Skip to main content

Nanoparticle-Cell Interactions: Overview of Uptake, Intracellular Fate and Induction of Cell Responses

  • Chapter
  • First Online:
Book cover Biological Responses to Nanoscale Particles

Abstract

The range of engineered nanoparticles (NPs) designed as specific carriers for biomedical applications, e.g. cell targeting and drug delivery, is still on the raise and the question on how NPs are interacting with single cells and sub-cellular structures remains important. The delivery to the cell surface as well as the interaction of NPs with cellular structures with possible subsequent response is highly influenced by various parameters such as (a) the physico-chemical properties of the NPs, (b) the cell and tissue type and (c) the intracellular fate of the NPs in the various organelles including biopersistence, exocytosis and/or transfer to other cells. The aim of this book chapter is to discuss, on the basis of existing literature, the interaction of NPs with single cells including the intracellular fate and their interference with signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gwinn, M.R., Vallyathan, V.: Nanoparticles: health effects—pros and cons. Env. Health Perspect. 114, 1818–1825 (2006)

    Google Scholar 

  2. Maynard, A.D., Aitken, R.J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., et al.: Safe handling of nanotechnology. Nature 444, 267–269 (2006)

    ADS  Google Scholar 

  3. ISO/TS 27687 (2008)

    Google Scholar 

  4. Alex, S., Tiwari, A.: Functionalized gold nanoparticles: synthesis, properties and applications—a review. J. Nanosci. Nanotechnol. 15, 1869–1894 (2015)

    Google Scholar 

  5. Pelaz, B., Alexiou, C., Alvarez-Puebla, R.A., Alves, F., Andrews, A.M., Ashraf, S., et al.: Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017)

    Google Scholar 

  6. Dahoumane, S.A., Jeffryes, C., Mechouet, M., Agathos, S.N.: Biosynthesis of inorganic nanoparticles: a fresh look at the control of shape, size and composition. Bioengineering (Basel) 4 (2017)

    Google Scholar 

  7. Drasler, B., Sayre, P., Steinhäuser, K.G., Petri-Fink, A., Rothen-Rutishauser, B.: In vitro approaches to assess the hazard of nanomaterials. NanoImpact 8, 99–116 (2017)

    Google Scholar 

  8. Vietti, G., Lison, D., van den Brule, S.: Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part. Fibre Toxicol. 13, 11 (2016)

    Google Scholar 

  9. Bourquin, J., Milosevic, A., Hauser, D., Lehner, R., Blank, F., Petri-Fink, A., et al.: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. (2018)

    Google Scholar 

  10. Urban, D.A., Rodriguez-Lorenzo, L., Balog, S., Kinnear, C., Rothen-Rutishauser, B., Petri-Fink, A.: Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf. B Biointerfaces 137, 39–49 (2016)

    Google Scholar 

  11. Moore, T.L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., et al.: Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44, 6287–6305 (2015)

    Google Scholar 

  12. Lynch, I., Cedervall, T., Lundqvist, M., Cabaleiro-Lago, C., Linse, S., Dawson, K.A.: The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv. Colloid Interface Sci. 134–135, 167–174 (2007)

    Google Scholar 

  13. Bertoli, F., Garry, D., Monopoli, M.P., Salvati, A., Dawson, K.A.: The intracellular destiny of the protein corona: a study on its cellular internalization and evolution. ACS Nano 10, 10471–10479 (2016)

    Google Scholar 

  14. Mahon, E., Salvati, A., Baldelli, B.F., Lynch, I., Dawson, K.A.: Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J. Control. Release 161, 164–174 (2012)

    Google Scholar 

  15. Schottler, S., Landfester, K., Mailander, V.: Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew. Chem. Int. Ed. Engl. 55, 8806–8815 (2016)

    Google Scholar 

  16. Docter, D., Westmeier, D., Markiewicz, M., Stolte, S., Knauer, S.K., Stauber, R.H.: The nanoparticle biomolecule corona: lessons learned - challenge accepted? Chem. Soc. Rev. 44, 6094–6121 (2015)

