Author	Family name	Blicharska
	Particle	
	Given name	Natalia
	Suffix	
		Natural Products Drug Discovery Research Group, Strathclyde
	Division	Institute of Pharmacy and Biomedical
		Sciences
	Organization	University of Strathclyde
	Address	161 Cathedral Street, Glasgow G4 0RE, UK
	Email	n.blicharska@hotmail.com
Corresponding Author	Family name	Seidel
	Particle	
	Given name	Veronique
	Suffix	
		Natural Products Drug Discovery Research Group, Strathclyde
	Division	Institute of Pharmacy and Biomedical
		Sciences
	Organization	University of Strathclyde
	Address	161 Cathedral Street, Glasgow G4 0RE, UK
	Email	veronique.seidel@strath.ac.uk
Abstract	Natural remedies have	ve for centuries played a significant role in traditional medicine and
	continue to be a u	nique reservoir of new chemical entities in drug discovery and
	development researc	ch. Propolis is a natural substance, collected by bees mainly from
	plant resins, that has	a long history of use as a folk remedy to treat a variety of ailments.
	The highly variable	phytochemical composition of propolis is attributed to differences
	in plant diversity wi	thin the geographic regions from which it is collected. Despite the
	fact that the last five	e decades have seen significant advancements in the understanding
	of the chemistry ar	nd biological activity of propolis, a search of the literature has

Chapter Title: Chemical Diversity and Biological Activity of African Propolis

contribution is to report on the current body of knowledge of African propolis, with a

revealed that studies on African propolis to date are rather limited. The aim of this

	particular emphasis on its chemistry and biological activity. As Africa is a continent
	with a rich flora and a vast diversity of ecosystems, there is a wide range of propolis
	phytochemicals that may be exploited in the development of new drug scaffolds.
Keywords	Africa - Propolis - Biological activity - Chemical diversity - Phytochemicals
3	
4	

5		mical Diversity and Biological Activity of
6	Afri	can Propolis
7 8 9 10 11	Natalia	a Blicharska and Veronique Seidel
12 13	Conte	ents
14 15	1	Introduction
16	2	Chemical Diversity of Phytochemicals Isolated from African
17		Propolis
18	3	Biological Activity of African Propolis Extracts and
19		Constituents
20	3.1	Antimicrobial Activity
21	3.1.1	Antibacterial Activity
22	3.1.2	Antifungal Activity
23	3.2	Antiparasitic and Antiprotozoal Activity
24	3.3	Anti-inflammatory Activity
25	3.4	Anti-oxidant Activity
26	3.5	Organ-protective Activity
27	3.6	Antiviral and ImmunomodulatoryActivity
28	3.7	Cytotoxic and Anticancer Activity
29	3.8	Other miscellaneous biological effects
30	4	Conclusions and Perspectives
31	Refer	ences

33 **1** Introduction

34

32

Natural remedies, sourced from plants, microbes, and animal products, 35 have for centuries played a significant role in traditional medicine and 36 37 continue to represent a unique reservoir of new chemical entities for drug 38 discovery research. Between 1981 and 2014, 50% of all small moleculeapproved drugs released on the market were either directly derived from a 39 natural product or synthetic compounds based on a natural product 40 pharmacophore [1]. 41 Propolis, also known as bee glue, is a natural substance produced by 42 43 honeybees from plant secretions such as resins and sticky exudates on leaf buds and plant wounds (Plate 1). The word propolis is derived from Greek, 44 in which $\pi \rho o$ (pro) means "at the entrance to" and $\pi \delta \lambda \iota \varsigma$ (polis) means 45 "community" or "city". Bees use propolis as a construction and repair 46 material to seal gaps, smooth out internal walls in their hives and as an 47 antiseptic coating to generally protect the hive from external contamination 48 [2-4]. 49 50

51

>Plate 1<

53	The chemical composition of propolis can be highly variable, and
54	this is attributed to differences in plant sources, governed by factors such as
55	climatic conditions and seasons, within the geographical locations from
56	where it is collected [4–6]. Propolis has a long history of use as a natural
57	remedy for a variety of conditions and there has been in recent years a
58	renewed interest in re-investigating the potential of propolis for drug
59	development with some significant advancements in the understanding of
60	its chemistry and biological activity [7–11]. The purpose of this
61	contribution is to report more specifically on the current body of
62	knowledge on the chemistry and biological activity of African propolis.
63	
64	
65	2 Chemical Diversity of Phytochemicals Isolated
66	from African Propolis
67	
68	Propolis is a complex mixture composed of resins, wax, fatty acids,
69	essential oils, pollen, sugars, enzymes, minerals, and microelements [11].
70	Over 500 phytochemicals have been collectively identified in propolis
71	collected from around the world [10]. It is well understood that the

72 phytochemical composition (and subsequent biological activity) of propolis

73 is highly variable and largely depends on the available flora in different

74 locations and season of collection [6].

75	Indeed, propolis is commonly categorized into distinct
76	chemotypes according to its botanical origin. For example, samples
77	collected from temperate regions tend to possess phytochemicals that are
78	characteristic of poplar bud phenolics due to the main source of propolis in
79	such regions being poplar trees. Thus, "poplar-type" propolis is rich in
80	flavonoids, cinnamic acids and esters, phenolic acids and esters, and other
81	aromatic acids [12]. On the other hand, bees collecting propolis from
82	tropical regions have a wider array of plant sources at their disposal, and
83	propolis from tropical regions is characterised by the presence of other
84	types of phytochemicals such as terpenoids, lignans, stilbenes,
85	benzophenones and phenolic lipids [13–17].
86	Standard hyphenated techniques (e.g. HPLC-DAD, GC-MS, LC-
86 87	Standard hyphenated techniques (e.g. HPLC-DAD, GC-MS, LC-MS, and LC-MS-MS) have been largely employed to chemically profile
87	MS, and LC-MS-MS) have been largely employed to chemically profile
87 88	MS, and LC-MS-MS) have been largely employed to chemically profile propolis samples [18–20]. However, it has to be said that in some cases the
87 88 89	MS, and LC-MS-MS) have been largely employed to chemically profile propolis samples [18–20]. However, it has to be said that in some cases the true identity of specific phytochemicals could not be conclusively
87 88 89 90	MS, and LC-MS-MS) have been largely employed to chemically profile propolis samples [18–20]. However, it has to be said that in some cases the true identity of specific phytochemicals could not be conclusively confirmed using the aforementioned techniques alone [21].
87 88 89 90 91	MS, and LC-MS-MS) have been largely employed to chemically profile propolis samples [18–20]. However, it has to be said that in some cases the true identity of specific phytochemicals could not be conclusively confirmed using the aforementioned techniques alone [21]. For that reason, we decided to focus our literature search for this
87 88 89 90 91 92	MS, and LC-MS-MS) have been largely employed to chemically profile propolis samples [18–20]. However, it has to be said that in some cases the true identity of specific phytochemicals could not be conclusively confirmed using the aforementioned techniques alone [21]. For that reason, we decided to focus our literature search for this review solely on phytochemicals from African propolis that have been
 87 88 89 90 91 92 93 	MS, and LC-MS-MS) have been largely employed to chemically profile propolis samples [18–20]. However, it has to be said that in some cases the true identity of specific phytochemicals could not be conclusively confirmed using the aforementioned techniques alone [21]. For that reason, we decided to focus our literature search for this review solely on phytochemicals from African propolis that have been isolated through the use of various preparative chromatography techniques

97	diverse phytochemicals were grouped into five main chemical classes
98	including some phenylpropanoids, flavonoids, terpenoids, phenolic lipids,
99	and a range of miscellaneous compounds (Figs. 1–8, Tables 1–5) [22–36].
100	
101	>Figs. 1–8 <
102	>Tables 1–5<
103	
104	
105	
106	3 Biological Activity of African Propolis Extracts
107	and Constituents
108	
109	Extracts of African propolis have been investigated for a range of
110	biological activities including for their antimicrobial, antiparasitic/anti-
111	protozoal, antiviral, anti-oxidant, anti-inflammatory, organ-protective,
112	immunomodulatory, and anticancer properties. Some interesting biological
113	effects have also been reported for specific phytochemicals present in
114	African propolis (Table 6) [37–132].
115	
116	>Table 6<
117	
118	

119 3.1 Antimicrobial Activity

120

121 3.1.1 Antibacterial Activity

123	The current development of antibiotic-resistance among bacterial
124	pathogens is a global health threat that urgently requires the development
125	of new drugs to fight off infections [133]. Many studies have investigated
126	the antibacterial potential of propolis, but it is important to highlight at this
127	point that the use of inconsistent assay methodologies and extraction
128	techniques, and the screening of chemically non-standardized samples
129	makes it difficult to compare the available data [39, 134, 135].
130	It has been noted, in agreement with previous observations [136],
131	that extracts of African propolis showed potent activity against Gram-
132	positive bacteria such as Staphylococcus aureus, Staphylococcus
133	epidermidis, Streptococcus pyogenes, Streptococcus anginosus,
134	Enterococcus faecalis, Bacillus subtilis, Bacillus cereus, and beta-
135	hemolytic streptococci [13, 17, 25, 51, 134, 135, 137, 138] and rather weak
136	activity against Gram-negative pathogens like Escherichia coli,
137	Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae,
138	Enterobacter cloacae [13, 17, 25, 32, 39, 51, 134, 135, 137], and non- and
139	alpha-hemolytic streptococci [25].

140	Interestingly, Egyptian propolis has been found to inhibit the
141	growth of drug-resistant strains of E. coli and S. aureus [139]. Studies have
142	also reported the ability for African propolis to impair bacterial biofilm
143	formation with Tunisian propolis displaying direct antibiofilm activity on a
144	range of oral pathogens including a range of Enterococcus, Gemella, and
145	Streptococcus spp. [138]. When applied to nanoparticle-treated catheters,
146	Moroccan propolis showed a reduced adherence of methicillin-resistant
147	Staphylococcus aureus (MRSA) strains [140].
148	Few studies have endeavored to identify the phytochemicals
149	responsible for the observed antibacterial effect of African propolis or to
150	unravel the mechanism of action by which these compounds exert their
151	biological effects. However, it has been noted that the presence of
152	flavonoids appears to confer some antibacterial activity to African propolis
153	[25, 26, 141]. In particular, the observation that galangin (present in
154	Algerian and Egyptian propolis) causes damage to bacterial cytoplasmic
155	membranes [54], may explain the observed antibacterial effect of this type
156	of propolis.
157	
158	

159 3.1.2 Antifungal Activity

161	African propolis has demonstrated variable activity against fungal
162	pathogens including Aspergillus spp [142–144], Candida spp. [17],
163	Cryptococcus neoformans [51], Colletotrichum, and Fusarium spp. [143].
164	Studies investigating the antifungal effect of African propolis
165	against Candida albicans have afforded mixed results. Good activity
166	against C. albicans and C. neoformans has been reported for South African
167	propolis [51]. For samples of Egyptian origin, the activity has been
168	reported to be similar to that of ketoconazole and clotrimazole [134]. On
169	the other hand, neither the extracts nor any of the phytochemicals isolated
170	from Kenyan propolis have exhibited activity against C. albicans [13].
171	These results are likely to be explained by the different chemical
172	compositions between South African, Kenyan, and Egyptian propolis. The
173	latter has also been reported to inhibit the growth of Aspergillus spp.
174	involved in the production of aflatoxins in foodstuffs [142, 144] and has
175	showed promising antibiofilm activity against Candida spp., including
176	drug-resistant strains, which is of particular potential interest in dental care
177	[139, 145].
178	

3.2 Antiparasitic and Antiprotozoal Activity

182 The global challenge posed by the rise in drug-resistance also applies to diseases caused by parasites, including protozoa [146]. Nigerian and 183 Libyan propolis extracts have demonstrated activity against *Trypanosoma* 184 brucei brucei that was greater than that obtained for individually isolated 185 phytochemicals, suggesting the presence of a synergistic effect between 186 187 compounds [21, 34, 36]. Libyan propolis has also revealed varying degrees of activity against Leishmania donovani, Plasmodium falciparum, and 188 189 Crithidia fasciculata [21] and the antitrypanosomal activity of Nigerian 190 propolis has been observed against two multi-drug resistant strains. (3S)vestitol (54), 6-prenylnaringenin (36), 8-prenylnaringenin (37), α -amyrin 191 (87) and gerontoxanthone H (143) were identified as being responsible for 192 this antiprotozoal effect [29, 34]. 193 194 Cameroonian and Ghanaian propolis have shown activity against T. brucei brucei, with the greatest effect obtained for the deperoxidized 195 196 derivative of plukenetione C (131) [35]. Egyptian propolis has 197 demonstrated activity against *Fasciola gigantica* [141, 147] and Cryptosporidium spp. [148] and its combined administration with the 198 199 antiparasitic drug praziquantel significantly lowered the burden of Schistosoma mansoni in infected mice [149]. 200 201

202

203 3.3 Anti-inflammatory Activity

Inflammation is an important physiological response to harmful stimuli,
and one that is necessary for tissue repair. Chronic inflammation has been
implicated in the pathogenesis of a range of diseases including,
neurodegeneration [150], cancer [151], cardiovascular diseases [152], and
asthma [153].

