure on the crystallization kinetics of metallocene-made isotactic polypropylene. Macromolecules 38:10080. https://doi.org/10.1021/ma0510845

    Article  CAS  Google Scholar 

  105. Ferro DR, Brückner S, Meille SV et al (1992) Energy calculations for isotactic polypropylene: a comparison between models of the α and γ crystalline structures. Macromolecules 25:5231. https://doi.org/10.1021/ma00046a019

    Article  CAS  Google Scholar 

  106. Crissman JM (1969) Mechanical relaxation in polypropylene as a function of polymorphism, degree of lamella orientation. J Polym Sci A 2(7):389–404. https://doi.org/10.1002/pol.1969.160070210

    Article  Google Scholar 

  107. Lovinger AJ, Chua JO, Gryte CC (1977) Studies on the α- and β-forms of isotactic polypropylene by crystallization in temperature gradient. J Polym Sci Polym Phys Ed 15:641–656. https://doi.org/10.1002/pol.1977.180150405

    Article  CAS  Google Scholar 

  108. Devaux E, Chabert B (1991) Nature and origin of the transcrystalline interphase of polypropylene glass fibre composites after a shear stress. Polym Commun 32:464–468. CODEN:POCOEF, ISSN:0263-6476

    Google Scholar 

  109. Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Part B: Polym Phys Ed 34:657–670. https://doi.org/10.1002/(SICI)1099-0488(199603)34:4%3c657:AID-POLB6%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  110. Varga J, Ehrenstein GW (1996) Formation of β-modification in its late stage of crystallization. Polymer 37:5959–5963. https://doi.org/10.1016/S0032-3861(96)00565-4

    Article  CAS  Google Scholar 

  111. Morrow DR (1969) Polymorphism in isotactic polypropylene. J Macromol Sci, Phys B3:53–65. https://doi.org/10.1080/00222346908217088

    Article  Google Scholar 

  112. Varga J (1995) Crystallization, melting and supermolecular structure of isotactic polypropylene in polypropylene. In: Karger-Kocsis J (ed) Structure, blends and composites, vol 1. Chapman & Hall, London, pp 56–115. https://doi.org/10.1023/a:1025870111612

  113. Varga J (2002) β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41:1121–1171. https://doi.org/10.1081/MB-120013089

    Article  CAS  Google Scholar 

  114. Leugering HJ (1967) Einfluss der Kristallstuktur und Überstuktur auf einige Eigeschaften von Polypropylen. Makromol Chem 109:204–216. https://doi.org/10.1002/macp.1967.021090118

    Article  CAS  Google Scholar 

  115. Binsbergen FL, de Lange BGM (1968) Morphology of polypropylene crystallized from melt. Polymer 9:23–40. https://doi.org/10.1016/0032-3861(68)90006-2

    Article  CAS  Google Scholar 

  116. Shi G, Zhang J, Jin H (1986) α-Kristallines isotaktischen Polypropylen, Vervahren zu seiner Herstellung und daraus hergestellte Korper. German Patent DE 3,610,644, 10 Feb 1986

    Google Scholar 

  117. De Rosa C, Auriemma F, Tarallo O et al (2017) The “Nodular” α form of isotactic polypropylene: stiff and strong polypropylene with high deformability. Macromolecules 50:5434–5446. https://doi.org/10.1021/acs.macromol.7b00787

    Article  CAS  Google Scholar 

  118. De Rosa C, Auriemma F, Tarallo O et al (2017) Tailoring the properties of polypropylene in the polymerization reactor using polymeric nucleating agents as prepolymers on the Ziegler-Natta catalyst granule. Polymer Chem 8:655–660. https://doi.org/10.1039/C6PY01950A

    Article  Google Scholar 

  119. Shi G, Huang B, Zhang J (1984) Enthalpy of fusion and equilibrium melting point of the β-form of polypropylene. Makromol Chem Rapid Commun 5:573–578. https://doi.org/10.1002/marc.1984.030050915

    Article  CAS  Google Scholar 

  120. Ullmann W, Wendorff JH (1979) Studies on the monoclinic and hexagonal modifications of isotactic polypropylene. Prog Colloid Polym Sci 66:25–33. https://doi.org/10.1007/BFb0117332

    Article  CAS  Google Scholar 

  121. Lotz B, Fillon B, Therry A et al (1991) Low T transition in isotactic polypropylene: β to α and α to smectic. Polym Bull 25:101–105. https://doi.org/10.1007/BF00338906