    Google Scholar 

  17. Frohlich, E.: The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine 7, 5577–5591 (2012)

    Google Scholar 

  18. Muhlfeld, C., Rothen-Rutishauser, B., Blank, F., Vanhecke, D., Ochs, M., Gehr, P.: Interactions of nanoparticles with pulmonary structures and cellular responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L817–L829 (2008)

    Google Scholar 

  19. Unfried, K., Albrecht, C., Klotz, L.O., von Mikecz, A., Grether-Beck, S., Schins, R.P.: Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1, 1–20 (2007)

    Google Scholar 

  20. Trimble, W.S., Grinstein, S.: Barriers to the free diffusion of proteins and lipids in the plasma membrane. J. Cell. Biol. 208, 259–271 (2015)

    Google Scholar 

  21. Alberts, B., Bray, D., Johnson, A, Lewis, J., Raff, M., Roberts, K., et al.: Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. Garland Publishing, Inc (1998)

    Google Scholar 

  22. Warren, G., Wickner, W.: Organelle inheritance. Cell 84, 395–400 (1996)

    Google Scholar 

  23. Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science (New York, N Y) 175, 720–731 (1972)

    ADS  Google Scholar 

  24. Ritchie, K., Spector, J.: Single molecule studies of molecular diffusion in cellular membranes: determining membrane structure. Biopolymers 87, 95–101 (2007)

    Google Scholar 

  25. Sonnino, S., Prinetti, A.: Membrane domains and the “lipid raft” concept. Curr. Med. Chem. 20, 4–21 (2013)

    Google Scholar 

  26. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997)

    ADS  Google Scholar 

  27. Hillaireau, H., Couvreur, P.: Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009)

    Google Scholar 

  28. Conner, S.D., Schmid, S.L.: Regulated portals of entry into the cell. Nature 422, 37–44 (2003)

    ADS  Google Scholar 

  29. Fytianos, K., Blank, F., Müller, L.: Cellular uptake mechanisms and detection of nanoparticle uptake by advanced imaging methods. In: Zellner, R., Gehr, P. (eds.) Biological Responses to Nanoscale Particles. Springer (2018)

    Google Scholar 

  30. Drasler, B., Vanhecke, D., Rodriguez-Lorenzo, L., Petri-Fink, A., Rothen-Rutishauser, B.: Quantifying nanoparticle cellular uptake: which method is best? Nanomedicine (Lond) 12, 1095–1099 (2017)

    Google Scholar 

  31. Elsaesser, A., Taylor, A., de Yanes, G.S., McKerr, G., Kim, E.M., O’Hare, E., et al.: Quantification of nanoparticle uptake by cells using microscopical and analytical techniques. Nanomedicine (Lond) 5, 1447–1457 (2010)

    Google Scholar 

  32. Feliu, N., Huhn, J., Zyuzin, M.V., Ashraf, S., Valdeperez, D., Masood, A., et al.: Quantitative uptake of colloidal particles by cell cultures. Sci. Total Environ. 568, 819–828 (2016)

    ADS  Google Scholar 

  33. Gottstein, C., Wu, G., Wong, B.J., Zasadzinski, J.A.: Precise quantification of nanoparticle internalization. ACS Nano 7, 4933–4945 (2013)

    Google Scholar 

  34. Vanhecke, D., Rodriguez-Lorenzo, L., Clift, M.J.D., Blank, F., Petri-Fink, A., Rothen-Rutishauser, B.: Quantification of nanoparticles at the single cell level—an overview about state-of-the art techniques and their limitations. Nanomedicine (London, England) 9, 1885–1900 (2014)

    Google Scholar 

  35. Oh, N., Park, J.H.: Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine 9(Suppl 1), 51–63 (2014)

    Google Scholar 

  36. Mahmoudi, M., Saeedi-Eslami, S.N., Shokrgozar, M.A., Azadmanesh, K., Hassanlou, M., Kalhor, H.R., et al.: Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale (2012)

    Google Scholar 

  37. Kuhn, D.A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., et al.: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol. 5, 1625–1636 (2014)