The anti-inflammatory effect of Egyptian propolis has been 210 211 reported in asthmatic mice and attributed to the presence of flavonoids and 212 phenolics [154]. The selective targeting of phosphodiesterase type-4 (PDE4) is a strategy pursued in the search for novel treatments for 213 respiratory diseases associated with inflammation such as asthma [155] and 214 3β -cycloartenol-26-oic acid (74), isolated from Egyptian propolis, has been 215 216 shown to strongly inhibit the activity of this enzyme. The flavonoids chrysin (20) and pinostrobin (42) also reduced PDE4 activity [27]. 217 218 Quercetin (17) and galangin (22) have been identified as 219 responsible for the anti-inflammatory activity of South African propolis [41]. Caffeic acid phenethyl ester (CAPE) (7), present in Algerian propolis, 220 221 has exerted anti-allergic activity via a reduction in the release of inflammatory mediators such as histamine and leukotrienes [42]. 222 223 224

225 3.4 Anti-oxidant Activity

227	Oxidative damage to biomolecules, such as DNA, RNA, proteins, enzymes,
228	and lipids, is attributed to an imbalance in the formation and elimination of
229	reactive oxygen (ROS) or nitrogen (RNS) species. This imbalance, and
230	subsequent damage to biomolecules, plays a role in many conditions
231	including cancer [156], neurodegeneration [157], diabetes, and
232	cardiovascular diseases [158, 159]. African propolis possesses varying
233	degrees of anti-oxidant capabilities depending on the presence of varying
234	amounts of anti-oxidant compounds.
235	It has been observed that propolis extracts rich in polyphenols
236	(e.g. flavonoids and phenolic acids) exhibit the strongest anti-oxidant
237	activity [15, 38, 160–162]. This could be explained through mechanisms
238	such as the direct scavenging of ROS, the chelation of metal ions involved
239	in free radical formation and the inhibition of the activity of enzymes
240	producing ROS [163].
241	Chrysin (20), tectochrysin (21), pinostrobin (42), 3-β-cycloartenol
242	(67), 3β -cycloartenol-26-oic acid (74), 3α -cycloartenol-26-oic acid (75)
243	and β -amyrin acetate (84), all isolated from Egyptian propolis, have shown
244	radical-scavenging activity as well as xanthine oxidase inhibitory activity
245	[27].
246	Mangiferonic acid (71), methyl- 3β ,27-dihydroxycycloart-24-en-
247	26-oate (77), $\beta\beta$ -hydroxylanostan-9,24-dien-21-oic acid (93) and 1'-O-

eicosanyl glycerol (130), isolated from Cameroonian propolis, showed
radical-scavenging activity that was higher than that of their corresponding
crude extracts [33].

251

252

253 **3.5** Organ-protective Activity

254

The presence of anti-oxidant compounds, that help counteract cell damage, 255 has often been attributed to the observed protective activity of propolis 256 against a range of organs [164, 165]. When administered prior to the 257 anticancer drug doxorubicin, Algerian propolis has been found to induce 258 259 cardio-, nephro-, and hepatoprotective effects [166–168]. 260 Egyptian propolis can attenuate the testicular toxicity of the anticancer drug doxorubicin [169]. It has also been reported that it can 261 protect against ovarian toxicity following exposure to the pesticide 262 methoxychlor [170] and limit cytotoxicity (on reproductive organs and the 263 264 liver) and genotoxicity (chromosomal aberrations in bone marrow cells) induced by the anticancer drug cisplatin [171]. Egyptian propolis also 265 protects against aflatoxin B1-induced hepatotoxicity [172]. 266 267 Moroccan propolis showed a protective effect against ethylene glycol-induced hepatotoxicity and nephrotoxicity [173]. Tunisian propolis 268 can limit nephrotoxicity following exposure to heavy metals [174] and 269

270 Nigerian propolis has hepatoprotective and pancreatoprotective properties271 [175].

Pinocembrin (38), present in Egyptian, Nigerian and Algerian
propolis, when administered as a prophylactic long-term treatment to
animals with induced cerebral ischemia reperfusion, had neuroprotective
activity [76].

- 276
- 277

278 **3.6** Antiviral and Immunomodulatory Activity

279

The antiviral effect of African propolis has been poorly investigated.
African propolis extracts have only been tested against the Infectious
Bursal Disease, the Reovirus, and the Newcastle Disease viruses. Samples
showed a reduction in infectivity mean viral titers to varying degrees, with
Egyptian propolis exhibiting the highest activity against all viruses [27, 39,
176–178].

Studies investigating the immunomodulatory properties of African propolis are also limited. Egyptian propolis has been shown to strengthen the defense system of the Nile tilapia fish (*Oreochromis niloticus*) [179] and protect rats, through immunostimulation, from the symptomatic manifestations associated with *S. aureus* and *Pasteurella multocida* infections [180–182]. In a study investigating the effect of Egyptian propolis on cutaneous warts, it was demonstrated that treated individuals showed no recurrence of plane and common warts. This was explained partly due to the antiviral and immunomodulatory effects of this type of propolis [183].

297

298 **3.7** Cytotoxic and Anticancer Activity

299

Cancer is a major cause of global morbidity and premature mortality and its
burden is expected to grow over the coming years [184]. Tunisian propolis
has demonstrated potent dose-dependent cytotoxicity against a range of
cancer cell lines [138].

Algerian propolis can synergize the antitumor effect of 304 doxorubicin on human pancreatic cancer cells by blocking efflux pump 305 activity, inducing cell cycle arrest and promoting apoptosis [185]. When 306 Algerian propolis was administered to mice with melanoma, a reduction in 307 melanoma tumor growth and increase survival was observed. A 308 309 prophylactic treatment with Algerian propolis also reduced tumor growth, 310 but with no effect on life prolongation [55, 56]. Egyptian propolis, given alone or in combination with 311 doxorubicin, has shown anti-proliferative and apoptotic effects against PC3 312

cancer cells that were greater than doxorubicin alone [186]. Mice treated

314	with Egyptian propolis prior to being injected with Ehrlich ascites
315	carcinoma (EAC) cells have been found to live longer than a control group
316	that received no propolis. These findings were attributed to multiple
317	mechanisms of action, including the inhibition of tumor proliferation,
318	induction of apoptosis and immunostimulation. In particular, it has been
319	reported that the administration of propolis, prior to inoculation of EAC
320	cells, arrested the cells in the S-phase and prevented further proliferation.
321	Egyptian propolis has also been also found to induce the sub-G1 apoptosis
322	process in cancerous cells, resulting in tumor reduction [187, 188].
323	Phenethyl-(<i>E</i>)-caffeate (CAPE) (7), present in Algerian propolis,
324	significantly increased the antiproliferative and cytotoxic effects of
325	docetaxel and paclitaxel in various prostate cancer cell lines through
326	modulation of the estrogen receptor ER- β [43].
327	
328	
328 329	3.8 Other miscellaneous biological effects
	3.8 Other miscellaneous biological effects

African propolis have been investigated for extracts of Algerian propolis revealing potent inhibition of stromelysin-1 (MMP-3), an enzyme involved in the proteolytic degradation of collagen and elastin fibers. Caffeic acid (1), chicoric acid (14), and chicoric acid methyl ester (15), present in Algerian propolis, were identified as the phytochemicals responsible for
this effect. Algerian propolis can also inhibit human plasmin enzymes
involved in the pathway leading from pro-MMP-3 to the active MMP-3
enzyme [23].

Moroccan propolis when administered to rats with *Capparis spinosa* honey can trigger a diuretic effect [162] and has the potential to treat and prevent kidney stones, crystaluria, and proteinuria [173]. It has also been reported that Moroccan propolis can inhibit glucosidase and amylase enzymes [189].

Cameroonian propolis has been found to exert estrogenic effects and can help alleviate hot flushes in rats [190]. Nigerian propolis has displayed anti-hyperglycemic and hypocholesterolaemic effects by decreasing blood glucose, glycated hemoglobin (HbA1c), and very lowdensity lipoprotein (VLDL) levels and elevating high-density lipoprotein (HDL) levels in diabetic rats [191].

351

352

353 4 Conclusion and Perspectives

354

The use of natural products in the development of new pharmaceuticals has proven to be a well-founded and viable drug discovery strategy so far [1]. The African continent is characterised by a wide range of geographical regions and a rich diversity of ecosystems [192] where a range of different plant species can be used by bees to produce propolis and subsequently exploited by scientists to afford new potential drug templates.

To date, we found that propolis from only nine African countries 361 362 (of a total of 54) has been investigated for its biological activity and/or phytochemical constituents. The samples investigated have yielded a high 363 diversity of compounds and exhibited a range of biological properties, 364 365 including antimicrobial, antiparasitic, anti-inflammatory, anti-oxidant, organ-protective, antiviral, immunomodulatory, anticancer, and other 366 367 miscellaneous effects. In many cases however, little is known about whether the aforementioned effects depend upon the presence of some 368 369 specific phytochemical(s) or a potentiation between different compounds that may act synergistically. 370

371 Much of what is known about the biological activity of African 372 propolis relies on studies testing crude or semi-fractionated extracts that have been poorly chemically-standardized. The lack of quantification (i.e. 373 374 determination of the nature and relative abundance of phytochemicals in a sample) also prevents the results from different studies to be compared in a 375 meaningful way. Another issue which has limited the progression of 376 scientific knowledge on African propolis is the use of different assay 377 378 methodologies to screen samples for bioactivity.

379	This, however, should not discourage further research on this topic
380	because the limited studies to date have already revealed that African
381	propolis has a tremendous potential for providing diverse biologically-
382	active chemicals that can serve as templates for the development of new
383	drugs leads. This includes 7-O-dialkylaminoalkyl pectolinarigenines, like
384	146, a synthetic derivative of pectolinarigenin (147) (Fig. 9) that has strong
385	anti-proliferative activity against human lung carcinoma COR-123 and
386	A549 cancer cell lines [60], and nymphaeol B (148) derivatives which
387	have, so far, showed greater activity against PC-3 prostate cancer cells than
388	5-fluorouracil [193].
389	
390	
390	>Fig. 9<
390 391	>F1g. 9<
	>Fig. 9< Research on African propolis must be expanded to encompass
391	
391 392	Research on African propolis must be expanded to encompass
391 392 393	Research on African propolis must be expanded to encompass propolis samples from many different countries and geographical regions in
391392393394	Research on African propolis must be expanded to encompass propolis samples from many different countries and geographical regions in Africa. This will provide a more complete picture of the diversity of
 391 392 393 394 395 	Research on African propolis must be expanded to encompass propolis samples from many different countries and geographical regions in Africa. This will provide a more complete picture of the diversity of propolis phytochemicals available for potential drug design and
 391 392 393 394 395 396 	Research on African propolis must be expanded to encompass propolis samples from many different countries and geographical regions in Africa. This will provide a more complete picture of the diversity of propolis phytochemicals available for potential drug design and development. Further research should also aim to standardize screening
 391 392 393 394 395 396 397 	Research on African propolis must be expanded to encompass propolis samples from many different countries and geographical regions in Africa. This will provide a more complete picture of the diversity of propolis phytochemicals available for potential drug design and development. Further research should also aim to standardize screening methods to ensure consistency in methodologies. Altogether, this will allow

- 401 them to identify any bioactive compounds. Determining which
- 402 phytochemicals are biologically-active as well as unraveling their
- 403 molecular targets will help to determine the mechanisms through which
- 404 propolis achieves its biological effects. We believe that this review
- 405 provides a starting point upon which further research investigating, yet
- 406 unexplored, African propolis samples for the presence of new biologically-
- 407 active chemical entities may be based.
- 408
- 409
- 410

411 **References**

- 412
- 413 1. Newman DJ, Cragg GM (2016) Natural products as sources of new
- 414 drugs from 1981 to 2014. J Nat Prod 79:629

415

416 2. Marcucci M (1995) Propolis: chemical composition, biological

- 417 properties and therapeutic activity. Apidologie 26:83
- 418
- 419 3. Bankova VS, de Castro SL, Marcucci MC (2000) Propolis: recent
- 420 advances in chemistry and plant origin. Apidologie 31:3
- 421

422	4. Bankova V (2005a) Chemical diversity of propolis and the problem of
423	standardization. J Ethnopharmacol 100:114
424	
425	5. Sforcin JM, Bankova V (2011) Propolis: is there a potential for the
426	development of new drugs. J Ethnopharmacol 133:253
427	
428	6. Bueno-Silva B, Marsola A, Ikegaki M, Alencar SM, Rosalen PL (2016)
429	The effect of seasons on Brazilian red propolis and its botanical source:
430	chemical composition and antibacterial activity. Nat Prod Res 31:1318
431	
432	7. Burdock GA (1998) Review of the biological properties and toxicity of
433	bee propolis (propolis). Food Chem Toxicol 36:347
434	
435	8. Castaldo S, Capasso F (2002) Propolis, an old remedy used in modern
436	medicine. Fitoterapia 73:S1
437	
438	9. Wagh VD (2013) Propolis: a wonder bees product and its
439	pharmacological potentials. Adv Pharmacol Sci 2013:308249
440	
441	10. Huang S, Zhang CP, Wang K, Li G, Hu FL (2014) Recent advances in
442	the chemical composition of propolis. Molecules 19:19610
443	

444	11. Silva-Carvalho R, Baltazar F, Almeida-Aguiar C (2015) Propolis: A
445	Complex Natural Product with a Plethora of Biological Activities That Can
446	Be Explored for Drug Development. Evid Based Complement Alternat
447	Med 2015:206439
448	
449	12. Bankova V (2005b) Recent trends and important developments in
450	propolis research. Evid Based Complement Alternat Med 2:29
451	
452	13. Petrova A, Popova M, Kuzmanova C, Tsvetkova I, Naydenski H, Muli
453	E, Bankova V (2010) New biologically active compounds from Kenyan
454	propolis. Fitoterapia 81:509
455	
456	14. de Castro Ishidaa VF, Negri G, Salatino A, Bandeira MFCL (2011) A
457	new type of Brazilian propolis: Prenylated benzophenones in propolis from
458	Amazon and effects against cariogenic bacteria. Food Chem 125:966
459	
460	15. Piccinelli AL, Mencherini T, Celano R, Mouhoubi Z, Tamendjari A,
461	Aquino RP, Rastrelli L (2013) Chemical composition and antioxidant
462	activity of Algerian propolis. J Agric Food Chem 61:5080
463	

464	16. Kard	lar MN, Zl	hang T,	Coxon	GD,	Watson	DG,	Fearnl	ey J,	Seidel	V
-----	----------	------------	---------	-------	-----	--------	-----	--------	-------	--------	---

- 465 (2014) Characterisation of triterpenes and new phenolic lipids in
- 466 Cameroonian propolis. Phytochemistry 106:156
- 467
- 468 17. Papachroni D, Graikou K, Kosalec I, Damianakos H, Ingram V, Chinou
- 469 I (2015) Phytochemical analysis and biological evaluation of selected
- 470 African propolis samples from Cameroon and Congo. Nat Prod Commun
- 471 10:67
- 472

473 18. Marquez Hernandez I, Cuesta-Rubio O, Campo Fernandez M, Rosado

474 Perez A, Montes de Oca Porto R, Piccinelli AL, Rastrelli L (2010) Studies

475 on the constituents of yellow Cuban propolis: GC–MS determination of

triterpenoids and flavonoids. J Agric Food Chem 58:4725

477

478 19. Sun YM, Wu HL, Wang JY, Liu Z, Zhai M, Yu RQ (2014)