    Article  CAS  Google Scholar 

  122. Lotz B, Witmann J-C (1992) Isotactic polypropylene: growth transition and crystal polymorphism. Prog Colloid Polym Sci 87:2–7. https://doi.org/10.1007/BFb0115565

    Article  Google Scholar 

  123. Fillon B, Thierry A, Wittmann J-C et al (1993) Self-nucleation and recrystallization of polymers. isotactic polypropylene, β phase: β–α conversion and β–α growth transition. J Polym Sci Polym Phys 31:1407–1427. https://doi.org/10.1002/polb.1993.090311015

    Article  CAS  Google Scholar 

  124. Lotz B (1998) Alpha and beta phases of isotactic polypropylene: a case of growth kinetics phase reentrancy in polymer crystallization. Polymer 39:4561–4567. https://doi.org/10.1016/S0032-3861

    Article  CAS  Google Scholar 

  125. Varga J, Fujiwara Y, Ille A (1990) αβ-bifurcation of growth during the spherulitic crystallization of polypropylene. Period Polytech Chem Eng 34:255–271

    CAS  Google Scholar 

  126. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557–2579. https://doi.org/10.1007/BF00540671

    Article  CAS  Google Scholar 

  127. Varga J (1982) Modification change during spherulitic growth of polypropylene. Angew Makromol Chem 104:79–87. https://doi.org/10.1002/apmc.1982.051040107

    Article  CAS  Google Scholar 

  128. Padden FJ, Keith HD (1959) Spherulitic crystallization in polypropylene. J Appl Phys 30:1479–1484. https://doi.org/10.1063/1.1713606

    Article  CAS  Google Scholar 

  129. Duswalt A, Cox WW (1970) Thermal study of β-form polypropylene. Am Chem Soc Div Org Coat 30:93–96. ISSN:0096-512X

    Google Scholar 

  130. Duswalt AA, Cox WWA (1971) Thermal study of β-form polypropylene. In: Craver CD (ed) Polymer characterization, interdisciplinary approaches. Plenum Press, New York, pp 147–155

    Chapter  Google Scholar 

  131. Varga J (1986) Melting memory effect of the β-modification of polypropylene. J Therm Anal 31:165–172. https://doi.org/10.1007/BF01913897

    Article  CAS  Google Scholar 

  132. Varga J, Garzó G, Ille A (1986) Kristallisation, Umkristallisation und Schmelzen der β-Modifikation des Polypropylenes. Angew Makromol Chem 142:171–181. https://doi.org/10.1002/apmc.1986.051420115

    Article  CAS  Google Scholar 

  133. Varga J (1989) β-modification of polypropylene and its two-component systems. J Therm Anal 35:1891–1912. https://doi.org/10.1007/978-94-011-1950-4_63

    Article  CAS  Google Scholar 

  134. Keith HD, Padden FJ Jr, Walter NM et al (1959) Evidence for a second crystal form of polypropylene. J Appl Phys 30:1485–1488. https://doi.org/10.1063/1.1734986

    Article  CAS  Google Scholar 

  135. Turner-Jones A, Cobbold AJ (1968) The β crystalline form of isotactic polypropylene. J Polym Sci Part B 6:539–546. https://doi.org/10.1002/pol.1968.110060802

    Article  CAS  Google Scholar 

  136. Miller RL (1960) Existence of near-range order in isotactic polypropylenes. Polymer 1:135. https://doi.org/10.1016/0032-3861(60)90021-5

    Article  CAS  Google Scholar 

  137. Hsu CC, Geil PH, Miyaji H et al (1986) Structure and properties of polypropylene crystallized from the glassy state. J Polym Sci Polym Phys 24:2379. https://doi.org/10.1002/polb.1986.090241018

    Article  CAS  Google Scholar 

  138. Piccarolo S, Alessi S, Brucato V et al (1993) Crystallization behavior at high cooling rates of two polypropylenes. In: Dosiere M (ed) Crystallization of polymers. Kluwer Academics, Berlin, p 475. ISSN: 0258-2023

    Google Scholar 

  139. Coccorullo I, Pantani R, Titomanlio G (2003) Crystallization kinetics and solidified structure in iPP under high cooling rates. Polymer 44:307. https://doi.org/10.1016/S0032-3861(02)00762-0