    Google Scholar 

  38. Doherty, G.J., McMahon, H.T.: Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu. Rev. Biophys. 37, 65–95 (2008)

    Google Scholar 

  39. Aderem, A., Underhill, D.M.: Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999)

    Google Scholar 

  40. Huotari, J., Helenius, A.: Endosome maturation. EMBO J. 30, 3481–3500 (2011)

    Google Scholar 

  41. Anderson, R.G.: The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998)

    Google Scholar 

  42. Edidin, M.: Membrane cholesterol, protein phosphorylation, and lipid rafts. Sci. STKE 2001, E1 (2001)

    Google Scholar 

  43. Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C., Wakeham, D.E.: Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell. Dev. Biol. 17, 517–568 (2001)

    Google Scholar 

  44. Schmid, S.L.: Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997)

    Google Scholar 

  45. Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schurch, S., Kreyling, W., Schulz, H., et al.: Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health Perspect. 113, 1555–1560 (2005)

    Google Scholar 

  46. Lesniak, W., Bielinska, A.U., Sun, K., Janczak, K.W., Shi, X., Baker Jr., J.R., et al.: Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett. 5, 2123–2130 (2005)

    ADS  Google Scholar 

  47. Mu, Q., Hondow, N.S., Ski, L., Brown, A.P., Jeuken, L.J., Routledge, M.N.: Mechanism of cellular uptake of genotoxic silica nanoparticles. Part. Fibre Toxicol. 9, 29 (2012)

    Google Scholar 

  48. Chu, Z., Zhang, S., Zhang, B., Zhang, C., Fang, C.Y., Rehor, I., et al.: Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci. Rep. 4, 4495 (2014)

    Google Scholar 

  49. Rimai, D.S., Quesnel, D.J., Busnaia, A.A.: The adhesion of dry particles in the nanometer to micrometer size range. Colloids Surf. A Physicochem. Eng. Asp. 165, 3–10 (2000)

    Google Scholar 

  50. Benjaminsen, R.V., Mattebjerg, M.A., Henriksen, J.R., Moghimi, S.M., Andresen, T.L.: The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol. Ther. 21, 149–157 (2013)

    Google Scholar 

  51. Brandenberger, C., Muhlfeld, C., Ali, Z., Lenz, A.G., Schmid, O., Parak, W.J., et al.: Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6, 1669–1678 (2010)

    Google Scholar 

  52. Gray, M., Botelho, R.J.: Phagocytosis: hungry, hungry cells. Methods Mol. Biol. 1519, 1–16 (2017)

    Google Scholar 

  53. Utembe, W., Potgieter, K., Stefaniak, A.B., Gulumian, M.: Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials. Part. Fibre Toxicol. 12, 11 (2015)

    Google Scholar 

  54. Thiele, L., Rothen-Rutishauser, B., Jilek, S., Wunderli-Allenspach, H., Merkle, H.P., Walter, E.: Evaluation of particle uptake in human blood monocyte-derived cells in vitro. does phagocytosis activity of dendritic cells measure up with macrophages? J. Control. Release 76, 59–71 (2001)

    Google Scholar 

  55. Thiele, L., Diederichs, J.E., Reszka, R., Merkle, H.P., Walter, E.: Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials 24, 1409–1418 (2003)

    Google Scholar 

  56. Bonifacino, J.S., Rojas, R.: Retrograde transport from endosomes to the trans-Golgi network. Nat. Rev. Mol. Cell. Biol. 7, 568–579 (2006)

    Google Scholar 

  57. Wang, C., Zhao, T., Li, Y., Huang, G., White, M.A., Gao, J.: Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes. Adv. Drug Deliv. Rev. 113, 87–96 (2017)

    Google Scholar 

  58. Muller, S., Dennemarker, J., Reinheckel, T.: Specific functions of lysosomal proteases in endocytic and autophagic pathways. Biochim. Biophys. Acta 1824, 34–43 (2012)

    Google Scholar 

  59. Kreyling, W.G., Abdelmonem, A.M., Ali, Z., Alves, F., Geiser, M., Haberl, N., et al.: In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 10, 619–623 (2015)