479 Simultaneous determination of eight flavonoids in propolis using

- 480 chemometrics-assisted high performance liquid chromatography-diode
- 481 array detection. J Chromatogr B Analyt Technol Biomed Life Sci 962:59
- 482

483 20. Noureddine H, Hage-Sleiman R, Wehbi B, Fayyad-Kazan H, Hayar S,

484 Traboulssi M, Alyamani OA, Faour WH, El Makhour Y (2017) Chemical

- 485 characterization and cytotoxic activity evaluation of Lebanese propolis.
- 486 Biomed Pharmacother 95:298
- 487
- 488 21. Siheri W, Zhang T, Ebiloma GU, Biddau M, Woods N, Hussain MY,
- 489 Clements CJ, Fearnley J, Ebel RE, Paget T, Muller S, Carter KC, Ferro
- 490 VA, De Koning HP, Watson DG (2016) Chemical and Antimicrobial
- 491 Profiling of Propolis from Different Regions within Libya. PLoS One
- 492 11:e0155355
- 493
- 494 22. Boufadi YM, Soubhye J, Riazi A, Rousseau A, Vanhaeverbeek M,
- 495 Nève J, Van Antwerpen P (2014) Characterization and antioxidant
- 496 properties of six Algerian propolis extracts: ethyl acetate extracts inhibit
- 497 myeloperoxidase activity. Int J Mol Sci 15:2327
- 498
- 499 23. Segueni N, Alabdul Magid A, Decarme M, Rhouati S, Lahouel M,
- 500 Antonicelli F, Hornebeck W (2011) Inhibition of stromelysin-1 by caffeic
- acid derivatives from a propolis sample from Algeria. Planta Med 77:999
- 503 24. Ibrahim RS, Wanas AS, El-Din AAS, Radwan MM, Elsohly MA,
- 504 Metwally AM (2014) Isolation of eleven phenolic compounds from
- 505 propolis (bee glue) collected in Alexandria, Egypt. Planta Med 80:PE5.
- 506

507	25. Segueni N, Benlabed K, Hassane B, Moussaoui F, Zellagui A, Lahouel
508	M, Rhouati S (2014) Antibacterial activity of two Algerian propolis. IJPSR
509	25:106
510	
511	26. Segueni N, Zellagui A, Moussaoui F, Lahouel M, Rhouati S (2016)
512	Flavonoids from Algerian propolis. Arab J Chem 9:S425
513	
514	27. El Hady FKA, Shaker KH, Imhoff JF, Zinecker H, Salah NM, Ibrahim
515	AM (2013) Bioactive metabolites from propolis inhibit superoxide anion
516	radical, acetylcholinesterase and phosphodiesterase (PDE4). IJPSR 21:338
517	
518	28. Martos I, Cossentini M, Ferreres F, Tomas-Barberan FA (1997)
519	Flavonoid composition of Tunisian honeys and propolis. J Agric Food
520	Chem 45:2824
521	
522	29. Omar RM, Igoli J, Gray AI, Ebiloma GU, Clements C, Fearnley J, Ebel
523	RA, Zhang T, De Koning HP, Watson DG (2016) Chemical
524	characterisation of Nigerian red propolis and its biological activity against
525	Trypanosoma brucei. Phytochem Anal 27:107
526	
527	30. El-Bassuony AA (2009) New prenylated compound from Egyptian
528	propolis with antimicrobial activity. Rev Latinoamer Quím 37:85

antibacterial activity from propolis collected in Egypt. Nat Prod Commun 531 5:43 532 533 32. Sakava P, Talla E, Chelea M, Tchinda Tiaabou A, Zeuko'o Menkem E, 534 Laurent S, Mbafor Tanyi J (2014) Pentacyclic triterpenes and crude 535 536 extracts with antimicrobial activity from Cameroonian brown propolis samples. J App Pharm Sci 4:1 537 538 33. Talla E, Tamfu AN, Gade IS, Yanda L, Mbafor JT, Laurent S, Elst LV, 539 Popova M, Bankova V (2017) New mono-ether of glycerol and triterpenes 540 541 with DPPH radical scavenging activity from Cameroonian propolis. Nat 542 Prod Res 31:1379

31. El-Bassuony A, AbouZid S (2010) A new prenylated flavanoid with

543

544 34. Omar R, Igoli JO, Zhang T, Gray AI, Ebiloma GU, Clements CJ,

545 Fearnley J, Edrada Ebel R, Paget T, de Koning HP, Watson DG (2017) The

546 Chemical Characterization of Nigerian Propolis samples and Their Activity

547 Against Trypanosoma brucei. Sci Rep 7:923

549	35. Almutairi S, Eapen B, Chundi SM, Akhalil A, Siheri W, Clements C,
550	Edrada-Ebel R (2014) New anti-trypanosomal active prenylated
551	compounds from African propolis. Phytochem Lett 10:35
552	
553	36. Siheri W, Igoli JO, Gray AI, Nasciemento TG, Zhang T, Fearnley J,
554	Watson DG (2014) The Isolation of Antiprotozoal Compounds from
555	Libyan Propolis. Phytother Res 28:1756
556	
557	37. Kasote D, Ahmad A, Chen W, Combrinck S, Viljoen A (2015) HPTLC
558	MS as an efficient hyphenated technique for the rapid identification of
559	antimicrobial compounds from propolis. Phytochem Lett 11:326
560	
561	38. Kumazawa S, Hamasaka T, Nakayama T (2004b) Antioxidant activity
562	of propolis of various geographic origins. Food Chem 84:329
563	
564	39. Hegazi AG, El Hady FKA (2002) Egyptian propolis: 3. Antioxidant,
565	antimicrobial activities and chemical composition of propolis from
566	reclaimed lands. Z Naturforsch C 57:395
567	
568	40. Trusheva B, Popova M, Koendhori EB, Tsvetkova I, Naydenski C,
569	Bankova V (2011) Indonesian propolis: chemical composition, biological
570	activity and botanical origin. Nat Prod Res 25:606

572	41. Du Toit K, Buthelezi S, Bodenstein J (2009) Anti-inflammatory and
573	antibacterial profiles of selected compounds found in South African
574	propolis. S Afr J Sci 105:470
575	
576	42. Nader M (2013) Caffeic acid phenethyl ester attenuates IgE-induced
577	immediate allergic reaction. Inflammopharmacology 21:169
578	
579	43. Tolba MF, Esmat A, Al-Abd AM, Azab SS, Khalifa AE, Mosli HA,
580	Abel-Rahman SZ, Abel-Naim AB (2013) Caffeic acid phenethyl ester
581	synergistically enhances docetaxel and paclitaxel cytotoxicity in prostate
582	cancer cells. IUBMB Life 65:716
583	
584	44. Grace D, Khan MS, Friesen K, Ata A (2016) Antimicrobial compounds
585	from Drypetes staudtii. Chem Biodivers 13:913
586	
587	45. Hsu YL, Kuo PL, Liu CF, Lin CC (2004a) Acacetin-induced cell cycle
588	arrest and apoptosis in human non-small cell lung cancer A549 cells.
589	Cancer Lett. 212:53
590	

591	46. Hsu YL	., Kuo PL,	Li CC (2	2004b) .	Acacetin	inhibits the	proliferation	of
-----	------------	------------	----------	----------	----------	--------------	---------------	----

- 592 Hep G2 by blocking cell cycle progression and inducing apoptosis.
- 593 Biochem Pharmacol 67:823
- 594
- 595 47. Singh RP, Agrawal P, Yim D, Agarwal C, Agarwal, R (2005) Acacetin
- inhibits cell growth and cell cycle progression, and induces apoptosis in
- 597 human prostate cancer cells: structure–activity relationship with linarin and
- 598 linarin acetate. Carcinogenesis 26:845
- 599
- 48. Zhao J, Dasmahapatra AK, Khan SI, Khan IA (2008) Anti-aromatase
- activity of the constituents from damiana (Turnera diffusa). J
- 602 Ethnopharmacol 120:387
- 603
- 49. Moresco HH, Colla G, Cavalcante ID, Queiroz GS, Pizzolatti MG,
- Brighente IM (2016) Chemical constituents of Eugenia catharinae and
- their antioxidant activity. Nat Prod Res 30:2624
- 607
- 50. Ryu B, Kim HM Lee JS Lee CK, Sezirahiga J Woo JH, Choi JH Jang
- 609 DS (2016) New Flavonol Glucuronides from the Flower Buds of Syzygium
- 610 *aromaticum* (Clove). J Agric Food Chem 64:3048
- 611

612	51. Suleman	Τ,	Vuuren S	S, Sand	lasi M,	Viljoen	AM	(2015)	Antimicrob	ial
-----	-------------	----	----------	---------	---------	---------	----	--------	------------	-----

- activity and chemometric modelling of South African propolis. J Appl
- 614 Microbiol 119:981
- 615
- 616 52. Melliou E, Chinou I (2004) Chemical analysis and antimicrobial
- activity of Greek propolis. Planta Med 70:515
- 618
- 619 53. Qing ZJ, Yong W, Hui LY, Yong LW, Long LH, Ao DJ, Xia PL (2012)
- 620 Two new natural products from the fruits of Alpinia oxyphylla with
- 621 inhibitory effects on nitric oxide production in lipopolysaccharide-activated
- 622 RAW264. 7 macrophage cells. Arch Pharm Res 35:2143
- 623
- 624 54. Cushnie TT, Lamb AJ (2005) Detection of galangin-induced
- 625 cytoplasmic membrane damage in *Staphylococcus aureus* by measuring
- 626 potassium loss. J Ethnopharmacol 101:243
- 627
- 55. Benguedouar L, Lahouel M, Gangloff S, Durlach A, Grange F, Bernard
- 629 P, Antonicelli F (2015) Algerian ethanolic extract of Propolis and galangin
- 630 decreased melanoma tumour progression in C57BL6 mice. Ann Dermatol
- 631 Venereol 142:S294
- 632

- 56. Benguedouar L, Lahouel M, Gangloff SC, Durlach A, Grange F,
- 634 Bernard P, Antonicelli F (2016) Ethanolic extract of Algerian propolis and
- 635 galangin decreased murine melanoma T. Anticancer Agents Med Chem
- 636 16:1172
- 637
- 638 57. Dimas K, Demetzos C, Angelopoulou D, Kolokouris A,
- 639 Mavromoustakos T (2000) Biological activity of myricetin and its
- 640 derivatives against human leukemic cell lines in vitro. Pharmacol Res
- 641 42:475
- 642
- 58. Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, Van Der
- 644 Saag PT, Van Der Burg B, Gustafsson JA (1998) Interaction of estrogenic
- 645 chemicals and phytoestrogens with estrogen receptor β . Endocrinology
- 646 139:4252
- 647
- 59. Lim H, Son KH, Chang HW, Bae K, Kang SS, Kim HP (2008) Anti-
- 649 inflammatory activity of pectolinarigenin and pectolinarin isolated from
- 650 Cirsium chanroenicum. Biol Pharm Bull 31:2063
- 651
- 652 60. Bonesi M, Tundis R, Deguin B, Loizzo MR, Menichini F, Tillequin
- 653 F, Menichini F (2008) In vitro biological evaluation of novel 7-O-

654	dialkylaminoalkyl cytotoxic pectolinarigenin derivatives against a panel of
655	human cancer cell lines. Bioorg Med Chem Lett 18:5431

657	61. Lu M.	Kong Q	Xu X, Lu	H, Lu Z,	Yu W, Zuo	B, Su J,	Guo R	(2014)
			,,	, , ,		· · · · · · · · · · · · · · · · · · ·		· · /

- 658 Pectolinarigenin-a flavonoid compound from *Cirsium japonicum* with
- 659 potential anti-proliferation activity in MCF-7 breast cancer cell. Trop J
- 660 Pharm Res 13:225
- 661
- 662 62. Yoo YM, Nam JH, Kim MY, Choi J, Park HJ (2008) Pectolinarin and

663 pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats

caused by D-galactosamine via an antioxidant mechanism. Biol Pharm Bull31:760

- 666
- 667 63. Alkhatib R, Joha S, Cheok M, Roumy V, Idziorek T, Preudhomme C,
- 668 Quesnel B, Sahpaz S, Bailleul F, Hennebelle T (2010) Activity of ladanein
- on leukemia cell lines and its occurrence in *Marrubium vulgare*. Planta
- 670 Med 76: 86
- 671

672 64. Haid S, Novodomská A, Gentzsch J, Grethe C, Geuenich S, Bankwitz

- 673 D, Keppler OT (2012) A plant-derived flavonoid inhibits entry of all HCV
- 674 genotypes into human hepatocytes. Gastroenterology 143:213
- 675

- 676 65. Bian QY, Wang SY, Xu LJ, Chan CO, Mok DK, Chen SB (2013) Two
- 677 new antioxidant diarylheptanoids from the fruits of Alpinia oxyphylla. J
- 678 Asian Nat Prod Res 15:1094
- 679
- 680 66. Yuan Y, Tan Y, Xu P, Li H, Li Y, Chen WY, Zhang J, Chen F, Huang
- 681 G (2014) Izalpinin from fruits of *Alpinia oxyphylla* with antagonistic
- activity against the rat bladder contractility. Afr J Tradit Complement
- 683 Altern Med 11:120
- 684
- 685 67. Ishitsuka H, Ohsawa C, Ohiwa T, Umeda I, Suhara Y (1982)
- Antipicornavirus flavone Ro 09-0179. Antimicrob Agents Chemother22:611
- 688
- 689 68. Huong DT, Luong DV, Thao TTP, Sung TV (2005) A new flavone and
- 690 cytotoxic activity of flavonoid constituents isolated from *Miliusa balansae*
- 691 (Annonaceae). Pharmazie 60:627
- 692
- 693 69. Ali HA, Chowdhury AK, Rahman AK, Borkowski T, Nahar L, Sarker
- 694 SD (2008) Pachypodol, a flavonol from the leaves of *Calycopteris*
- *floribunda*, inhibits the growth of CaCo2 colon cancer cell line in vitro.
- 696 Phytother Res 22:1684
- 697

698 70. Kim DW, Woo HS, Kim JY, Ryuk JA, Park KH, Ko BS (20	s (2016)	KO BS (к КН, К	JA, Park	uk JA	, Ky	Kim J	HS,	W00	DW,	K1m	/0.	698
---	----------	---------	---------	----------	-------	------	-------	-----	-----	-----	-----	-----	-----