    Article  CAS  Google Scholar 

  140. Caldas V, Brown GR, Nohr RS et al (1994) The structure of the mesomorphic phase of quenched isotactic polypropylene. Polymer 35:899. https://doi.org/10.1016/0032-3861(94)90931-8

    Article  CAS  Google Scholar 

  141. Piccarolo S (1992) Morphological changes in isotactic polypropylene as a function of cooling rate. J Macromol Sci Phys B 31:501. https://doi.org/10.1080/00222349208215467

    Article  Google Scholar 

  142. Miyamoto Y, Fukao K, Yoshida T et al (2000) Structure formation of isotactic polypropylene from the glass. J Phys Soc Jpn 69:1735. https://doi.org/10.1143/JPSJ.69.1735

    Article  CAS  Google Scholar 

  143. Wang ZG, Hsaio BS, Srinivas S et al (2001) Phase transformation in quenched mesomorphic isotactic polypropylene. Polymer 42:7561. https://doi.org/10.1016/S0032-3861(01)00286-5

    Article  CAS  Google Scholar 

  144. Minami S, Tsurutani N, Miyaji H et al (2004) SAXS study on structure formation from the uniaxially oriented glass in isotactic polypropylene. Polymer 45:1429. https://doi.org/10.1016/j.polymer.2003.12.062

    Article  CAS  Google Scholar 

  145. Martorana A, Piccarolo S, Scichilone F (1997) The X-ray determination of the amounts of phases in isotactic polypropylene samples quenched from the melt at different cooling rates. Macromol Chem Phys 198:597. https://doi.org/10.1002/macp.1997.021980231

    Article  CAS  Google Scholar 

  146. Konishi T, Nishida K, Kanaya T et al (2005) Effect of isotacticity on formation of mesomorphic phase of isotactic polypropylene. Macromolecules 38:8749. https://doi.org/10.1021/ma050908f

    Article  CAS  Google Scholar 

  147. De Rosa C, Auriemma F (2012) The deformability of polymers: the role of disordered mesomorphic crystals and stress-induced phase transformations. Ang Chem Int Ed 51:1207. https://doi.org/10.1002/anie.201105289

    Article  CAS  Google Scholar 

  148. De Santis F, Adamovsky S, Titomanlio G et al (2006) scanning nanocalorimetry at high cooling rate of isotactic polypropylene. Macromolecules 39:2562. https://doi.org/10.1021/ma052525n

    Article  CAS  Google Scholar 

  149. Gradys A, Sajkiewicz P, Minakov AA et al (2005) Crystallization of polypropylene at various cooling rates. Mater Sci Eng A 413:44. https://doi.org/10.1016/j.msea.2005.08.167

    Article  CAS  Google Scholar 

  150. Wyckoff HQ (1962) X-ray and related studies of quenched, drawn, and annealed polypropylene. J Polym Sci 62:83. https://doi.org/10.1002/pol.1962.1206217307

    Article  CAS  Google Scholar 

  151. Martorana A, Piccarolo S, Sapoundjieva D (1999) SAXS/WAXS study of the annealing process in quenched samples of isotactic poly(propylene). Macromol Chem Phys 200:531. https://doi.org/10.1002/(SICI)1521-3935(19990301)200:3%3c531:AID-MACP531%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  152. Zhao J, Wang Z, Niu Y et al (2012) Phase transitions in prequenched mesomorphic isotactic polypropylene during heating and annealing processes as revealed by simultaneous synchrotron SAXS and WAXD technique. J Phys Chem B 116:147. https://doi.org/10.1021/jp210499d

    Article  CAS  Google Scholar 

  153. Ferrero A, Ferracini E, Mazzavillani A et al (2000) A new X-ray study of the quenched isotactic polypropylene transition by annealing. Macromol Sci Phys B 39:109. https://doi.org/10.1081/MB-100100375

    Article  Google Scholar 

  154. Konishi T, Nishida K, Kanaya T (2006) Crystallization of isotactic polypropylene from prequenched mesomorphic phase. Macromolecules 39:8035. https://doi.org/10.1021/ma060191b

    Article  CAS  Google Scholar 

  155. Mileva D, Androsch R, Zhuravlev E et al (2009) Temperature of melting of the mesophase of isotactic polypropylene. Macromolecules 42:7275. https://doi.org/10.1021/ma901797b