    ADS  Google Scholar 

  60. Milosevic, A.M., Rodriguez-Lorenzo, L., Balog, S., Monnier, C.A., Petri-Fink, A., Rothen-Rutishauser, B.: Assessing the stability of fluorescently encoded nanoparticles in lysosomes by using complementary methods. Angew. Chem. Int. Ed. Engl. 56, 13382–13386 (2017)

    Google Scholar 

  61. Ma, Z., Bai, J., Jiang, X.: Monitoring of the enzymatic degradation of protein corona and evaluating the accompanying cytotoxicity of nanoparticles. ACS Appl. Mater. Interfaces. 7, 17614–17622 (2015)

    Google Scholar 

  62. Frohlich, E.: Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr. Drug Metab. 14, 976–988 (2013)

    Google Scholar 

  63. Kagan, V.E., Konduru, N.V., Feng, W., Allen, B.L., Conroy, J., Volkov, Y., et al.: Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5, 354–359 (2010)

    ADS  Google Scholar 

  64. Ma, X., Gong, N., Zhong, L., Sun, J., Liang, X.J.: Future of nanotherapeutics: targeting the cellular sub-organelles. Biomaterials 97, 10–21 (2016)

    Google Scholar 

  65. Lu, P., Bruno, B.J., Rabenau, M., Lim, C.S.: Delivery of drugs and macromolecules to the mitochondria for cancer therapy. J. Control. Release 240, 38–51 (2016)

    Google Scholar 

  66. Wongrakpanich, A., Geary, S.M., Joiner, M.L., Anderson, M.E., Salem, A.K.: Mitochondria-targeting particles. Nanomedicine (Lond) 9, 2531–2543 (2014)

    Google Scholar 

  67. Tammam, S.N., Azzazy, H.M., Lamprecht, A.: How successful is nuclear targeting by nanocarriers? J. Control. Release 229, 140–153 (2016)

    Google Scholar 

  68. Larsen, J., Ross, N., Sullivan, M.: Requirements for the nuclear entry of polyplexes and nanoparticles during mitosis. J. Gene Med. 14, 580–589 (2011)

    Google Scholar 

  69. Burgess, T.L., Kelly, R.B.: Constitutive and regulated secretion of proteins. Annu. Rev. Cell. Biol. 3, 243–293 (1987)

    Google Scholar 

  70. Dombu, C.Y., Kroubi, M., Zibouche, R., Matran, R., Betbeder, D.: Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells. Nanotechnology 21, 355102 (2010)

    Google Scholar 

  71. Chithrani, B.D., Ghazani, A.A., Chan, W.C.: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006)

    ADS  Google Scholar 

  72. Chu, Z., Huang, Y., Tao, Q., Li, Q.: Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. Nanoscale 3, 3291–3299 (2011)

    ADS  Google Scholar 

  73. Sakhtianchi, R., Minchin, R.F., Lee, K.B., Alkilany, A.M., Serpooshan, V., Mahmoudi, M.: Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv. Colloid Interface Sci. 201–202, 18–29 (2013)

    Google Scholar 

  74. Symens, N., Soenen, S.J., Rejman, J., Braeckmans, K., De Smedt, S.C., Remaut, K.: Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv. Drug Deliv. Rev. 64, 78–94 (2012)

    Google Scholar 

  75. Iversen, T.G., Skotland, T., Sandvig, K.: Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6, 176–185 (2011)

    Google Scholar 

  76. Lujan, H., Sayes, C.: Cytotoxicological pathways induced after nanoparticle exposure: studies of oxidative stress at the ‘nano-bio’ interface. Toxicol. Res. 6, 580 (2017)

    Google Scholar 

  77. Gonzalez-Flecha, B.: Oxidant mechanisms in response to ambient air particles. Mol. Asp. Med. 25, 169–182 (2004)

    Google Scholar 

  78. Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.F., Delos, M., et al.: Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207, 221–231 (2005)

    Google Scholar 

  79. Vinzents, P.S., Moller, P., Sorensen, M., Knudsen, L.E., Hertel, O., Jensen, F.P., et al.: Personal exposure to ultrafine particles and oxidative DNA damage. Environ. Health Perspect. 113, 1485–1490 (2005)