- 699 Phenols displaying tyrosinase inhibition from *Humulus lupulus*. J Enzyme
- 700 Inhib Med Chem 31:742
- 701
- 702 71. Bush C, Noor S, Leischner C, Burkard M, Lauer UM, Venturelli S
- 703 (2015) Anti-proliferative activity of hop-derived prenylflavonoids against
- human cancer cell lines. Wien Med Wochenschr 165:258
- 705
- 706 72. Wang S, Dunlap TL, Howell CE, Mbachu OC, Rue EA, Phansalkar R,
- 707 Chen SN, Pauli GF, Dietz BM, Bolton JL (2016) Hop (Humulus lupulus
- L.) extract and 6-prenylnaringenin induce P450 1A1 catalyzed estrogen 2-
- 709 hydroxylation. Chem Res Toxicol 29:1142
- 710
- 711 73. Mun SH, Joung DK, Kim SB, Park SJ, Seo YS, Gong R, Choi JG, Shin
- 712 DW, Rho JR, Kang OH, Kwon DY (2014) The mechanism of antimicrobial
- activity of Sophoraflavanone B against methicillin-resistant *Staphylococcus*
- 714 *aureus*. Foodborne Pathog Dis 11:234
- 715
- 716 74. Jang DS, Cuendet M, Hawthorne ME, Kardono LB, Kawanishi K, Fong
- 717 HH, Mehta RG, Pezzuto JM, Kinghorn AD (2002) Prenylated flavonoids of
- the leaves of *Macaranga conifera* with inhibitory activity against
- 719 cyclooxygenase-2. Phytochemistry 61:867

722	Deinzer ML, Rong H, De Keukeleire D (2000) The endocrine activities of
723	8-prenylnaringenin and related hop (Humulus lupulus L.) flavonoids. J Clin
724	Endocrinol Metab 85:4912
725	
726	76. Saad M, Salam R Kenawy S, Attia A (2015) Pinocembrin attenuates
727	hippocampal inflammation, oxidative perturbations and apoptosis in a rat
728	model of global cerebral ischemia reperfusion. Pharmacol Rep 67:115
729	
730	77. Pratsinis H, Kletsas D, Melliou E, Chinou I (2010) Antiproliferative
731	activity of Greek propolis. J Med Food 13:286
732	
733	78. Kumazawa S, Goto H, Hamasaka T, Fukumoto S, Fujimoto T,
734	Nakayama T (2004a) A new prenylated flavonoid from propolis collected
735	in Okinawa, Japan. Biosci Biotechno Biochem 68:260
736	
737	79. Jayasinghe L, Rupasinghe GK, Hara N, Fujimoto Y (2006) Geranylated
738	phenolic constituents from the fruits of Artocarpus nobilis. Phytochemistry
739	67:1353

75. Milligan SR, Kalita JC, Pocock V, Van De Kauter V, Stevens JF,

741	80. Chen CN, Weng MS, Wu CL, Lin JK (2004) Comparison of radical
742	scavenging activity, cytotoxic effects and apoptosis induction in human
743	melanoma cells by Taiwanese propolis from different sources. Evid Based
744	Complement Alternat Med 1:175
745	
746	81. Raghukumar R, Vali L, Watson D, Fearnley J, Seidel V (2010)
747	Antimethicillin-resistant Staphylococcus aureus (MRSA) activity of
748	"pacific propolis" and isolated prenylflavanones. Phytother Res 24:1181
749	
750	82. Zakaria I, Ahmat N, Jaafar FM, Widyawaruyanti A (2012) Flavonoids
751	with antiplasmodial and cytotoxic activities of Macaranga triloba.
752	Fitoterapia 83:968
753	
754	83. Salvatore MJ, King AB, Graham AC, Onishi HR, Bartizal KF, Abruzzo
755	GK, Gill CJ, Ramjit HG, Pitzenberger SM, Witherup KM (1998)
756	Antibacterial activity of Lonchocarpol A. J Nat Prod 61:640
757	
758	84. Khaomek P, Ichino C, Ishiyama A, Sekiguchi H, Namatame M,
759	Ruangrungsi N, Saifah E, Kiyohara H, Otoguro K, Omura S, Yamada H
760	(2008) In vitro antimalarial activity of prenylated flavonoids from
761	Erythrina fusca. J Nat Med 62:217
762	

763	85. Chan	YY, Li	CH, Shen	YC, V	Wu TS	(2010)	Anti-inflammator	îy
-----	----------	--------	----------	-------	-------	--------	------------------	----

- principles from the stem and root barks of *Citrus medica*. Chem PharmBull 58:61
- 766
- 767 86. Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, Kim SG, Kim
- 768 SC (2008) Anti-inflammatory effects of liquiritigenin as a consequence of
- the inhibition of NF-kB-dependent iNOS and proinflammatory cytokines
- production. Br J Pharmacol 154:165
- 771
- 87. Kong LD, Zhang Y, Pan X, Tan RX, Cheng CHK (2000) Inhibition of
- xanthine oxidase by liquiritigenin and isoliquiritigenin isolated from
- 774 Sinofranchetia chinensis. Cell Mol Life Sci 57:500
- 775
- 88. Mersereau JE, Levy N, Staub RE, Baggett S, Zogovic T, Chow S,
- 777 Ricke WA, Tagliaferri M, Cohen I, Bjeldanes LF, Leitman DC (2008)
- T78 Liquiritigenin is a plant-derived highly selective estrogen receptor β
- agonist. Mol Cell Endocrinol 283:49
- 780
- 781 89. Chiari E, de Oliveira AB, Raslan DS, Mesquita AAL, Tavares KG
- (1991) Screening in vitro of natural products against blood forms of
- 783 Trypanosoma cruzi. Trans R Soc Trop Med Hyg 85:372
- 784

- 90. Fokialakis N, Kalpoutzakis E, Tekwani BL, Skaltsounis AL, Duke SO
- 786 (2006) Antileishmanial activity of natural diterpenes from *Cistus* sp. and
- semisynthetic derivatives thereof. Biol Pharm Bull 29:1775
- 788
- 91. Banskota AH, Tezuka Y, Adnyana IK, Ishii E, Midorikawa K,
- 790 Matsushige K, Kadota S (2001) Hepatoprotective and anti-Helicobacter
- 791 pylori activities of constituents from Brazilian propolis. Phytomedicine
- 792 8:16
- 793
- 92. Woo KW, Choi SU, Park JC, Lee KR (2011) A new lignan glycoside
 from *Juniperus rigida*. Arch Pharm Res 34:2043
- 796
- 93. Smith EC, Williamson EM, Wareham N, Kaatz GW, Gibbons S (2007)
- 798 Antibacterials and modulators of bacterial resistance from the immature
- cones of *Chamaecyparis lawsoniana*. Phytochemistry 68:210
- 800
- 801 94. Tanabe H, Yasui T, Kotani H, Nagatsu A, Makishima M, Amagaya S,
- 802 Inoue M (2014) Retinoic acid receptor agonist activity of naturally
- 803 occurring diterpenes. Bioorg Med Chem 22:3204
- 804
- 805 95. Suh SJ, Kwak CH, Chung TW, Park SJ, Cheeeei M, Park SS, Seo CS,
- 806 Son JK, Chang YC, Park YG, Lee YC (2012) Pimaric acid from Aralia

- 807 *cordata* has an inhibitory effect on TNF-α-induced MMP-9 production and
 808 HASMC migration via down-regulated NF-κB and AP-1. Chem Biol
- 809 Interact 199:112
- 810
- 811 96. Ahmad S, Sukari MA, Ismail N, Ismail IS, Abdul AB, Abu Bakar
- 812 MF, Kifli N, Ee GC (2015) Phytochemicals from Mangifera pajang
- 813 Kosterm and their biological activities. BMC Complement Altern Med
- 814 15:83
- 815
- 816 97. Li F, Awale S, Tezuka Y, Kadota S (2009) Cytotoxic constituents of
- 817 propolis from Myanmar and their structure–activity relationship. Biol
- 818 Pharm Bull 32:2075
- 819
- 820 98. Cháirez-Ramírez MH, Moreno-Jiménez MR, González-Laredo
- 821 RF, Gallegos-Infante JA, Rocha-Guzmán NE (2016) Lupane-type
- 822 triterpenes and their anti-cancer activities against most common malignant
- tumors: A review. EXCLI J 15:758
- 824
- 99. Schwiebs A, Radeke HH (2018) Immunopharmacological Activity of
- 826 Betulin in Inflammation-associated Carcinogenesis. Anticancer Agents
- 827 Med Chem 18:645
- 828

829	100. Alakurtti S	, Mäkelä T,	Koskimies S,	Yli-Kauhaluoma	J (2006)
-----	------------------	-------------	--------------	----------------	----------

- 830 Pharmacological properties of the ubiquitous natural product betulin. Eur J
- 831 Pharm Sci 29:1
- 832
- 101. Romero-Estrada A, Maldonado-Magana A, Gonzalez-Christen J,
- Bahena SM, Garduno-Ramirez ML, Rodriguez-Lopez V, Alvarez L (2016)
- 835 Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes
- isolated from the Mexican copal resin of *Bursera copallifera*. BMC
- 837 Complement Altern Med 16:422
- 838
- 839 102. Zhang J, Yamada S, Ogihara E, Kurita M, Banno N, Qu W, Feng F,

Akihisa T (2016) Biological activities of triterpenoids and phenolic

- compounds from *Myrica cerifera* bark. Chem Biodivers 13:1601
- 842
- 103. Juan ME, Wenzel U, Daniel H, Planas JM (2008) Erythrodiol, a
- natural triterpenoid from olives, has antiproliferative and apoptotic activity
- in HT-29 human adenocarcinoma cells. Mol Nutr Food Res 52:595
- 846
- 847 104. Kontogianni VG, Tsoumani ME, Kellici TF, Mavromoustakos T,
- 648 Gerothanassis IP, Tselepis AD, Tzakos AG, (2016) Deconvoluting the dual
- antiplatelet activity of a plant extract. J Agric Food Chem 64:4511
- 850

López B, Cervantes-Hernández I, Madrigal-Santillán O, Morales-González
JA, Álvarez-González I, Madrigal-Bujaidar E (2016) Evaluation of the
anti-inflammatory capacity of beta-sitosterol in rodent assays. Afr J Tradit
Complement Altern Med 14:123
106. Villaseñor IM, Angelada J, Canlas AP, Echegoyen D (2002)
Bioactivity studies on beta-sitosterol and its glucoside. Phytother Res

105. Paniagua-Pérez R, Flores-Mondragón G, Reyes-Legorreta C, Herrera-

859 16:417

860

851

107. Park C, Moon DO, Rhu CH, Choi BT, Lee WH, Kim GY, Choi YH

862 (2007) Beta-sitosterol induces anti-proliferation and apoptosis in human

leukemic U937 cells through activation of caspase-3 and induction of

864 Bax/Bcl-2 ratio. Biol Pharm Bull 30:1317

865

108. Ivorra MD, D'Ocon MP, Paya M, Villar A (1988) Antihyperglycemic

and insulin-releasing effects of beta-sitosterol $3-\beta$ -D-glucoside and its

aglycone, β -sitosterol. Arch Int Pharmacodyn Ther 296:224

869

870 109. Fraile L, Crisci E, Córdoba L, Navarro MA, Osada J, Montoya M

871 (2012) Immunomodulatory properties of β -sitosterol in pig immune

responses. Int Immunopharmacol 13:316

- 874 110. Malini T, Vanithakumari G (1991) Antifertility effects of β-sitosterol
 875 in male albino rats. J Ethnopharmacol 35:149
- 876
- 877 111. Vivancos M, Moreno JJ (2005) Beta-Sitosterol modulates antioxidant
- enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 39:91.
- 112. Kiprono PC, Kaberia F, Keriko JM, Karanja JN (2000) The in vitro
- anti-fungal and anti-bacterial activities of β-sitosterol from *Senecio lyratus*
- 882 (Asteraceae). Z Naturforsch C 55:485
- 883
- 113. Akhtar MN, Lam KW, Abas F, Ahmad S, Shah SAA, Choudhary MI,
- Lajis NH (2011) New class of acetylcholinesterase inhibitors from the stem
- bark of *Knema laurina* and their structural insights. Bioorg Med Chem Lett21:4097
- 888
- 889 114. Knodler M, Conrad J, Wenzig EM, Bauer R, Lacorn M, Beifuss U,
- 890 Carle R, Schieber A (2008) Anti-inflammatory 5-(11'Z-heptadecenyl)-and
- 891 5-(8'Z, 11'Z-heptadecadienyl)-resorcinols from mango (Mangifera indica
- L.) peels. Phytochemistry 69: 988

894	115. Zeng L,	Gu ZM. F	Fang XP. I	McLaughlin J	JL (1994)	Kneglomera	tanol.
	,		. 0 ,				

- 895 kneglomeratanones A and B, and related bioactive compounds from *Knema*
- *glomerata*. J Nat Prod 57:376
- 897
- 116. Tanaka A, Arai Y, Kim SN, Ham J, Usuki T (2011) Synthesis and
- biological evaluation of bilobol and adipostatin A. J Asian Nat Prod Res13:290
- 901
- 902 117. Chen LP, Zhao F, Wang Y, Zhao LL, Li QP, Liu HW (2011)
- 903 Antitumor effect of resorcinol derivatives from the roots of Ardisia
- 904 *brevicaulis* by inducing apoptosis. J. Asian Nat Prod Res 13:734
 905
- 906 118. Barr JR, Murty VS, Yamaguchi K, Singh S, Smith DH, Hecht SM
- 907 (1988) 5-Alkylresorcinols from *Hakea amplexicaulis* that cleave DNA
- 908 Chem Res Toxicol 1:204
- 909
- 910 119. Iwatsuki K, Akihisa T, Tokuda H, Ukiya M, Higashihara H,
- 911 Mukainaka T, Iizuka M, Hayashi Y, Kimura Y, Nishino H (2003) Sterol
- 912 ferulates, sterols, and 5-alk(en)ylresorcinols from wheat, rye, and corn bran
- 913 oils and their inhibitory effects on Epstein-Barr virus activation. J Agric
- 914 Food Chem 51:6683
- 915