    Article  CAS  Google Scholar 

  156. Silvestre C, Cimmino S, Duraccio D et al (2007) Isothermal crystallization of isotactic poly(propylene) studied by superfast calorimetry. Macromol Rapid Commun 28:875. https://doi.org/10.1002/marc.200600844

    Article  CAS  Google Scholar 

  157. De Rosa C, Auriemma F, Di Girolamo R et al (2013) Morphology and mechanical properties of the mesomorphic form of isotactic polypropylene in stereodefective polypropylene. Macromolecules 46:5202–5214. https://doi.org/10.1021/ma400570k

    Article  CAS  Google Scholar 

  158. Zia Q, Radusch H-J, Androsch R (2007) Direct analysis of annealing of nodular crystals in isotactic polypropylene by atomic force microscopy, and its correlation with calorimetric data. Polymer 48:3504. https://doi.org/10.1016/j.polymer.2007.04.012

    Article  CAS  Google Scholar 

  159. Zia Q, Androsch R, Radusch H-J et al (2006) Morphology, reorganization and stability of mesomorphic nanocrystals in isotactic polypropylene. Polymer 47:8163. https://doi.org/10.1016/j.polymer.2006.09.038

    Article  CAS  Google Scholar 

  160. Androsch R (2008) In situ atomic force microscopy of the mesomorphic-monoclinic phase transition in isotactic polypropylene. Macromolecules 41:533. https://doi.org/10.1021/ma702334q

    Article  CAS  Google Scholar 

  161. Gezovich DM, Geil PH (1968) Morphology of quenched polypropylene. Polym Eng Sci 8:202. https://doi.org/10.1002/pen.760080305

    Article  CAS  Google Scholar 

  162. Grubb DT, Yoon DY (1986) Morphology of quenched and annealed isotactic polypropylene. Polym Commun 27:84. ISSN:0263-6476

    Google Scholar 

  163. Ogawa T, Miyami H, Asai K (1985) Nodular structure of polypropylene. J Phys Soc Jpn 54:3668. https://doi.org/10.1143/JPSJ.54.3668

    Article  CAS  Google Scholar 

  164. Zia Q, Androsch R, Radusch H-J et al (2008) Crystal morphology of rapidly cooled isotactic polypropylene: a comparative study by TEM and AFM. Polym Bull 60:791. https://doi.org/10.1007/s00289-008-0908-8

    Article  CAS  Google Scholar 

  165. Vittoria V (1989) Effect of annealing on the structure of quenched isotactic polypropylene. J Macromol Sci Phys B28:489–502. https://doi.org/10.1080/00222348908215238

    Article  CAS  Google Scholar 

  166. Zannetti R, Celotti G, Fichera A et al (1969) The structural effects of annealing time and temperature on the paracrystal-crystal transition in isotactic polypropylene. Die Makromol Chem 128:137–142. https://doi.org/10.1002/macp.1969.021280111

    Article  CAS  Google Scholar 

  167. De Rosa C, Auriemma F, Di Girolamo R et al (2014) Crystallization of the mesomorphic form and control of the molecular structure for tailoring the mechanical properties of isotactic polypropylene. J Polym Sci Part B: Polym Phys 52:677. https://doi.org/10.1002/polb.23473

    Article  CAS  Google Scholar 

  168. Ran S, Zong X, Fang D et al (2001) Structural and morphological studies of isotactic polypropylene fibers during heat/draw deformation by in-situ synchrotron SAXS/WAXD. Macromolecules 34:2569. https://doi.org/10.1021/ma0016477

    Article  CAS  Google Scholar 

  169. De Rosa C, Auriemma F, Ruiz de Ballesteros O et al. (2009) Stress-induced polymorphic transformations and mechanical properties of isotactic propylene-hexene copolymers. Cryst Growth Des 9:165. https://doi.org/10.1021/cg800102f

  170. De Rosa C, Auriemma F, Ruiz de Ballesteros O et al (2007) Tailoring the physical properties of isotactic polypropylene through incorporation of comonomers and the precise control of stereo- and regioregularity by metallocene catalysts. Chem Mater 19:5122. https://doi.org/10.1021/cm071502f

    Article  CAS  Google Scholar 

  171. Poon B, Rogunova M, Hiltner A et al (2005) Chum S.P, Galeski A., Piorkowska E., Structure and properties of homogeneous copolymers of propylene with hexene. Macromolecules 38:1232. https://doi.org/10.1021/ma048813l

