Skip to main content

Use of Carbonic Anhydrase IX Inhibitors for Selective Delivery of Attached Drugs to Solid Tumors

  • Chapter
  • First Online:
Carbonic Anhydrase as Drug Target

Abstract

Central to the goal of precision medicine lies the ability to target an effective drug specifically to diseased cells, thereby avoiding the uptake and collateral toxicity that arises when good drugs accumulate in healthy cells. While antibody-drug conjugates (ADCs) have pioneered many efforts in this field, small molecule drug conjugates (SMDCs) with high specificities for diseased cell types are now displaying equal if not greater potential because of their improved abilities to penetrate solid tissues. For both technologies, however, success has invariably depended on an ability to identify a receptor that is overexpressed on the desired pathologic cell (e.g., cancer cell, virus-infected cell, inflammatory cell, etc.), but absent or weakly expressed on all other healthy cells. While few cell surface receptors can satisfy these criteria, one that has attracted considerable recent attention has been carbonic anhydrase IX (CA IX), a cell surface enzyme that is expressed in virtually all hypoxic tissues, but minimally expressed, if at all, in healthy tissues. Because most solid tumors are hypoxic, CA IX-targeted SMDCs are now being explored as broad-spectrum agents for the diagnosis and therapy of CA IX-expressing malignancies. The following chapter highlights some of the groundbreaking research in this area and provides key insights into how the design of a CA IX-targeted SMDC can impact efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marks, I.S., et al.: Development of a small molecule tubulysin B conjugate for treatment of carbonic anhydrase IX receptor expressing cancers. Mol. Pharm. 15, 2289–2296 (2018)

    Article  CAS  Google Scholar 

  2. Roy, J., Kaake, M., Srinivasarao, M., Low, P.S.: Targeted tubulysin B hydrazide conjugate for the treatment of luteinizing hormone-releasing hormone receptor-positive cancers. Bioconjug. Chem. 29, 2208–2214 (2018)

    Article  CAS  Google Scholar 

  3. Shum, C.F., et al.: Novel use of folate-targeted intraoperative fluorescence, OTL38, in Robot-assisted laparoscopic partial nephrectomy: report of the first three cases. J. Endourol. Case Rep. 2, 189–197 (2016)

    Article  Google Scholar 

  4. Thurber, G.M., Schmidt, M.M., Wittrup, K.D.: Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug Deliv. Rev. 60, 1421–1434 (2008)

    Article  CAS  Google Scholar 

  5. Vlashi, E., Kelderhouse, L.E., Sturgis, J.E., Low, P.S.: Effect of folate-targeted nanoparticle size on their rates of penetration into solid tumors. ACS Nano 7, 8573–8582 (2013)

    Article  CAS  Google Scholar 

  6. Mahalingam, S.M., et al.: Evaluation of novel tumor-targeted near-infrared probe for fluorescence-guided surgery of cancer. J. Med. Chem. 61(21), 9637–9646 (2018)

    Article  CAS  Google Scholar 

  7. Paulos, C.M.: Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Mol. Pharmacol. 66, 1406–1414 (2004)

    Article  CAS  Google Scholar 

  8. Paganelli, G., De Giorgi, U.: [177 Lu]-PSMA-617 for targeted prostate cancer treatment: a magic bullet? Lancet Oncol. 19, 725–726 (2018)

    Article  CAS  Google Scholar 

  9. Parker, N., et al.: Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 338, 284–293 (2005)

    Article  CAS  Google Scholar 

  10. Ross, J.F., et al.: Folate receptor type β is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer 85, 348–357 (1999)

    Article  CAS  Google Scholar 

  11. Shen, J., et al.: Folate receptor-β constitutes a marker for human proinflammatory monocytes. J. Leukoc. Biol. 96, 563–570 (2014)

    Article  Google Scholar 

  12. Nakashima-Matsushita, N., et al.: Selective expression of folate receptor β and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis Rheum. 42, 1609–1616 (1999)

    Article  CAS  Google Scholar 

  13. Low, P.: Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev. 56, 1055–1058 (2004)

    Article  CAS  Google Scholar 

  14. Schupp, J.C., et al.: Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis. PLoS One 10(ed Ryffel, B.), e0116775 (2015)

    Google Scholar 

  15. Han, W., et al.: Molecular imaging of folate receptor β-positive macrophages during acute lung inflammation. Am. J. Respir. Cell Mol. Biol. 53, 50–59 (2015)

    Article  CAS  Google Scholar 

  16. Chia, J.J., Lu, T.T.: Update on macrophages and innate immunity in scleroderma. Curr. Opin. Rheumatol. 27, 530–536 (2015)