916	120. Liu L,	Winter KM,	Stevenson L	, Morris (C, Leach	n DN ((2012)	Wheat
-----	-------------	------------	-------------	------------	----------	--------	--------	-------

- bran lipophilic compounds with in vitro anticancer effects. Food Chem
- 918 130:156
- 919
- 920 121. Manda VK, Dale OR, Awortwe C, Ali Z, Khan IA, Walker LA, Khan
- 921 SI (2014) Evaluation of drug interaction potential of Labisia pumila (Kacip
- 922 Fatimah) and its constituents. Front Pharmacol 5:178
- 923
- 122. Suzuki Y, Esumi Y, Hyakutake H, Kono Y, Sakurai A (1996)
- 925 Isolation of 5-(8'Z-heptadecenyl)-resorcinol from etiolated rice seedlings as
- an antifungal agent. Phytochemistry 41:1485
- 927
- 123. Cao S, Schilling JK, Randrianasolo A, Andriantsiferana R, Rasamison
- VE, Kingston DG (2004) New cytotoxic alkyl phloroglucinols from
- 930 Protorhus thouvenotii. Planta Med 70:683
- 931
- 932 124. Kong P, Chen G, Jiang A, Wang Y, Song C, Zhuang J, Xi C, Wang G,
- Ji Y, Yan J (2016) Sesamin inhibits IL-1β-stimulated inflammatory
- response in human osteoarthritis chondrocytes by activating Nrf2 signaling
- pathway. Oncotarget 7:83720
- 936

937	125. Li L, P	iao H, Zheng	g M, Jin Z,	, Zhao L,	Yan G	(2016)	Sesamin
-----	--------------	--------------	-------------	-----------	-------	--------	---------

- attenuates allergic airway inflammation through the suppression of nuclear
- 939 factor-kappa B activation. Exp Ther Med 12:4175
- 940
- 126. Rao YK, Fang SH, Tzeng YM (2006) Anti-inflammatory activities of
- 942 constituents isolated from *Phyllanthus polyphyllus*. J Ethnopharmacol
- 943 103:181
- 944
- 945 127. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW,
- Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto
- JM (1997) Cancer chemopreventive activity of resveratrol, a natural
- 948 product derived from grapes. Science 275:218
- 949
- 950 128. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS
- 951 (2001) Molecular mechanisms underlying chemopreventive activities of
- anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS
- through suppression of NF-kappa B activation. Mutat Res 480–481:243
- 954
- 955 129. Vidavalur R, Otani H, Singal PK, Maulik N (2006) Significance of
- wine and resveratrol in cardiovascular disease: French paradox revisited.
- 957 Exp Clin Cardiol 11:217
- 958

959	130. Bird JK, Raederstorff D, Weber P, Steinert RE (2017) Cardiovascular
960	and anti-obesity effects of resveratrol mediated through the gut microbiota
961	Adv Nutr 8:83

- 962
- 131. Beutler JA, Shoemaker RH, Johnson T, Boyd MR (1998) Cytotoxic
- geranyl stilbenes from *Macaranga schweinfurthii*. J Nat Prod 61:1509
- 966 132. Turbyville TJ, Gursel DB, Tuskan RG, Walrath JC, Lipschultz CA,
- 967 Lockett SJ, Wiemer DF, Beutler A, Reilly KM (2010) Schweinfurthin A
- 968 selectively inhibits proliferation and Rho signaling in glioma and
- 969 neurofibromatosis type 1 tumor cells in a NF1-GRD-dependent manner.
- 970 Mol Cancer Ther 9:1234
- 971
- 972 133. Nolte O (2014) Antimicrobial resistance in the 21st century: a
- 973 multifaceted challenge. Protein Pept Lett 21:330
- 974
- 975 134. Hegazi AG, El Hady FKA (2001) Egyptian propolis: 1. Antimicrobial
- activity and chemical composition of Upper Egypt propolis. Z Naturforsch
- 977 C 56:82
- 978

979	135. Seidel	V, Peyfoon E,	Watson, DG, I	Fearnley J (20)08) Comparative
-----	-------------	---------------	---------------	----------------	------------------

- study of the antibacterial activity of propolis from different geographical
- and climatic zones. Phytother Res 22:1256
- 982
- 983 136. Grange JM, Davey RW (1990) Antibacterial properties of propolis
- 984 (bee glue). J R Soc Med 83:159

- 986 137. Velikova M, Bankova V, Sorkun K, Houcine S, Tsvetkova I,
- 987 Kujumgiev A (2000) Propolis from the Mediterranean region: chemical
- composition and antimicrobial activity. Z Naturforsch C 55:790

989

- 990 138. Kouidhi B, Zmantar T, Bakhrouf A (2010) Anti-cariogenic and anti-
- biofilms activity of Tunisian propolis extract and its potential protective
- 992 effect against cancer cells proliferation. Anaerobe 16:566
- 993
- 139. Al-Waili N, Al-Ghamdi A, Ansari MJ, Al-Attal Y, Salom K (2012)
- 995 Synergistic effects of honey and propolis toward drug multi-resistant
- 996 Staphylococcus aureus, Escherichia coli, and Candida albicans isolates in
- single and polymicrobial cultures. Int J Med Sci 9:793

- 999 140. El-Guendouz S, Aazza S, Lyoussi B, Bankova V, Lourenço JP, Costa
- 1000 AM, Mariano JF, Miguel MG, Faleiro ML (2016) Impact of Biohybrid

- 1001 Magnetite Nanoparticles and Moroccan Propolis on Adherence of
- 1002 Methicillin Resistant Strains of *Staphylococcus aureus*. Molecules 21:1208.1003
- 1004 141. Hegazi AG, El Hady FKA, Shalaby HA (2007a) Inhibitory effect of
- 1005 Egyptian propolis on *Fasciola gigantica* eggs with reference to its effect on
- 1006 Clostridium oedematiens and correlation to chemical composition. Pak J
- 1007 Biol Sci 10:3295.
- 1008
- 1009 142. Aly SS, Elewa NA (2007) The effect of Egyptian honeybee propolis
- 1010 on the growth of Aspergillus versicolor and sterigmatocystin biosynthesis
- 1011 in Ras cheese. J Dairy Res 74:74
- 1012
- 1013 143. Haile K, Dekebo A (2013) Chemical composition and antimicrobial
- 1014 activity of Haramaya propolis (Bee glue), Ethiopia. IJPSR 4:734
- 1015
- 1016 144. Ghaly MF, Ezzat SM, Sarhan MM (1998) Use of propolis and
- 1017 ultragriseofulvin to inhibit aflatoxigenic fungi. Folia Microbiol 43:156.
- 1018
- 1019 145. Gomaa OM, Gaweesh AS (2013) Variation in adhesion and germ tube
- 1020 formation of oral Candida using Egyptian propolis. Can J Microbiol 59:197
- 1021

- 1023 Drug resistance in vectorborne parasites: multiple actors and scenarios for
- an evolutionary arms race. FEMS Microbiol Rev 38:41
- 1025
- 1026 147. Hegazi AG, El Hady FKA, Shalaby HA (2007b) An in vitro effect of
- propolis on adult worms of *Fasciola gigantica*. Vet Parasitol 144:279
- 1029 148. Soufy H, El-Beih NM, Nasr SM, Abd El-Aziz TH, Khalil FAM,
- 1030 Ahmed YF, Abou Zeina HAA (2017) Effect of Egyptian propolis on
- 1031 cryptosporidiosis in immunosuppressed rats with special emphasis on
- 1032 oocysts shedding, leukogram, protein profile and ileum histopathology.
- 1033 Asian Pac J Trop Med 10:253
- 1034
- 1035 149. Mahmoud TY, Rizk SM, Maghraby AS, Shaheen AA (2014) Propolis
- 1036 enhances the effectiveness of praziquantel in experimental schistosomiasis:
- 1037 biochemical and histopathological study. Parasitol Res 113:4513.
- 1038
- 1039 150. Cunningham C (2013) Microglia and neurodegeneration: the role of
- 1040 systemic inflammation. Glia 61:71
- 1041

1042 151. Bhatelia K, Singh K, Singh R (2014) TLRs: linking inflammation and

1043 breast cancer. Cell Signal 26:2350

^{1022 146.} Vanaerschot M, Huijben S, Van den Broeck F, Dujardin JC (2014)

- 1045 152. Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V, Pariggiano
- 1046 I, Bianchi R, Crisci M, D'Acierno L, Giordano R, Di Palma G, Conte M,
- 1047 Golino P, Russo MG, Calabrò R, Calabrò P (2014) Inflammation and
- 1048 cardiovascular disease: from pathogenesis to therapeutic target. Curr
- 1049 Atheroscler Rep 16:435

- 1051 153. Murdoch JR, Lloyd CM (2010) Chronic inflammation and asthma.
- 1052 Mutat Res 690:24
- 1053
- 1054 154. El-Aidy W, Ebeid A, Sallam A, Muhammad I, Abbas A, Kamal M,
- 1055 Sohrab S (2015) Evaluation of propolis, honey, and royal jelly in
- amelioration of peripheral blood leukocytes and lung inflammation in
- 1057 mouse conalbumin-induced asthma model. Saudi J Biol Sci 22:780

- 1059 155. Lipworth BJ (2005) Phosphodiesterase-4 inhibitors for asthma and
- 1060 chronic obstructive pulmonary disease. Lancet 365:167
- 1061
- 1062 156. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME
- 1063 (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376
- 1064

1065	157. Wu Z, Zhao Y, Zhao B (2010) Superoxide anion, uncoupling proteins
1066	and Alzheimer's disease. J Clin Biochem Nutr 46:187

- 1068 158. Pashkow FJ (2011) Oxidative Stress and Inflammation in Heart
- 1069 Disease: Do Antioxidants Have a Role in Treatment and/or Prevention? Int
- 1070 J Inflam 2011:514623.

1071

1072	159. Saisho	Y	(2014)	Glycemic	variability	and	oxidative	stress:	a li	ink
------	-------------	---	--------	----------	-------------	-----	-----------	---------	------	-----

- 1073 between diabetes and cardiovascular disease? Int J Mol Sci. 15:183811074
- 1075 160. Sime D, Atlabachew M, Redi-Abshiro M, Zewde T (2015) Total
- 1076 phenols and antioxidant activities of natural honeys and propolis collected
- 1077 from different geographical regions of Ethiopia. B Chem Soc Ethiopia
- 1078 29:163
- 1079
- 1080 161. Narimane S, Demircan E, Salah A, Ozcelik BÖ, Salah R (2017)
- 1081 Correlation between antioxidant activity and phenolic acids profile and
- 1082 content of Algerian propolis: Influence of solvent. Pak J Pharm Sci

1083 30:1417

1084

1085 162. El-Guendouz S, Al-Waili N, Aazza S, Elamine Y, Zizi S Al-Waili T,

1086 Al-Waili A, Lyoussi B (2017) Antioxidant and diuretic activity of co-

- 1087 administration of Capparis spinosa honey and propolis in comparison to
- 1088 furosemide. Asian Pac J Trop Med 10:974
- 1089
- 1090 163. Kurek-Górecka A, Rzepecka-Stojko A, Górecki M, Stojko J, Sosada
- 1091 M, Swierczek-Zieba G (2013) Structure and antioxidant activity of
- 1092 polyphenols derived from propolis. Molecules 19:78
- 1093
- 1094 164. Alyane M, Kebsa LB, Boussenane HN, Rouibah H, Lahouel M (2008)
- 1095 Cardioprotective effects and mechanism of action of polyphenols extracted
- 1096 from propolis against doxorubicin toxicity. Pak J Pharm Sci 21:201
- 1097
- 1098 165. Khayyal MT, El-Hazek RM, El-Ghazaly MA (2015) Propolis aqueous
- 1099 extract preserves functional integrity of murine intestinal mucosa after
- 1100 exposure to ionizing radiation. Environ Toxicol Pharmacol 40:901
- 1101
- 1102 166. Lahouel M, Boutabet K, Kebsa W, Alyane M (2010) Polyphenolic
- 1103 fractions of Algerian propolis reverses doxorubicin induced acute renal
- 1104 oxidative stress. Afr J Pharm Pharmacol 4:712
- 1105
- 1106 167. Boutabet K, Kebsa W, Alyane M, Lahouel M (2011) Polyphenolic
- 1107 fraction of Algerian propolis protects rat kidney against acute oxidative
- stress induced by doxorubicin. Indian J Nephrol 21:101

1110	168. Wided K, Hassiba R, Mesbah L (2014). Polyphenolic fraction of
1111	Algerian propolis reverses doxorubicin induced oxidative stress in liver
1112	cells and mitochondria. Pak J Pharm Sci 27:1891
1113	
1114	169. Rizk SM, Zaki HF, Mina MA (2014) Propolis attenuates doxorubicin-
1115	induced testicular toxicity in rats. Food Chem Toxicol 67:176
1116	
1117	170. El-Sharkawy EE, Kames AO, Sayed SM, Nisr NA, Wahba NM,
1118	Elsherif WM, Nafady AM, Abdel-Hafeez MM, Aamer AA (2014) The
1119	ameliorative effect of propolis against methoxychlor induced ovarian
1120	toxicity in rat. Exp Toxicol Pathol 66:415
1121	
1122	171. Tohamy AA, Abdella EM, Ahmed RR, Ahmed YK (2014)
1123	Assessment of anti-mutagenic, anti-histopathologic and antioxidant
1124	capacities of Egyptian bee pollen and propolis extracts. Cytotechnology
1125	66:283
1126	
1127	172. Alm-Eldeen AA, Basyony MA, Elfiky NK, Ghalwash MM (2017)
1128	Effect of the Egyptian propolis on the hepatic antioxidant defense and pro-
1129	apoptotic p53 and anti-apoptotic bcl2 expressions in aflatoxin B1 treated