  172. Natta G, Corradini P, Ganis P (1960) Chain conformation of polypropylene having a regular structure. Makromol Chem 39:238. https://doi.org/10.1002/macp.1960.020390118

    Article  CAS  Google Scholar 

  173. Natta G, Corradini P, Ganis P (1962) Prediction of the conformation of the chain in the crystalline state of tactic polymer. J Polym Sci 58:1191. https://doi.org/10.1002/pol.1962.1205816675

    Article  Google Scholar 

  174. Pirozzi B, Napolitano R (1992) Conformational analysis of the polymorphic forms of syndiotactic polypropylene in the crystalline field. Eur Polym J 28:703. https://doi.org/10.1016/0014-3057(92)90047-6

    Article  CAS  Google Scholar 

  175. Corradini P, Napolitano R, Petraccone V et al (1982) Conformational analysis of syndiotactic polymer chains in the crystalline state: polypropylene and 1,2-poly(1,3-butadiene). Macromolecules 15:1207. https://doi.org/10.1021/ma00232a053

    Article  CAS  Google Scholar 

  176. Napolitano R, Pirozzi B (1997) Analysis of modes of packing of the most stable form of syndiotactic polypropylene. Polymer 38:4847. https://doi.org/10.1016/S0032-3861(97)00007-4

    Article  CAS  Google Scholar 

  177. Lotz B, Lovinger AJ, Cais RE (1988) Crystal structure and morphology of syndiotactic polypropylene single crystals. Macromolecules 21:2375. https://doi.org/10.1021/ma00186a013

    Article  CAS  Google Scholar 

  178. Lovinger AJ, Lotz B, Davis DD (1990) Interchain packing and unit cell of syndiotactic polypropylene. Polymer 31:2253. https://doi.org/10.1016/0032-3861(90)90310-U

    Article  CAS  Google Scholar 

  179. Lovinger AJ, Davis DD, Lotz B (1991) Temperature dependence of structure and morphology of syndiotactic polypropylene and epitaxial relationships with isotactic polypropylene. Macromolecules 24:552. https://doi.org/10.1021/ma00002a

    Article  CAS  Google Scholar 

  180. Lovinger AJ, Lotz B, Davis DD et al (1993) Structure and defects in fully syndiotactic polypropylene. Macromolecules 26:3494. https://doi.org/10.1021/ma00066a006

    Article  CAS  Google Scholar 

  181. Lovinger AJ, Lotz B, Davis DD (1992) Electron- and x-ray diffraction investigation of the structure of syndiotactic polypropylene. Polym Prepr Am Chem Soc 33:270. ISSN:0032-3934

    Google Scholar 

  182. Lovinger AJ, Lotz B, Davis DD et al (1994) Morphology and thermal properties of fully syndiotactic polypropylene. Macromolecules 27:6603. https://doi.org/10.1021/ma00100a053

    Article  CAS  Google Scholar 

  183. Stocker W, Schumacher M, Graff S et al (1994) Direct observation of right and left helical hands of syndiotactic polypropylene by atomic force microscopy. Macromolecules 27:6948. https://doi.org/10.1021/ma00101a036

    Article  CAS  Google Scholar 

  184. Schumacher M, Lovinger AJ, Agarwal P et al (1994) Heteroepitaxy of syndiotactic polypropylene with polyethylene and homoepitaxy. Macromolecules 27:6956. https://doi.org/10.1021/ma00101a037

    Article  CAS  Google Scholar 

  185. Lotz B, Wittmann J-C, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979. https://doi.org/10.1016/0032-3861(96)00370-9

    Article  CAS  Google Scholar 

  186. Lovinger AJ, Lotz B (1997) Structural analysis of minimized models for syndiotactic polypropylene. J Polym Sci Polym Phys Ed 35:2523. https://doi.org/10.1002/(SICI)1099-0488(19971115)35:15%3c2523:AID-POLB14%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  187. Zhang J, Yang D, Thierry A et al (2001) Isochiral form II of syndiotactic polypropylene produced by epitaxial crystallization. Macromolecules 34:6261. https://doi.org/10.1021/ma010758i

    Article  CAS  Google Scholar 

  188. De Rosa C, Auriemma F, Corradini P (1996) Crystal structure of form I of syndiotactic polypropylene. Macromolecules 29:7452. https://doi.org/10.1021/ma9601326