    Article  CAS  Google Scholar 

  17. Zhou, D., et al.: Critical involvement of macrophage infiltration in the development of Sjögren’s syndrome-associated dry eye. Am. J. Pathol. 181, 753–760 (2012)

    Article  CAS  Google Scholar 

  18. Wright, G.L., Haley, C., Beckett, M.L., Schellhammer, P.F.: Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol. Oncol. Semin. Orig. Investig. 1, 18–28 (1995)

    Article  Google Scholar 

  19. Heitkötter, B., et al.: Neovascular PSMA expression is a common feature in malignant neoplasms of the thyroid. Oncotarget 9(11), 9867–9874 (2018)

    Article  Google Scholar 

  20. Schmidt, L.H., et al.: Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer. PLoS One 12(ed Ahmad, A.), e0186280 (2017)

    Google Scholar 

  21. Stock, K., et al.: Neovascular prostate-specific membrane antigen expression is associated with improved overall survival under palliative chemotherapy in patients with pancreatic ductal adenocarcinoma. Biomed. Res. Int. 2017, 1–8 (2017)

    Article  Google Scholar 

  22. Silver, D.A., Pellicer, I., Fair, W.R., Heston, W.D., Cordon-Cardo, C.: Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 3, 81–85 (1997)

    CAS  Google Scholar 

  23. Smyth, L.G., et al.: Carbonic anhydrase IX expression in prostate cancer. Prostate Cancer Prostatic Dis. 13, 178–181 (2010)

    Article  CAS  Google Scholar 

  24. Genega, E.M., et al.: Carbonic anhydrase IX expression in renal neoplasms: correlation with tumor type and grade. Am. J. Clin. Pathol. 134, 873–879 (2010)

    Article  CAS  Google Scholar 

  25. İlie, M., et al.: High levels of carbonic anhydrase IX in tumour tissue and plasma are biomarkers of poor prognostic in patients with non-small cell lung cancer. Br. J. Cancer 102, 1627–1635 (2010)

    Article  Google Scholar 

  26. Loncaster, J.A., et al.: Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res. 61, 6394–6399 (2001)

    CAS  PubMed  Google Scholar 

  27. Ivanov, S., et al.: Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am. J. Pathol. 158, 905–919 (2001)

    Article  CAS  Google Scholar 

  28. Mboge, M., Mahon, B., McKenna, R., Frost, S.: Carbonic anhydrases: role in pH control and cancer. Metabolites 8, 19 (2018)

    Article  Google Scholar 

  29. Chrastina, A.: High cell density-mediated pericellular hypoxia is a crucial factor inducing expression of the intrinsic hypoxia marker CA IX in Vitro in HeLa cells. Neoplasma 50, 251–256 (2003)

    CAS  PubMed  Google Scholar 

  30. Mahalingam, S.M., Chu, H., Liu, X., Leamon, C.P., Low, P.S.: Carbonic anhydrase IX-targeted near-infrared dye for fluorescence imaging of hypoxic tumors. Bioconjug. Chem. 29, 3320–3331 (2018)

    Article  CAS  Google Scholar 

  31. Rami, M., et al.: Carbonic anhydrase inhibitors: design of membrane-impermeant copper(II) complexes of DTPA-, DOTA-, and TETA-tailed sulfonamides targeting the tumor-associated transmembrane isoform IX. ChemMedChem 3, 1780–1788 (2008)

    Article  CAS  Google Scholar 

  32. Srinivasarao, M., Low, P.S.: Ligand-targeted drug delivery. Chem. Rev. 117, 12133–12164 (2017)

    Article  CAS  Google Scholar 

  33. Srinivasarao, M., Galliford, C.V., Low, P.S.: Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 14, 203–219 (2015)

    Article  CAS  Google Scholar 

  34. Lau, J., et al.: Synthesis and evaluation of 18F-labeled tertiary benzenesulfonamides for imaging carbonic anhydrase IX expression in tumours with positron emission tomography. Bioorg. Med. Chem. Lett. 24, 3064–3068 (2014)

    Article  CAS  Google Scholar 

  35. Asakawa, C., et al.: Radiosynthesis of three [11C]ureido-substituted benzenesulfonamides as PET probes for carbonic anhydrase IX in tumors. Bioorg. Med. Chem. Lett. 21, 7017–7020 (2011)

    Article  CAS  Google Scholar 

  36. Lau, J., et al.: PET imaging of carbonic anhydrase IX expression of HT-29 tumor xenograft mice with 68Ga-labeled benzenesulfonamides. Mol. Pharm. 13, 1137–1146 (2016)