1130 male mice. Biomed Pharmacother 87:247

1132	173. El Menyiy N, Al Waili N, Bakour M, Al-Waili H, Lyoussi B (2016)
1133	Protective effect of propolis in proteinuria, crystaluria, nephrotoxicity and
1134	hepatotoxicity induced by ethylene glycol ingestion. Arch Med Res 47:526
1135	
1136	174. Garoui EM, Troudi A, Fetoui H, Soudani N, Boudawara T, Zeghal N
1137	(2012) Propolis attenuates cobalt induced-nephrotoxicity in adult rats and
1138	their progeny. Exp Toxicol Pathol 64:837
1139	
1140	175. Babatunde IR, Abdulbasit A, Oladayo MI, Olasile OI, Olamide FR,
1141	Gbolahan BW (2015) Hepatoprotective and Pancreatoprotective Properties
1142	of the Ethanolic Extract of Nigerian Propolis. J of Intercult
1143	Ethnopharmacol 4:102
1144	
1145	176. El Hady FKA, Hegazi AG (2002) Egyptian propolis: 2. Chemical
1146	composition, antiviral and antimicrobial activities of East Nile Delta
1147	propolis. Z Naturforsch C 57:386
1148	
1149	177. Hegazi, AG, Farghaly AA, El Hady, FKA (2001) Antiviral activity
1150	and chemical composition of European and Egyptian propolis. In: 2001 37^{th}
1151	Int. Apiceutical Congress, Durban, South Africa
1152	

1153	178. El Hady FKA, Hegazi AG, Wollenweber E (2007) Effect of Egyptian
1154	propolis on the susceptibility of LDL to oxidative modification and its
1155	antiviral activity with special emphasis on chemical composition. Z
1156	Naturforsch C 62:645
1157	
1158	179. Abd-El-Rhman A (2009) Antagonism of Aeromonas hydrophilia by
1159	propolis and its effect on the performance of Nile tilapia, Oreochromis
1160	niloticus. Fish Shellfish Immun 27:454
1161	
1162	180. Sayed A, Abou El-Ella G, Wahba N, El Nisr N, Raddad K, Abd El
1163	Rahman M, Abd El Hafeez M, Abd El Fattah Aamer A (2009) Immune
1164	defense of rats immunized with fennel honey, propolis, and bee venom
1165	against induced Staphylococcal infection. J Med Food 12:569

- 1167 181. Nassar SA, Mohamed AH, Soufy H, Nasr SM, Mahran KM (2011)
- 1168 Immunostimulant effect of Egyptian propolis in rabbits. Scientific World J1169 2012:1
- 1170

1171 182. Nassar SA, Mohamed AH, Soufy H, Nasr SM (2013) Protective effect

- 1172 of Egyptian propolis against rabbit pasteurellosis. Biomed Res Int
- 1173 2013:163724.
- 1174

- 1175 183. Zedan H, Hofny ERM, Ismail SA (2009) Propolis as an alternative
- treatment for cutaneous warts. Int J Dermatol 48:1246
- 1177
- 1178 184. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A
- 1179 (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87
- 1180
- 1181 185. Rouibah H, Mesbah L, Kebsa W, Zihlif M, Ahram M, Aburmeleih B,
- 1182 Mostafa I, El Amir H (2018) Algerian Propolis Potentiates Doxorubicin
- 1183 Mediated Anticancer Effect against Human Pancreatic PANC-1 Cancer
- 1184 Cell Line through Cell Cycle Arrest, Apoptosis Induction and P-
- 1185 Glycoprotein Inhibition. Anticancer Agents Med Chem 18:375
- 1186
- 1187 186. Salim E, Abd El-Magid A, Farara K, Maria D (2015) Antitumoral and
- antioxidant potential of Egyptian propolis against the PC3 prostate cancer
- 1189 cell line. Asian Pac J Cancer Prev 16:7641
- 1190
- 1191 187. Badr M, Edrees N, Abdallah A, El-Deen N, Neamat-Allah A, Ismail
- 1192 H. (2011) Anti-tumor effects of Egyptian propolis on Ehrlich ascites
- 1193 carcinoma. Vet Ital 47:341
- 1194
- 1195 188. El-khawaga O, Salem T, Elshal M (2003) Protective role of Egyptian
- 1196 propolis against tumor in mice. Clin Chim Acta 338:11

1198	189. Popova M, Lyoussi B, Aazza S, Antunes D, Bankova V, Miguel G
1199	(2015) Antioxidant and α -Glucosidase Inhibitory Properties and Chemical
1200	Profiles of Moroccan Propolis. Nat Prod Commun 10:1961
1201	
1202	190. Zingue S, Nde CBM, Michel T, Ndinteh DT, Tchatchou J, Adamou
1203	M, Fernandez X, Fohouo FT, Clyne C, Njamen D (2017) Ethanol-extracted
1204	Cameroonian propolis exerts estrogenic effects and alleviates hot flushes in
1205	ovariectomized Wistar rats. BMC Complement Altern Med 17:65
1206	
1207	191. Oladayo MI (2016) Nigerian propolis improves blood glucose,
1208	glycated hemoglobin A1c, very low-density lipoprotein, and high-density
1209	lipoprotein levels in rat models of diabetes. J Intercult Ethnopharmacol
1210	5:233
1211	
1212	192. Klopper RR, Gautier L, Chatelain C, Smith GF, Spichiger R (2007)
1213	Floristics of the angiosperm flora of sub-Saharan Africa: an analysis of the
1214	African plant checklist and database. Taxon 56:201
1215	
1216	193. Chen CN, Hsiao C-J, Lee S-S, Guh J-H, Chiang P-C, Huang C-C,
1217	Huang W-J (2012) Chemical modification and anticancer effect of
1218	prenylated flavanones from Taiwanese propolis. Nat Prod Res 26:116

1219

1222	Fig. 1 Structures of phenylpropanoids isolated from African propolis
1223	

- 1224 Fig. 2 Structures of flavonoids isolated from African propolis I1225
- **Fig. 3** Structures of flavonoids isolated from African propolis II

1228 Fig. 4 Structures of phenolic lipids isolated from African propolis1229

- **Fig. 5** Structures of terpenoids isolated from African propolis I
- **Fig. 6** Structures of terpenoids isolated from African propolis II
- **Fig. 7** Structures of terpenoids isolated from African propolis III
- Fig. 8 Structures of miscellaneous compounds isolated from Africanpropolis
- 1239 Fig. 9 Compounds 146–148

Plate 1 Propolis sample; photograph: Goldmull, Creative Commons 3.0

Table 1 Phenylpropanoids isolated from African propolis

1246			
	Compound	Origin	Refs.
	Caffeic acid (1)	Algeria	[22, 23]
	Prenyl caffeate (2)	Algeria	[22]
	Methyl caffeate (3)	Algeria	[22]
	Isopentyl caffeate (4)	Algeria	[22]
	2-Methyl-2-butenyl (<i>E</i>)-caffeate (5)	Algeria	[15]
	3-Methyl-3-butenyl-(<i>E</i>)-caffeate (6)	Algeria	[15]
	Phenethyl-(<i>E</i>)-caffeate (CAPE) (7)	Algeria	[15]
	<i>p</i> -Coumaric acid (8)	Algeria	[22]
	<i>p</i> -Coumaric acid methyl ester (9)	Algeria	[22]
	Cinnamic acid (10)	Algeria	[22]
	Isoferulic acid (11)	Algeria	[22]
		Egypt	[24]
	Caftaric acid (12)	Algeria	[23]
	Caftaric acid methyl ester (13)	Algeria	[23]
	(+)-Chicoric acid (14)	Algeria	[23]
	(+)-Chicoric acid methyl ester (15)	Algeria	[23]
1247			
1248			
1249			
1250			
1251			
1252			
1253			
1254			
1255			
1256			
1257			
1258			
1259			
1260			
1261			
1262			
1263			
1264			
1265			
1266 1267			
1267 1268			
1268 1269			
1269 1270			
1270			

Compound	Origin	Refs.
Acacetin (16)	Algeria	[22]
Quercetin (17)	Algeria	[22]
3-O-Methyl-quercetin (18)	Algeria	[22]
Kaempferol (19)	Algeria	[15, 22]
Chrysin (20)	Algeria	[15, 22, 25,
		26]
	Egypt	[24, 27]
Tectochrysin (21)	Algeria	[22]
	Egypt	[24, 27]
Galangin (22)	Algeria	[15, 22]
	Egypt	[24]
Galangin-5- <i>O</i> -methyl ether (23)	Egypt	[24]
Myricetin-3,7,4',5'-tetramethyl ether	Algeria	[15]
(24)	Tunisia	[28]
Apigenin (25)	Algeria	[15, 25, 26]
Pectolinarigenin (26)	Algeria	[25, 26]
Pilosin (27)	Algeria	[25, 26]
Ladanein (28)	Algeria	[25, 26]
Macarangin (29)	Kenya	[13]
	Nigeria	[29]
Izalpinin (30)	Egypt	[24]
Pachypodol (31)	Tunisia	[28]
3,3'-Dimethoxy-5,7,4'-trihydroxyflavone (32)	Egypt	[24]
3-Methoxy-5,7,4'-trihydroxyflavone (33)	Egypt	[24]
Quercetin-3,7-di- <i>O</i> -methyl ether (34)	Egypt	[24]
Naringenin (35)	Algeria	[22]
6-Prenylnaringenin (36)	Nigeria	[29]
8-Prenylnaringenin (37)	Nigeria	[29]
Pinocembrin (38)	Algeria	[22]
	Nigeria	[29]
	Egypt	[24]
Pinobanksin (39)	Algeria	[15]
Pinobanksin-3-acetate (40)	Algeria	[15,22]
Pinobanksin-3-(<i>E</i>)-caffeate (41)	Algeria	[15]
Pinostrobin (42)	Algeria	[22]
	Egypt	[24,27]
Isonymphaeol C (43)	Egypt	[30]
Isonymphaeol B (44)	Egypt	[31]

			1
	Isonymphaeol D (45)	Egypt	[31]
	Nymphaeol B (46)	Egypt	[31]
		Nigeria	[29]
	Lonchocarpol A (47)	Cameroon	[17]
		Congo	[17]
	6,8-Diprenylaromadendrin (48)	Cameroon	[17]
	Lespedezaflavanone C (49)	Cameroon	[17]
	6,8-Diprenyleriodictyol (50)	Congo	[17]
	Liquiritigenin (51)	Nigeria	[29]
	Genistein (52)	Algeria	[22]
	Calycosin (53)	Nigeria	[29]
	(3 <i>S</i>)-Vestitol (54)	Nigeria	[29]
1273			1
1274			
1275			
1276			
1277			
1278			
1279			
1280			
1281			
1282			
1283			
1284			
1285			
1286			
1287			
1288			
1289			
1290			
1291			
1292			
1293			
1294			
1295			
1296			
1297			
1298			
1299			
1300			
1301			
1302			
1303			
1304			

Table 3 Terpenoids isolated from African propolis

Compound	Origin	Refs.
α-Terpineol (55)	Cameroon	[17]
18-Hydroxy- <i>cis</i> -clerodan-3-ene-15-oic acid (56)	Algeria	[15]
Cistadiol (57)	Algeria	[15]
Isoagathotal (58)	Algeria	[15]
Imbricatoloic acid (59)	Algeria	[15]
Cupressic Acid (60)	Algeria	[15]
Isocupressic acid (61)	Algeria	[15]
Torulosol (62)	Algeria	[15]
Agathadiol (63)	Algeria	[15]
Torulosal (64)	Algeria	[15]
Totarol (65)	Algeria	[22]
Pimaric acid (66)	Algeria	[22]
3β -Cycloartenol (67)	Cameroon	[16]
	Egypt	[27]
Cycloart-12,25-dien-3 <i>β</i> -ol (68)	Cameroon	[32, 33]
Ambonic acid (69)	Cameroon	[16]
	Nigeria	[34]
Ambolic acid (70)	Cameroon	[16, 33]
Mangiferonic acid (71)	Cameroon	[16, 33]
	Nigeria	[34]
27-Hydroxymangiferonic acid (72)	Cameroon	[33]
Mangiferolic acid (73)	Cameroon	[16]
3β -Cycloartenol-26-oic acid (74)	Egypt	[27]
3α-Cycloartenol-26-oic acid (75)	Egypt	[27]
Isomangiferolic acid (76)	Cameroon	[16]
Methyl-3 β ,27-dihydroxycycloart-24-en-26-oate (77)	Cameroon	[33]
Betulinaldehyde (78)	Cameroon	[17]
Betulin (79)	Cameroon	[33]
Lupenone (80)	Cameroon	[17, 32]
	Congo	[17]
Lupeol (81)	Cameroon	[16, 32]
Lupeol acetate (82)	Cameroon	[17, 32]
β-Amyrin (83)	Cameroon	[16, 17]
β-Amyrin acetate (84)	Egypt	[27]
	Cameroon	[17]
3α -Hydroxy-olean-12-en-30-ol (85)	Cameroon	[17]
Erythrodiol (86)	Cameroon	[17, 32]
α-Amyrin (87)	Cameroon	[16,17]
	Nigeria	[34]

α-Amyrone (88)	Cameroon	[17]
25-Cyclopropyl-3 β -hydroxyurs-12-ene (89)	Cameroon	[32]
Pseudotaraxasterol acetate (90)	Cameroon	[17]
Taraxasterol acetate (91)	Cameroon	[17]
Lanosterol (92)	Cameroon	[17]
3β -Hydroxylanostan-9,24-dien-21-oic acid (93)	Cameroon	[33]
β -Sitosterol (94)	Cameroon	[33]
Bacchara-12,21-dien-3 β -ol (95)	Cameroon	[17]