    Article  Google Scholar 

  189. De Rosa C, Auriemma F, Vinti V (1997) Disordered polymorphic modifications of form I of syndiotactic polypropylene. Macromolecules 30:4137. https://doi.org/10.1021/ma961691f

    Article  Google Scholar 

  190. De Rosa C, Auriemma F, Vinti V (1998) On the form II of syndiotactic polypropylene. Macromolecules 31:7430. https://doi.org/10.1021/ma980789m

    Article  Google Scholar 

  191. De Rosa C, Auriemma F, Vinti V et al (1998) Equilibrium melting temperature of syndiotactic polypropylene. Macromolecules 31:6206. https://doi.org/10.1021/ma9805248

    Article  Google Scholar 

  192. Sozzani P, Simonutti R, Galimberti M (1993) MAS NMR characterization of syndiotactic polypropylene: crystal structure and amorphous phase conformation. Macromolecules 26:5782. https://doi.org/10.1021/ma00073a036

    Article  CAS  Google Scholar 

  193. Sozzani P, Simonutti R, Comotti A (1994) Phase structure and polymorphism of highly syndiotactic polypropylene. Magn Reson Chem 32:S45. https://doi.org/10.1002/mrc.1260321311

    Article  CAS  Google Scholar 

  194. Lacks DJ, Rutledge GC (1995) Molecular Basis for the anisotropic transverse thermal expansion of syndiotactic polypropylene. Macromolecules 28:5789. https://doi.org/10.1021/ma00121a014

    Article  CAS  Google Scholar 

  195. Palmo K, Krimm S (1996) Energetics analysis of syndiotactic polypropylene crystal structure. Macromolecules 29:8549. https://doi.org/10.1021/ma961125k

    Article  CAS  Google Scholar 

  196. Palmo K, Krimm S (2002) Energetics analysis of forms I–IV syndiotactic polypropylene crystal structures. Macromolecules 35:394. https://doi.org/10.1021/ma011230g

    Article  CAS  Google Scholar 

  197. De Rosa C, Auriemma F, Di Girolamo R et al (2010) Helical mesophase of syndiotactic polypropylene in copolymers with 1-hexene and 1-octene. Macromolecules 43:9802. https://doi.org/10.1021/ma1021709

    Article  CAS  Google Scholar 

  198. Auriemma F, De Rosa C, Corradini P (1993) Fenomeni di disordine nel polipropilene sindiotattico cristallino Rend. Fis. Acc. Lincei 4:287. https://doi.org/10.1007/BF03001190

    Article  Google Scholar 

  199. De Rosa C, Auriemma F, Fanelli E et al (2003) Structure of copolymers of syndiotactic polypropylene with ethylene. Macromolecules 36:1850. https://doi.org/10.1021/ma020981v

    Article  CAS  Google Scholar 

  200. Zambelli A, Tosi C (1974) Stereochemistry of propylene polymerization. Adv Polym Sci 15:32. https://doi.org/10.1007/3-540-06910-0_2

    Article  Google Scholar 

  201. Auriemma F, Ruiz de Ballesteros O, De Rosa C (2001) Origin of the elastic behavior of syndiotactic polypropylene. Macromolecules 34:4485. https://doi.org/10.1021/ma002021j

    Article  CAS  Google Scholar 

  202. De Rosa C, Gargiulo MC, Auriemma F et al (2002) Elastic properties and polymorphic behavior of fibers of syndiotactic polypropylene at different temperatures. Macromolecules 35:9083. https://doi.org/10.1021/ma020394+

    Article  CAS  Google Scholar 

  203. Auriemma F, De Rosa C (2003) New concepts in thermoplastic elastomers: the case of syndiotactic polypropylene, an unconventional elastomer with high crystallinity and large modulus. J Am Chem Soc 125:13143. https://doi.org/10.1021/ja036282v

    Article  CAS  Google Scholar 

  204. Auriemma F, De Rosa C (2003) Time-resolved study of the martensitic phase transition in syndiotactic polypropylene. Macromolecules 36:9396. https://doi.org/10.1021/ma0350718

    Article  CAS  Google Scholar 

  205. Rastogi S, La Camera D, van der Burgt F et al (2001) Polymorphism in syndiotactic polypropylene: thermodynamic stable regions for form i and form ii in pressure-temperature phase diagram. Macromolecules 34:7730. https://doi.org/10.1021/ma0109119