    Google Scholar 

  80. Clift, M.J., Gehr, P., Rothen-Rutishauser, B.: Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch. Toxicol. 85, 723–731 (2011)

    Google Scholar 

  81. Kroll, A., Pillukat, M.H., Hahn, D., Schnekenburger, J.: Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 86, 1123–1136 (2012)

    Google Scholar 

  82. Donaldson, K., Stone, V., Borm, P.J., Jimenez, L.A., Gilmour, P.S., Schins, R.P., et al.: Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic. Biol. Med. 34, 1369–1382 (2003)

    Google Scholar 

  83. Kroll, A., Gietl, J.K., Wiesmuller, G.A., Gunsel, A., Wohlleben, W., Schnekenburger, J., et al.: In vitro toxicology of ambient particulate matter: correlation of cellular effects with particle size and components. Environ. Toxicol. 28, 76–86 (2013)

    ADS  Google Scholar 

  84. Donaldson, K., Tran, C.L.: An introduction to the short-term toxicology of respirable industrial fibres. Mutat. Res. 553, 5–9 (2004)

    Google Scholar 

  85. Schins, R.P., Knaapen, A.M.: Genotoxicity of poorly soluble particles. Inhal. Toxicol. 19(Suppl 1), 189–198 (2007)

    Google Scholar 

  86. Krug, H.F., Wick, P.: Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. Engl. (2011)

    Google Scholar 

  87. Paur, H.R., Cassee, F.R., Teeguarden, J.G., Fissan, H., Diabate, S., Aufderheide, M., et al.: In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—A dialog between aerosol science and biology. J. Aerosol Sci. 42, 668–692 (2011)

    ADS  Google Scholar 

  88. Lewinski, N., Colvin, V., Drezek, R.: Cytotoxicity of nanoparticles. Small 4, 26–49 (2008)

    Google Scholar 

  89. Khalili, F.J., Jafari, S., Eghbal, M.A.: A review of molecular mechanisms involved in toxicity of nanoparticles. Adv. Pharm. Bull. 5, 447–454 (2015)

    Google Scholar 

  90. Moller, P., Jacobsen, N.R., Folkmann, J.K., Danielsen, P.H., Mikkelsen, L., Hemmingsen, J.G., et al.: Role of oxidative damage in toxicity of particulates. Free Radic. Res. 44, 1–46 (2010)

    Google Scholar 

  91. He, L., He, T., Farrar, S., Ji, L., Liu, T., Ma, X.: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 44, 532–553 (2017)

    Google Scholar 

  92. Brown, D.M., Donaldson, K., Borm, P.J., Schins, R.P., Dehnhardt, M., Gilmour, P., et al.: Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am. J. Physiol. Lung Cell. Mol. Physiol. 286, 344–353 (2004)

    Google Scholar 

  93. Rahman, I., MacNee, W.: Oxidative stress and regulation of glutathione in lung inflammation. Eur. Respir. J. 16, 534–554 (2000)

    Google Scholar 

  94. Manke, A., Wang, L., Rojanasakul, Y.: Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int. 2013, 942916 (2013)

    Google Scholar 

  95. Sarkar, A., Ghosh, M., Sil, P.C.: Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles. J. Nanosci. Nanotechnol. 14, 730–743 (2014)

    Google Scholar 

  96. Nel, A., Xia, T., Madler, L., Li, N.: Toxic potential of materials at the nanolevel. Science (New York, N Y) 311, 622–627 (2006)

    ADS  Google Scholar 

  97. Marano, F., Hussain, S., Rodrigues-Lima, F., Baeza-Squiban, A., Boland, S.: Nanoparticles: molecular targets and cell signalling. Arch. Toxicol. 85, 733–741 (2011)

    Google Scholar 

  98. DeForge, L.E., Preston, A.M., Takeuchi, E., Kenney, J., Boxer, L.A., Remick, D.G.: Regulation of interleukin 8 gene expression by oxidant stress. J. Biol. Chem. 268, 25568–25576 (1993)