1344	Table 4 Phenolic 1	ipids	isolated	from	African	propolis

3-Undecyl phenol (96)Cameroon[16]3-Tetradecylphenol (97)Cameroon[16]3-Pentadecylphenol (98)Cameroon[16]3-Hexadecylphenol (99)Cameroon[16]3-Heptadecylphenol (100)Cameroon[16]3-Nonadecylphenol (101)Cameroon[16]3-((10'Z)-Pentadecenyl)-phenol (102)Cameroon[16]3-((12'Z)-Pentadecenyl)-phenol (103)Cameroon[16]3-((12'Z)-Heptadecenyl)-phenol (104)Cameroon[16]3-((12'Z)-Heptadecenyl)-phenol (105)Cameroon[16]3-((14'Z)-Heptadecenyl)-phenol (106)Cameroon[16]3-((14'Z)-Nonadecenyl)-phenol (107)Cameroon[16]3-((14'Z)-Nonadecenyl)-phenol (108)Cameroon[16]5-Pentadecylresorcinol (110)Cameroon[16]5-Heptadecylresorcinol (110)Cameroon[16]5-((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon[16]5-((10'Z)-Heptadecenyl)-resorcinol (113)Cameroon[16]5-((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon[16]5-((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon[16]5-((14'Z)-Heptadecenyl)-resorcinol (115)Cameroon[16]5-((14'Z)-Heptadecenyl)-resorcinol (116)Cameroon[16]5-((14'Z)-Heptadecenyl)-resorcinol (116)Cameroon[16]5-((14'Z)-Heptadecenyl)-resorcinol (116)Cameroon[16]5-((14'Z)-Nonadecenyl)-resorcinol (116)Cameroon[16]5-((14'Z)-Nonadecenyl)-resorcinol (116)Cameroon[16] </th <th>Compound</th> <th>Origin</th> <th>Refs.</th>	Compound	Origin	Refs.
3-Pentadecylphenol (98)Cameroon [16] 3 -Hexadecylphenol (99)Cameroon [16] 3 -Heptadecylphenol (100)Cameroon [16] 3 -Nonadecylphenol (101)Cameroon [16] 3 -((10'Z)-Pentadecenyl)-phenol (102)Cameroon [16] 3 -((12'Z)-Pentadecenyl)-phenol (103)Cameroon [16] 3 -((12'Z)-Heptadecenyl)-phenol (104)Cameroon [16] 3 -((12'Z)-Heptadecenyl)-phenol (105)Cameroon [16] 3 -((14'Z)-Heptadecenyl)-phenol (106)Cameroon [16] 3 -((14'Z)-Nonadecenyl)-phenol (107)Cameroon [16] 3 -((14'Z)-Nonadecenyl)-phenol (108)Cameroon [16] 5 -Pentadecylresorcinol (109)Cameroon [16] 5 -Heptadecylresorcinol (110)Cameroon [16] 5 -((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon [16] 5 -((10'Z)-Heptadecenyl)-resorcinol (113)Cameroon [16] 5 -((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16] 5 -((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16] 5 -((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	3-Undecyl phenol (96)	Cameroon	[16]
3-Hexadecylphenol (99)Cameroon [16] 3 -Heptadecylphenol (100)Cameroon [16] 3 -Nonadecylphenol (101)Cameroon [16] 3 -((10'Z)-Pentadecenyl)-phenol (102)Cameroon [16] 3 -((12'Z)-Pentadecenyl)-phenol (103)Cameroon [16] 3 -((12'Z)-Heptadecenyl)-phenol (104)Cameroon [16] 3 -((12'Z)-Heptadecenyl)-phenol (105)Cameroon [16] 3 -((14'Z)-Heptadecenyl)-phenol (106)Cameroon [16] 3 -((14'Z)-Heptadecenyl)-phenol (107)Cameroon [16] 3 -((14'Z)-Nonadecenyl)-phenol (108)Cameroon [16] 5 -Pentadecylresorcinol (109)Cameroon [16] 5 -Heptadecylresorcinol (110)Cameroon [16] 5 -Heptadecylresorcinol (111)Cameroon [16] 5 -((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon [16] 5 -((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16] 5 -((11'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (116)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (116)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (116)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (116)Cameroon [16] 5 -((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	3-Tetradecylphenol (97)	Cameroon	[16]
3-Heptadecylphenol (100)Cameroon [16] 3 -Nonadecylphenol (101)Cameroon [16] 3 -((10'Z)-Pentadecenyl)-phenol (102)Cameroon [16] 3 -((12'Z)-Pentadecenyl)-phenol (103)Cameroon [16] 3 -((12'Z)-Heptadecenyl)-phenol (104)Cameroon [16] 3 -((12'Z)-Heptadecenyl)-phenol (105)Cameroon [16] 3 -((14'Z)-Heptadecenyl)-phenol (106)Cameroon [16] 3 -((14'Z)-Heptadecenyl)-phenol (107)Cameroon [16] 3 -((14'Z)-Nonadecenyl)-phenol (107)Cameroon [16] 3 -((14'Z)-Nonadecenyl)-phenol (108)Cameroon [16] 5 -Pentadecylresorcinol (109)Cameroon [16] 5 -Hexadecylresorcinol (110)Cameroon [16] 5 -((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon [16] 5 -((11'Z)-Heptadecenyl)-resorcinol (113)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16] 5 -((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	3-Pentadecylphenol (98)	Cameroon	[16]
3-Nonadecylphenol (101)Cameroon [16] 3 -((10'Z)-Pentadecenyl)-phenol (102)Cameroon [16] 3 -((12'Z)-Pentadecenyl)-phenol (103)Cameroon [16] 3 -((12'Z)-Heptadecenyl)-phenol (104)Cameroon [16] 3 -((12'Z)-Heptadecenyl)-phenol (105)Cameroon [16] 3 -((14'Z)-Heptadecenyl)-phenol (106)Cameroon [16] 3 -((14'Z)-Heptadecenyl)-phenol (107)Cameroon [16] 3 -((14'Z)-Nonadecenyl)-phenol (107)Cameroon [16] 3 -((14'Z)-Nonadecenyl)-phenol (108)Cameroon [16] 5 -Pentadecylresorcinol (109)Cameroon [16] 5 -Hexadecylresorcinol (110)Cameroon [16] 5 -Heptadecylresorcinol (111)Cameroon [16] 5 -((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon [16] 5 -((11'Z)-Heptadecenyl)-resorcinol (113)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16] 5 -((14'Z)-Heptadecenyl)-resorcinol (116)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16] 5 -((14'Z)-Heptadecenyl)-resorcinol (116)Cameroon [16]	3-Hexadecylphenol (99)	Cameroon	[16]
3-((10'Z)-Pentadecenyl)-phenol (102)Cameroon[16] $3-((12'Z)$ -Pentadecenyl)-phenol (103)Cameroon[16] $3-((12'Z)$ -Heptadecenyl)-phenol (104)Cameroon[16] $3-((12'Z)$ -Heptadecenyl)-phenol (105)Cameroon[16] $3-((14'Z)$ -Heptadecenyl)-phenol (106)Cameroon[16] $3-((14'Z)$ -Heptadecenyl)-phenol (106)Cameroon[16] $3-((14'Z)$ -Nonadecenyl)-phenol (107)Cameroon[16] $3-((14'Z)$ -Nonadecenyl)-phenol (108)Cameroon[16] $5-((14'Z)$ -Nonadecenyl)-phenol (108)Cameroon[16] $5-Heptadecylresorcinol (109)$ Cameroon[16] $5-Heptadecylresorcinol (110)$ Cameroon[16] $5-((10'Z)$ -Pentadecenyl)-resorcinol (112)Cameroon[16] $5-((10'Z)$ -Heptadecenyl)-resorcinol (113)Cameroon[16] $5-((11'Z)$ -Heptadecenyl)-resorcinol (114)Cameroon[16] $5-((12'Z)$ -Heptadecenyl)-resorcinol (115)Cameroon[16] $5-((14'Z)$ -Hheptadecenyl)-resorcinol (116)Cameroon[16] $5-((14'Z)$ -Heptadecenyl)-resorcinol (116)Cameroon[16]	3-Heptadecylphenol (100)	Cameroon	[16]
3-((12'Z)-Pentadecenyl)-phenol (103)Cameroon [16] $3-((12'Z)$ -Heptadecenyl)-phenol (104)Cameroon [16] $3-((12'Z)$ -Heptadecenyl)-phenol (105)Cameroon [16] $3-((14'Z)$ -Heptadecenyl)-phenol (106)Cameroon [16] $3-((14'Z)$ -Nonadecenyl)-phenol (107)Cameroon [16] $3-((14'Z)$ -Nonadecenyl)-phenol (107)Cameroon [16] $3-((14'Z)$ -Nonadecenyl)-phenol (108)Cameroon [16] 5 -Pentadecylresorcinol (109)Cameroon [16] 5 -Hexadecylresorcinol (110)Cameroon [16] 5 -Heptadecylresorcinol (111)Cameroon [16] $5-((10'Z)$ -Pentadecenyl)-resorcinol (112)Cameroon [16] $5-((11'Z)$ -Heptadecenyl)-resorcinol (113)Cameroon [16] $5-((11'Z)$ -Heptadecenyl)-resorcinol (114)Cameroon [16] $5-((12'Z)$ -Heptadecenyl)-resorcinol (115)Cameroon [16] $5-((14'Z)$ -Heptadecenyl)-resorcinol (116)Cameroon [16] $5-((14'Z)$ -Heptadecenyl)-resorcinol (116)Cameroon [16] $5-((14'Z)$ -Heptadecenyl)-resorcinol (116)Cameroon [16]	3-Nonadecylphenol (101)	Cameroon	[16]
3-((8'Z)-Heptadecenyl)-phenol (104)Cameroon [16] $3-((12'Z)-Heptadecenyl)-phenol (105)$ Cameroon [16] $3-((14'Z)-Heptadecenyl)-phenol (106)$ Cameroon [16] $3-((13'Z)-Nonadecenyl)-phenol (107)$ Cameroon [16] $3-((14'Z)-Nonadecenyl)-phenol (108)$ Cameroon [16] $3-((14'Z)-Nonadecenyl)-phenol (108)$ Cameroon [16] $5-Pentadecylresorcinol (109)$ Cameroon [16] $5-Heptadecylresorcinol (110)$ Cameroon [16] $5-Heptadecylresorcinol (111)$ Cameroon [16] $5-((10'Z)-Pentadecenyl)-resorcinol (112)$ Cameroon [16] $5-((12'Z)-Heptadecenyl)-resorcinol (113)$ Cameroon [16] $5-((11'Z)-Heptadecenyl)-resorcinol (114)$ Cameroon [16] $5-((14'Z)-Heptadecenyl)-resorcinol (115)$ Cameroon [16] $5-((14'Z)-Heptadecenyl)-resorcinol (116)$ Cameroon [16] $5-((14'Z)-Heptadecenyl)-resorcinol (116)$ Cameroon [16] $5-((14'Z)-Heptadecenyl)-resorcinol (116)$ Cameroon [16] $5-((14'Z)-Heptadecenyl)-resorcinol (116)$ Cameroon [16]	3-((10'Z)-Pentadecenyl)-phenol (102)	Cameroon	[16]
3-((12'Z)-Heptadecenyl)-phenol (105)Cameroon [16] $3-((14'Z)-Heptadecenyl)-phenol (106)$ Cameroon [16] $3-((14'Z)-Nonadecenyl)-phenol (107)$ Cameroon [16] $3-((14'Z)-Nonadecenyl)-phenol (108)$ Cameroon [16] $3-((14'Z)-Nonadecenyl)-phenol (108)$ Cameroon [16] $5-Pentadecylresorcinol (109)$ Cameroon [16] $5-Hexadecylresorcinol (110)$ Cameroon [16] $5-Heptadecylresorcinol (111)$ Cameroon [16] $5-((10'Z)-Pentadecenyl)-resorcinol (112)$ Cameroon [16] $5-((11'Z)-Heptadecenyl)-resorcinol (113)$ Cameroon [16] $5-((11'Z)-Heptadecenyl)-resorcinol (114)$ Cameroon [16] $5-((12'Z)-Heptadecenyl)-resorcinol (115)$ Cameroon [16] $5-((14'Z)-Hheptadecenyl)-resorcinol (116)$ Cameroon [16] $5-((14'Z)-Hheptadecenyl)-resorcinol (116)$ Cameroon [16]	3-((12'Z)-Pentadecenyl)-phenol (103)	Cameroon	[16]
3-((14'Z)-Heptadecenyl)-phenol (106)Cameroon [16] $3-((13'Z)-Nonadecenyl)-phenol (107)$ Cameroon [16] $3-((14'Z)-Nonadecenyl)-phenol (108)$ Cameroon [16] $5-Pentadecylresorcinol (109)$ Cameroon [16] $5-Heptadecylresorcinol (110)$ Cameroon [16] $5-Heptadecylresorcinol (111)$ Cameroon [16] $5-((10'Z)-Pentadecenyl)-resorcinol (112)$ Cameroon [16] $5-((10'Z)-Pentadecenyl)-resorcinol (113)$ Cameroon [16] $5-((11'Z)-Heptadecenyl)-resorcinol (114)$ Cameroon [16] $5-((12'Z)-Heptadecenyl)-resorcinol (115)$ Cameroon [16] $5-((14'Z)-Hheptadecenyl)-resorcinol (116)$ Cameroon [16]	3-((8'Z)-Heptadecenyl)-phenol (104)	Cameroon	[16]
3-((13'Z)-Nonadecenyl)-phenol (107)Cameroon [16] $3-((14'Z)-Nonadecenyl)-phenol (108)$ Cameroon [16] $5-Pentadecylresorcinol (109)$ Cameroon [16] $5-Hexadecylresorcinol (110)$ Cameroon [16] $5-Heptadecylresorcinol (111)$ Cameroon [16] $5-((10'Z)-Pentadecenyl)-resorcinol (112)$ Cameroon [16] $5-((10'Z)-Pentadecenyl)-resorcinol (113)$ Cameroon [16] $5-((11'Z)-Heptadecenyl)-resorcinol (114)$ Cameroon [16] $5-((12'Z)-Heptadecenyl)-resorcinol (115)$ Cameroon [16] $5-((14'Z)-Hheptadecenyl)-resorcinol (116)$ Cameroon [16]	3-((12'Z)-Heptadecenyl)-phenol (105)	Cameroon	[16]
3-((14'Z)-Nonadecenyl)-phenol (108)Cameroon [16] 5 -Pentadecylresorcinol (109)Cameroon [16] 5 -Hexadecylresorcinol (110)Cameroon [16] 5 -Heptadecylresorcinol (111)Cameroon [16] 5 -((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon [16] 5 -((8'Z)-Heptadecenyl)-resorcinol (113)Cameroon [16] 5 -((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16] 5 -((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16] 5 -((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	3-((14'Z)-Heptadecenyl)-phenol (106)	Cameroon	[16]
5-Pentadecylresorcinol (109)Cameroon [16]5-Hexadecylresorcinol (110)Cameroon [16]5-Heptadecylresorcinol (111)Cameroon [16]5-((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon [16]5-((8'Z)-Heptadecenyl)-resorcinol (113)Cameroon [16]5-((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16]5-((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16]5-((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	3-((13'Z)-Nonadecenyl)-phenol (107)	Cameroon	[16]
5-Hexadecylresorcinol (110)Cameroon [16]5-Heptadecylresorcinol (111)Cameroon [16]5-((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon [16]5-((8'Z)-Heptadecenyl)-resorcinol (113)Cameroon [16]5-((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16]5-((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16]5-((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	3-((14'Z)-Nonadecenyl)-phenol (108)	Cameroon	[16]
5-Heptadecylresorcinol (111)Cameroon [16] $5-((10'Z)$ -Pentadecenyl)-resorcinol (112)Cameroon [16] $5-((8'Z)$ -Heptadecenyl)-resorcinol (113)Cameroon [16] $5-((11'Z)$ -Heptadecenyl)-resorcinol (114)Cameroon [16] $5-((12'Z)$ -Heptadecenyl)-resorcinol (115)Cameroon [16] $5-((14'Z)$ -Hheptadecenyl)-resorcinol (116)Cameroon [16]	5-Pentadecylresorcinol (109)	Cameroon	[16]
5-((10'Z)-Pentadecenyl)-resorcinol (112)Cameroon [16]5-((8'Z)-Heptadecenyl)-resorcinol (113)Cameroon [16]5-((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16]5-((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16]5-((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	5-Hexadecylresorcinol (110)	Cameroon	[16]
5-((8'Z)-Heptadecenyl)-resorcinol (113)Cameroon [16]5-((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16]5-((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16]5-((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	5-Heptadecylresorcinol (111)	Cameroon	[16]
5-((11'Z)-Heptadecenyl)-resorcinol (114)Cameroon [16]5-((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16]5-((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	5-((10'Z)-Pentadecenyl)-resorcinol (112)	Cameroon	[16]
5-((12'Z)-Heptadecenyl)-resorcinol (115)Cameroon [16]5-((14'Z)-Hheptadecenyl)-resorcinol (116)Cameroon [16]	5-((8'Z)-Heptadecenyl)-resorcinol (113)	Cameroon	[16]
5-((14'Z)-Hheptadecenyl)-resorcinol (116) Cameroon [16]	5-((11'Z)-Heptadecenyl)-resorcinol (114)	Cameroon	[16]
	5-((12'Z)-Heptadecenyl)-resorcinol (115)	Cameroon	[16]
5 ((14'Z) Nonadecenvel) resorging (117) Cameroon [16]	5-((14'Z)-Hheptadecenyl)-resorcinol (116)	Cameroon	[16]
3-((14 Z)-Nohadecenyi)-resolemot (117) Cameroon [10]	5-((14'Z)-Nonadecenyl)-resorcinol (117)	Cameroon	[16]