    Article  CAS  Google Scholar 

  206. Auriemma F, Born R, Spiess HW et al (1995) Solid-state 13C-NMR investigation of the disorder in crystalline syndiotactic polypropylene. Macromolecules 28:6902. https://doi.org/10.1021/ma00124a028

    Article  CAS  Google Scholar 

  207. Auriemma F, Lewis RH, Spiess HW et al (1995) Phase transition from a C-centered to a B-centered orthorhombic crystalline form of syndiotactic polypropylene. Macromol Chem Phys 196:4011. https://doi.org/10.1002/macp.1995.021961212

    Article  CAS  Google Scholar 

  208. Auriemma F, De Rosa C, Ruiz de Ballesteros O et al (1997) Kink bands in form II of syndiotactic polypropylene. Macromolecules 30:6586. https://doi.org/10.1021/ma970284g

    Article  CAS  Google Scholar 

  209. Bunn A, Cudby EA, Harris RK et al (1981) Solid-state high-resolution carbon-13 NMR spectra of polypropene J Chem Soc Chem Commun 15. https://doi.org/10.1039/c39810000015

  210. Auriemma F, De Rosa C, Esposito S et al (2007) Polymorphic superelasticity in semicrystalline polymers. Ang Chem Inter Ed 46:4325. https://doi.org/10.1002/anie.200605021

    Article  CAS  Google Scholar 

  211. Nakaoki T, Ohira Y, Hayashi H et al (1998) Spontaneous crystallization of the planar zigzag form of syndiotactic polypropylene at 0 °C. Macromolecules 31:2705. https://doi.org/10.1021/ma980032v

    Article  CAS  Google Scholar 

  212. Ohira Y, Horii F, Nakaoki T (2000) Spontaneous crystallization process of the planar zigzag form at 0 °C from the melt for syndiotactic polypropylene. Macromolecules 33:1801. https://doi.org/10.1021/ma991476+

    Article  CAS  Google Scholar 

  213. Nakaoki T, Yamanaka T, Ohira Y et al (2000) Dynamic FT-IR analysis of the crystallization to the planar zigzag form for syndiotactic polypropylene. Macromolecules 33:2718. https://doi.org/10.1021/ma9915428

    Article  CAS  Google Scholar 

  214. Ohira Y, Horii F, Nakaoki T (2000) Crystal transformation behavior and structural changes of the planar zigzag form for syndiotactic polypropylene. Macromolecules 33:5566. https://doi.org/10.1021/ma000357n

    Article  CAS  Google Scholar 

  215. Ohira Y, Horii F, Nakaoki T (2001) Conformational changes of the noncrystalline chains for syndiotactic polypropylene as a function of temperature: correlations with the crystallizations of form i and form III. Macromolecules 34:1655. https://doi.org/10.1021/ma0014564

    Article  CAS  Google Scholar 

  216. Nakaoki T, Ohira Y, Horii F (2001) Investigation of the crystallization process of syndiotactic polypropylene quenched at 0 °C from the melt or concentrated solutions by solid-state 13C NMR spectroscopy. Polymer 42:4555. https://doi.org/10.1016/S0032-3861(00)00840-5

    Article  CAS  Google Scholar 

  217. Vittoria V, Guadagno L, Comotti A et al (2000) Mesomorphic form of syndiotactic polypropylene. Macromolecules 33:6200. https://doi.org/10.1021/ma000373k

    Article  CAS  Google Scholar 

  218. De Rosa C, Auriemma F, Ruiz de Ballesteros O (2001) Influence of the stereoregularity on the crystallization of the trans planar mesomorphic form of syndiotactic polypropylene. Polymer 42:9729. https://doi.org/10.1016/S0032-3861(01)00487-6

    Article  Google Scholar 

  219. De Rosa C, Ruiz de Ballesteros O, Santoro M et al (2003) Influence of the quenching temperature on the crystallization of the trans-planar mesomorphic form of syndiotactic polypropylene. Polymer 44:6267. https://doi.org/10.1016/S0032-3861(03)00569-X

    Article  CAS  Google Scholar 

  220. De Rosa C, Ruiz de Ballesteros O, Santoro M et al (2004) Structural transitions of the trans-planar mesomorphic form and crystalline form III of syndiotactic polypropylene in stretched and stress-relaxed fibers: a memory effect. Macromolecules 37:1816. https://doi.org/10.1021/ma035104j