    Article  CAS  Google Scholar 

  37. Lau, J., et al.: Trimeric radiofluorinated sulfonamide derivatives to achieve in vivo selectivity for carbonic anhydrase IX-targeted PET imaging. J. Nucl. Med. 56, 1434–1440 (2015)

    Article  CAS  Google Scholar 

  38. Lu, G., et al.: Synthesis and SAR of novel Re/ 99mTc-labeled benzenesulfonamide carbonic anhydrase IX inhibitors for molecular imaging of tumor hypoxia. J. Med. Chem. 56, 510–520 (2013)

    Article  CAS  Google Scholar 

  39. Akurathi, V., et al.: Synthesis and biological evaluation of a 99mTc-labelled sulfonamide conjugate for in vivo visualization of carbonic anhydrase IX expression in tumor hypoxia. Nucl. Med. Biol. 37, 557–564 (2010)

    Article  CAS  Google Scholar 

  40. Can, D., et al.: [(Cp-R)M(CO)3] (M= Re or 99mTc) arylsulfonamide, arylsulfamide, and arylsulfamate conjugates for selective targeting of human carbonic anhydrase IX. Angew. Chem. Int. Ed. 51, 3354–3357 (2012)

    Article  CAS  Google Scholar 

  41. Lv, P.C., Putt, K.S., Low, P.S.: Evaluation of nonpeptidic ligand conjugates for SPECT imaging of hypoxic and carbonic anhydrase IX-expressing cancers. Bioconjug. Chem. 27, 1762–1769 (2016)

    Article  CAS  Google Scholar 

  42. Lv, P.C., Roy, J., Putt, K.S., Low, P. S.: Evaluation of a carbonic anhydrase IX-targeted near-infrared dye for fluorescence-guided surgery of hypoxic tumors. Mol. Pharm. 13, 1618–1625 (2016)

    Article  CAS  Google Scholar 

  43. Terada, T., Inui, K.i.: In: Current Topics in Membranes, pp. 257–274. Elsevier, Amsterdam (2012)

    Google Scholar 

  44. Lv, P.C., Roy, J., Putt, K.S., Low, P.S.: Evaluation of nonpeptidic ligand conjugates for the treatment of hypoxic and carbonic anhydrase IX-expressing cancers. Mol. Cancer Ther. 16, 453–460 (2017)

    Article  CAS  Google Scholar 

  45. Krall, N., Pretto, F., Mattarella, M., Muller, C., Neri, D.: A 99mTc-labeled ligand of carbonic anhydrase IX selectively targets renal cell carcinoma in vivo. J. Nucl. Med. 57, 943–949 (2016)

    Article  CAS  Google Scholar 

  46. Krall, N., et al.: A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors. Angew. Chem. Int. Ed. 53, 4231–4235 (2014)

    Article  CAS  Google Scholar 

  47. Krall, N., Pretto, F., Neri, D.: A bivalent small molecule-drug conjugate directed against carbonic anhydrase IX can elicit complete tumour regression in mice. Chem. Sci. 5, 3640 (2014)

    Article  CAS  Google Scholar 

  48. Reddy, J.A., et al.: Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic. Sci. Rep. 8(1), 8943 (2018)

    Article  Google Scholar 

  49. Fisher, R.E., et al.: Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors. J. Nucl. Med. 49, 899–906 (2008)

    Article  Google Scholar 

  50. Bao, B., et al.: In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia. PLoS One 7, e50860 (2012)

    Article  CAS  Google Scholar 

  51. Wichert, M., et al.: Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015)

    Article  CAS  Google Scholar 

  52. Leamon, C.P., et al.: Reducing undesirable hepatic clearance of a tumor-targeted vinca alkaloid via novel saccharopeptidic modifications. J. Pharmacol. Exp. Ther. 336, 336–343 (2011)

    Article  CAS  Google Scholar 

  53. Dudutienė, V., et al.: Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX. J. Med. Chem. 57, 9435–9446 (2014)

    Article  Google Scholar 

  54. Majmundar, A.J., Wong, W.J., Simon, M.C.: Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010)

    Article  CAS  Google Scholar 

  55. Morandi, A., Taddei, M.L., Chiarugi, P., Giannoni, E.: Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumors. Front. Oncol. 7, 40 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip S. Low .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gardeen, S., Low, P.S. (2019). Use of Carbonic Anhydrase IX Inhibitors for Selective Delivery of Attached Drugs to Solid Tumors. In: Matulis, D. (eds) Carbonic Anhydrase as Drug Target. Springer, Cham. https://doi.org/10.1007/978-3-030-12780-0_19

Download citation

Publish with us

Policies and ethics