1364 Table 5 Miscellaneous compounds isolated from African propolis1365

Compound	Origin	Refs.
Tyrosol (129)	Algeria	[22]
1'-O-Eicosanyl glycerol (130)	Cameroon	[33]
Deperoxidised derivative of plukenetione C (131)	Cameroon	[35]
Medicarpin (132)	Nigeria	[29]
(+)-Sesamin (133)	Libya	[36]
Riverinol (134)	Nigeria	[29]
Tetrahydrojusticidin B (135)	Kenya	[13]
6-Methoxydiphyllin (136)	Kenya	[13]
Phyllamyricin C (137)	Kenya	[13]
(<i>E</i>)-Resveratrol (138)	Algeria	[22]
5-((<i>E</i>)-3,5-Dihydroxystyryl)-3-((<i>E</i>)-3,7-dimethylocta-	Ghana	[35]
2,6-dien-1-yl)benzene-1,2-diol (139)		
(E)-5-(2-(8-Hydroxy-2-methyl-2-(4-methylpent-3-en-1-	Ghana	[35]
yl)-2 <i>H</i> -chromen-6-yl)vinyl)-2-(3-methylbut-2-en-1-yl)		
benzene-1,3-diol (140)		
Schweinfurthin A (141)	Kenya	[13]
Schweinfurthin B (142)	Kenya	[13]
Gerontoxanthone H (143)	Nigeria	[34]
6-Deoxy-γ-mangostin (144)	Nigeria	[34]
1,7-Dihydroxy-3-O-(3-methylbut-2-enyl)-8-(3-	Nigeria	[34]
methylbut-2-enyl) xanthone (145)		

1385Table 6 Biological studies performed on phytochemicals from African

1386 propolis

Compound	Testad Dialogical	Refs.
Compound	Tested Biological	Reis.
Coffeie said (1)	Activity Antimicrobial	[27]
Caffeic acid (1)	Anti-oxidant	[37]
		[13, 38–40]
	Antifibrinolytic,	[23]
	anticollagenolytic	<u>[</u>
Phenethyl-(<i>E</i>)-caffeate (CAPE) (7)	Antimicrobial	[41]
	Anti-oxidant	[13, 38]
	Anti-inflammatory	[42]
	Anticancer	[43]
<i>p</i> -coumaric acid (8)	Antimicrobial	[44]
Caftaric acid (12)	Antifibrinolytic	[23]
Caftaric acid methyl ester (13)	Antifibrinolytic	[23]
(+)-Chicoric acid (14)	Antifibrinolytic,	[23]
	anticollagenolytic	
(+)-Chicoric acid methyl ester	Antifibrinolytic,	[23]
(15)	anticollagenolytic	
Acacetin (16)	Anticancer	[45-47]
	Aromatase inhibition	[48]
Quercetin (17)	Antimicrobial	[41]
	Anti-oxidant	[22, 38, 49]
	Anti-inflammatory	[41]
	Anticancer	[50]
	Myeloperoxidase	[22]
	inhibition	
Kaempferol (19)	Anti-oxidant	[38]
Chrysin (20)	Antimicrobial	[51, 52]
•	Anti-oxidant	[27]
	Anti-inflammatory	[27]
	Anticancer	[27]
Tectochrysin (21)	Anti-oxidant	[27]
- · · /	Anti-inflammatory	[53]
Galangin (22)	Antimicrobial	[51, 54]
	Anti-inflammatory	[41]
	Anticancer	[55, 56]
Myricetin-3,7,4',5'-tetramethyl	Anticancer	[57]
ether (24)		[[[]]]
Apigenin (25)	Estrogenic	[58]
Pectolinarigenin (26)	Anti-inflammatory	[59]

	Anticancer	[60, 61]
	Hepatoprotective	[62]
Ladanein (28)	Anticancer	[63]
	Antiviral	[64]
Macarangin (29)	Antimicrobial	[13]
	Antiprotozoal	[29]
	Anti-oxidant	[13]
Izalpinin (30)	Anti-oxidant	[65, 66]
	Anti-inflammatory	[53]
	Antimuscarinic	[66]
Pachypodol (31)	Antiviral	[67]
	Anticancer	[50, 68, 69]
6-Prenylnaringenin (36)	Tyrosinase inhibition	[70]
• • · · · · · · · · · · · · · · · ·	Anticancer	[71, 72]
	Antiprotozoal	[29]
8-Prenylnaringenin (37)	Antimicrobial	[73]
	Antiprotozoal	[29]
	Anti-oxidant	[74]
	Anticancer	[71, 72]
	Estrogenic	[75]
Pinocembrin (38)	Antimicrobial	[37, 51, 52]
	Anti-oxidant	[27]
	Neuroprotective	[76]
	Anti-inflammatory	[76]
	Anti-apoptotic	[76]
	Aromatase inhibition,	[48]
	estrogenic	
	Antiprotozoal	[29]
Pinobanksin (39)	Antimicrobial	[37, 52]
Pinobanksin-3-acetate (40)	Antimicrobial	[51]
Pinostrobin (42)	Antimicrobial	[52]
	Phosphodiesterase and	[27]
	acetylcholinesterase	
	inhibition	
	Anti-oxidant	[27]
	Anticancer	[77]
Isonymphaeol C (43)	Antimicrobial	[30]
Isonymphaeol B (44)	Anti-oxidant	[78, 79]
• • ` '	Anticancer	[80]
Isonymphaeol D (45)	Antimicrobial	[31]
Nymphaeol B (46)	Antimicrobial	[40, 81]
	Antiprotozoal	[29, 82]
	Anti-oxidant	[40, 78]

	Anticancer	[80, 82]
Lonchocarpol A (47)	Antimicrobial	[83]
	Antiprotozoal	[84]
	Anti-oxidant	[74]
	Anti-inflammatory	[85]
	Anticancer	[74]
Liquiritigenin (51)	Anti-inflammatory	[86]
	Xanthine oxidase	[87]
	inhibition	
	Estrogenic	[88]
Genistein (52)	Estrogenic	[58]
Calycosin (53)	Antiprotozoal	[29]
(3 <i>S</i>)-Vestitol (54)	Antiprotozoal	[29, 89]
Cistadiol (57)	Antiprotozoal	[90]
Isoagathotal (58)	Antimicrobial	[52]
	Anticancer	[77]
Cupressic Acid (60)	Antimicrobial, anti-	[91]
	oxidant	
	Hepatoprotective	[91]
Isocupressic acid (61)	Antimicrobial	[52, 91]
	Anti-oxidant	[91]
	Anticancer	[77, 92]
	Hepatoprotective	[91]
Agathadiol (63)	Antimicrobial	[52]
	Anticancer	[77]
Torulosal (64)	Antimicrobial	[93]
Totarol (65)	Antimicrobial	[52]
Pimaric acid (66)	Retinoic acid receptor	[94]
	activation	
	Anti-atherosclerotic	[95]
3β -Cycloartenol (67)	Anti-oxidant	[27]
	Acetylcholinesterase	[27]
	inhibition	
Cycloart-12,25-dien-3β-ol (68)	Antimicrobial	[32]
Ambonic acid (69)	Antiprotozoal	[34]
Mangiferonic acid (71)	Antiprotozoal	[34]
	Antimicrobial	[96]
	Anti-oxidant	[33, 96]
	Anticancer	[96, 97]
Mangiferolic acid (73)	Anticancer	[97]
3β -Cycloartenol-26-oic acid (74)	Anti-oxidant	[27]
	Acetylcholinesterase	[27]
	inhibition	

	Phosphodiesterase	[27]
	inhibition	
3α -Cycloartenol-26-oic acid (75)	Anti-oxidant	[27]
	Acetylcholinesterase	[27]
	inhibition	
Isomangiferolic acid (76)	Anticancer	[97]
Methyl- 3β ,27-dihydroxycycloart-	Anti-oxidant	[33]
24-en-26-oate (77)		
Betulin (79)	Anticancer	[98]
	Immunomodulatory	[99]
	Anti-inflammatory	[100]
	Antiprotozoal	[100]
	Antimicrobial	[100]
	Antiviral	[100]
		[101]
Lupenone (80)	Anti-inflammatory	[101]
	Anti-oxidant	[96]
L 1(01)	Anticancer	[96]
Lupeol (81)	Antiporotozoal	[89]
	Antimicrobial, anti-	[96]
	oxidant	1001
	Anticancer	[98]
β -Aamyrin (83)	Antiprotozoal	[89]
β-Amyrin acetate (84)	Anti-oxidant	[27]
Erythrodiol (86)	Antimicrobial	[32, 44]
	Anti-oxidant	[102]
	Anticancer	[102, 103]
	Antiplatelet	[104]
α-Amyrin (87)	Anti-inflammatory	[101]
	Antiprotozoal	[34]
25-Cyclopropyl-3 β -hydroxyurs- 12-ene (89)	Antimicrobial	[32]
3β -Hydroxylanostan-9,24-dien- 21-oic acid (93)	Anti-oxidant	[33]
β -Sitosterol (94)	Anti-inflammatory	[105]
	Analgesic, antiparasitic,	[105]
	antimutagenic	
	Anticancer	[107]
	Antihyperglycemic	[108]
	Immunomodulatory	[109]
	Antifertility	[109]
	Anti-oxidant	[110]

	Antimicrobial	[112]
3-((10'Z)-Pentadecenyl)-phenol	Acetylcholinesterase	[113]
(102)	inhibition	
5-Pentadecylresorcinol (109)	Anti-inflammatory	[114]
- ``` <i>`</i>	Anticancer	[115–117]
	DNA-cleaving activity	[118]
5-Heptadecylresorcinol (111)	Antiviral	[119]
	Anti-inflammatory	[114]
	Anticancer	[120]
5-((10'Z))-Pentadecenyl)-	Cytochrome P450s, P-	[121]
resorcinol (112)	glycoprotein and	
	pregnane X receptor	
	inhibition	
5-((8'Z)-Heptadecenyl)-	Antimicrobial	[122]
resorcinol (113)	DNA-cleaving activity	[118]
5-((11'Z)-Heptadecenyl)-	Anti-inflammatory	[114]
resorcinol (114)		
5-((12'Z)-Heptadecenyl)-	Anticancer	[123]
resorcinol (115)		
5-((14'Z)-Nonadecenyl)-	Antiviral	[119]
resorcinol (116)	Anticancer	[120]
1'-O-Eicosanyl glycerol (130)	Anti-oxidant	[33]
Deperoxidised derivative of	Antiprotozoal	[35]
plukenetione C (131)		
Medicarpin (132)	Antiprotozoal	[29, 89]
(+)-Sesamin (133)	Antiprotozoal	[36]
	Anti-inflammatory	[124, 125]
Riverinol (134)	Antiprotozoal	[29]
6-Methoxydiphyllin (136)	Antimicrobial	[13]
Phyllamyricin C (137)	Antimicrobial	[13]
	Anti-inflammatory	[126]
(<i>E</i>)-Resveratrol (138)	Cancer	[127]
	chemopreventive	
	Anti-inflammatory	[128]
	Cardioprotective	[129]
	Anti-obesity	[130]
5-((<i>E</i>)-3,5-Dihydroxystyryl)-3-	Antiprotozoal	[35]
((E)-3,7-dimethylocta-2,6-dien-1-		
yl)benzene-1,2-diol (139)		
(E)-5-(2-(8-Hydroxy-2-methyl-2-	Antiprotozoal	[35]
(4-methylpent-3-en-1-yl)-2H-		
chromen-6-yl) vinyl)-2-(3-		
methylbut-2-en-1-yl)benzene-1,3-		

diol (140)		
Schweinfurthin A (141)	Antimicrobial	[13]
	Anticancer	[131, 132]
Schweinfurthin B (142)	Antimicrobial	[13]
	Anticancer	[131]
Gerontoxanthone H (143)	Antiprotozoal	[34]
6-Ddeoxy-γ-mangostin (144)	Antiprotozoal	[34]
1,7-Dihydroxy-3- <i>O</i> -(3-	Antiprotozoal	[34]
methylbut-2-enyl)-8-(3-		
methylbut-2-enyl)xanthone (145)		