    Article  CAS  Google Scholar 

  221. De Rosa C, Ruiz de Ballesteros O, Auriemma F (2004) Mechanical properties of helical and mesomorphic forms of syndiotactic polypropylene at different temperatures. Macromolecules 37:7724. https://doi.org/10.1021/ma049214h

    Article  CAS  Google Scholar 

  222. Sozzani P, Galimberti M, Balbontin G (1992) Syndiotactic polypropylene after drawing: the effect of stretching polymer chains on magic angle spinning NMR. Makromol Chem Rapid Commun 13:305. https://doi.org/10.1002/marc.1992.030130602

    Article  CAS  Google Scholar 

  223. Suter UW, Flory PJ (1975) Conformational energy and configurational statistics of polypropylene. Macromolecules 8:765. https://doi.org/10.1021/ma60048a018

    Article  CAS  Google Scholar 

  224. Guadagno L, D’Aniello C et al (2002) Elasticity of the oriented mesomorphic form of syndiotactic polypropylene. Macromolecules 35:3921. https://doi.org/10.1021/ma011825b

    Article  CAS  Google Scholar 

  225. De Rosa C, Auriemma F, Ruiz de Ballesteros O et al (2003) Synthesis and characterization of high-molecular-weight syndiotactic amorphous polypropylene. J Am Chem Soc 125:10913. https://doi.org/10.1021/ja035911y

    Article  CAS  Google Scholar 

  226. De Rosa C, Auriemma F, Ruiz de Ballesteros O (2006) The role of crystals in the elasticity of semicrystalline thermoplastic elastomers. Chem Mater 18:3523. https://doi.org/10.1021/cm060398j

    Article  CAS  Google Scholar 

  227. De Rosa C, Auriemma F, Ruiz de Ballesteros O (2003) Mechanical properties and elastic behavior of high-molecular-weight poorly syndiotactic polypropylene. Macromolecules 36:7607. https://doi.org/10.1021/ma034829k

    Article  CAS  Google Scholar 

  228. De Rosa C, Auriemma F, Ruiz de Ballesteros O (2004) Structure and polymorphic behavior of high molecular weight poorly syndiotactic polypropylene. Macromolecules 37:1422. https://doi.org/10.1021/ma034805d

    Article  CAS  Google Scholar 

  229. Grasruck M, Strobl G (2003) Crystallization of s-polypropylene from the glassy state: indications for a multistage process. Macromolecules 36:86. https://doi.org/10.1021/ma021074t

    Article  CAS  Google Scholar 

  230. Strobl G (2009) Colloquium: laws controlling crystallization and melting in bulk polymers. Rev Mod Phys 81:1287. https://doi.org/10.1103/RevModPhys.81.1287

    Article  CAS  Google Scholar 

  231. Strobl G (2007) A multiphase model describing polymer crystallization and melting. Lect Notes Phys 714:481. https://doi.org/10.1007/3-540-47307-6_23

    Article  CAS  Google Scholar 

  232. Strobl G (2006) Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31:398. https://doi.org/10.1016/j.progpolymsci.2006.01.001

    Article  CAS  Google Scholar 

  233. De Rosa C, Auriemma F (2005) From entropic to enthalpic elasticity: novel thermoplastic elastomers from syndiotactic propylene-ethylene copolymers. Adv Mat 17:1503. https://doi.org/10.1002/adma.200401968

    Article  CAS  Google Scholar 

  234. De Rosa C, Auriemma F (2006) Structure of syndiotactic propylene–ethylene copolymers: effect of the presence of ethylene units on the structural transitions during plastic deformation and annealing of syndiotactic polypropylene. Polymer 47:2179. https://doi.org/10.1016/j.polymer.2006.01.055

    Article  CAS  Google Scholar 

  235. De Rosa C, Auriemma F (2006) Mechanical properties of syndiotactic propylene–ethylene copolymers. Macromolecules 39:249. https://doi.org/10.1021/ma051228f

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finizia Auriemma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auriemma, F., De Rosa, C., Malafronte, A., Scoti, M., Di Girolamo, R. (2019). Solid State Polymorphism of Isotactic and Syndiotactic Polypropylene. In: Karger-Kocsis, J., Bárány, T. (eds) Polypropylene Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-12903-3_2

Download citation

Publish with us

Policies and ethics