    Google Scholar 

  99. Jimenez, L.A., Drost, E.M., Gilmour, P.S., Rahman, I., Antonicelli, F., Ritchie, H., et al.: PM(10)-exposed macrophages stimulate a proinflammatory response in lung epithelial cells via TNF-alpha. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L237–L248 (2002)

    Google Scholar 

  100. Timmermann, M., Hogger, P.: Oxidative stress and 8-iso-prostaglandin F(2alpha) induce ectodomain shedding of CD163 and release of tumor necrosis factor-alpha from human monocytes. Free Radic. Biol. Med. 39, 98–107 (2005)

    Google Scholar 

  101. Elsabahy, M., Wooley, K.L.: Cytokines as biomarkers of nanoparticle immunotoxicity. Chem. Soc. Rev. 42, 5552–5576 (2013)

    Google Scholar 

  102. Dagenais, M., Skeldon, A., Saleh, M.: The inflammasome: in memory of Dr. Jurg Tschopp. Cell. Death Differ. 19, 5–12 (2012)

    Google Scholar 

  103. Sharma, D., Kanneganti, T.D.: The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J. Cell Biol. 213, 617–629 (2016)

    Google Scholar 

  104. Rabolli, V., Lison, D., Huaux, F.: The complex cascade of cellular events governing inflammasome activation and IL-1beta processing in response to inhaled particles. Part. Fibre Toxicol. 13, 40 (2016)

    Google Scholar 

  105. Boraschi, D., Italiani, P.: From antigen delivery system to adjuvanticy: the board application of nanoparticles in vaccinology. Vaccines (Basel) 3, 930–939 (2015)

    Google Scholar 

  106. Yazdi, A.S., Guarda, G., Riteau, N., Drexler, S.K., Tardivel, A., Couillin, I., et al.: Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc. Natl. Acad. Sci. U.S.A. 107, 19449–19454 (2010)

    ADS  Google Scholar 

  107. Dostert, C., Petrilli, V., Van, B.R., Steele, C., Mossman, B.T., Tschopp, J.: Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science (New York, N Y) 320, 674–677 (2008)

    ADS  Google Scholar 

  108. Nabiev, I., Mitchell, S., Davies, A., Williams, Y., Kelleher, D., Moore, R., et al.: Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett. 7, 3452–3461 (2007)

    ADS  Google Scholar 

  109. Cheng, C., Muller, K.H., Koziol, K.K., Skepper, J.N., Midgley, P.A., Welland, M.E., et al.: Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30, 4152–4160 (2009)

    Google Scholar 

  110. Sargent, L.M., Hubbs, A.F., Young, S.H., Kashon, M.L., Dinu, C.Z., Benkovic, S.A., et al.: Single-walled carbon nanotube-induced mitotic disruption. Mutat. Res. 745, 28–37 (2012)

    Google Scholar 

  111. van Berol, D., Clift, M.J., Albrecht, C., Schins, R.P.: Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med. Wkly 142, w13698 (2012)

    Google Scholar 

  112. Xia, T., Kovochich, M., Liong, M., Madler, L., Gilbert, B., Shi, H., et al.: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008)

    Google Scholar 

  113. Singh, N., Manshian, B., Jenkins, G.J., Griffiths, S.M., Williams, P.M., Maffeis, T.G., et al.: NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30, 3891–3914 (2009)

    Google Scholar 

  114. Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., Dusinska, M.: Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8, 233–278 (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Swiss National Science Foundation (310030_159847/1), the National Center of Competence in Research for Bio-Inspired Materials and the Adolphe Merkle Foundation for financial support. We kindly thank Dr. Miguel Spuch Calvar for the graphical design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Rothen-Rutishauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rothen-Rutishauser, B., Bourquin, J., Petri-Fink, A. (2019). Nanoparticle-Cell Interactions: Overview of Uptake, Intracellular Fate and Induction of Cell Responses. In: Gehr, P., Zellner, R. (eds) Biological Responses to Nanoscale Particles. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-12461-8_6

Download citation

Publish with us

Policies and ethics