Skip to main content

In Vitro Assays Used to Analyse Vascular Cell Functions

  • Chapter
  • First Online:
Fundamentals of Vascular Biology

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 1886 Accesses

Abstract

The usage, treatment, and analyses of isolated primary vascular cells or immortalized vascular cell lines in basic science studies are highly favourable as these techniques provide a system for fast and direct functional evaluation of cellular processes. These processes can include physiological signalling pathways, pathological disease-associated changes, as well as toxicity/pharmacological tests. Based on the architecture of the vascular wall, this chapter addresses in vitro assays using endothelial cells, smooth muscle cells, and fibroblasts. According to their physiological environment, these cells require different cell culture conditions mostly regulated by various cell culture media. For different functional test also the mimicking of the in vivo situation, e.g. culture under flow conditions or co-culture of different cell types. The in vitro assays discussed in this chapter are sorted by physiological function and corresponding cell types. Herein, we also explain how these assays can be used to determine cell biological changes associated with relevant vascular pathologies. The majority of the described assays are based on the 2D culture of cells. As 3D cultures are much better suited to mimic the in vivo situation in many cases, this chapter also includes a description of recent developments in 3D culture assay and techniques. As an extension of 3D culture towards in vivo, we also describe the usage of in vitro cultured vascular tissue as model systems to study vascular function at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrer M, Encabo A, Conde MV, Marin J, Balfagon G. Heterogeneity of endothelium-dependent mechanisms in different rabbit arteries. J Vasc Res. 1995;32:339–46. https://doi.org/10.1159/000159108.

    Article  CAS  PubMed  Google Scholar 

  2. Ghitescu L, Robert M. Diversity in unity: the biochemical composition of the endothelial cell surface varies between the vascular beds. Microsc Res Tech. 2002;57:381–9. https://doi.org/10.1002/jemt.10091.

    Article  CAS  PubMed  Google Scholar 

  3. Hill CE, Phillips JK, Sandow SL. Heterogeneous control of blood flow amongst different vascular beds. Med Res Rev. 2001;21:1–60.

    Article  CAS  PubMed  Google Scholar 

  4. Rhodin JAG. Architecture of the vessel wall. Compr Physiol 2014, Supplement 7: handbook of physiology, the cardiovascular system, vascular smooth muscle: 1–31. First published in print 1980. Wiley Online Library. https://doi.org/10.1002/cphy.cp020201.

  5. Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4:302–12. https://doi.org/10.2174/1874192401004010302.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thorin E, Shatos MA, Shreeve SM, Walters CL, Bevan JA. Human vascular endothelium heterogeneity. A comparative study of cerebral and peripheral cultured vascular endothelial cells. Stroke. 1997;28:375–81.

    Article  CAS  PubMed  Google Scholar 

  7. Félétou M. The endothelium: Part 1: multiple functions of the endothelial cells—focus on endothelium-derived vasoactive mediators. San Rafael: Morgan & Claypool Life Sciences; 2011. Available from: https://www.ncbi.nlm.nih.gov/books/NBK57149. https://doi.org/10.4199/C00031ED1V01Y201105ISP019.

    Book  Google Scholar 

  8. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367. https://doi.org/10.1152/physrev.00012.2005.

    Article  CAS  PubMed  Google Scholar 

  9. Yuan SYR, Rigor RR. Ch. Chapter 3. In: Regulation of endothelial barrier function. San Rafael: Morgan & Claypool Life Sciences; 2010.

    Google Scholar 

  10. Wang Y, Alexander JS. Analysis of endothelial barrier function in vitro. Methods Mol Biol. 2011;763:253–64. https://doi.org/10.1007/978-1-61779-191-8_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ho YT, et al. A facile method to probe the vascular permeability of nanoparticles in nanomedicine applications. Sci Rep. 2017;7:707. https://doi.org/10.1038/s41598-017-00750-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tschugguel W, et al. High precision measurement of electrical resistance across endothelial cell monolayers. Pflugers Arch. 1995;430:145–7.

    Article  CAS  PubMed  Google Scholar 

  13. Chen H-R, Yeh T-M. In vitro assays for measuring endothelial permeability by Transwells and electrical impedance systems. Bio-protocol. 2017;7:e2273. https://doi.org/10.21769/BioProtoc.2273.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kazakoff PW, McGuire TR, Hoie EB, Cano M, Iversen PL. An in vitro model for endothelial permeability: assessment of monolayer integrity. In Vitro Cell Dev Biol Anim. 1995;31:846–52. https://doi.org/10.1007/BF02634568.

    Article  CAS  PubMed  Google Scholar 

  15. Srinivasan B, et al. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20:107–26. https://doi.org/10.1177/2211068214561025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kustermann S, et al. A real-time impedance-based screening assay for drug-induced vascular leakage. Toxicol Sci. 2014;138:333–43. https://doi.org/10.1093/toxsci/kft336.

    Article  CAS  PubMed  Google Scholar 

  17. Kiseleva RY, et al. Vascular endothelial effects of collaborative binding to platelet/endothelial cell adhesion molecule-1 (PECAM-1). Sci Rep. 2018;8:1510. https://doi.org/10.1038/s41598-018-20027-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martins-Green M, Petreaca M, Yao M. An assay system for in vitro detection of permeability in human “endothelium”. Methods Enzymol. 2008;443:137–53. https://doi.org/10.1016/S0076-6879(08)02008-9.

    Article  CAS  PubMed  Google Scholar 

  19. Messner B, et al. Cadmium is a novel and independent risk factor for early atherosclerosis mechanisms and in vivo relevance. Arterioscler Thromb Vasc Biol. 2009;29:1392–8. https://doi.org/10.1161/ATVBAHA.109.190082.

    Article  CAS  PubMed  Google Scholar 

  20. Shin HS, et al. Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo. J Immunol. 2011;186:1119–30. https://doi.org/10.4049/jimmunol.1001647.

    Article  CAS  PubMed  Google Scholar 

  21. Gimbrone MA Jr, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36. https://doi.org/10.1161/CIRCRESAHA.115.306301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khazaei M, Moien-Afshari F, Laher I. Vascular endothelial function in health and diseases. Pathophysiology. 2008;15:49–67. https://doi.org/10.1016/j.pathophys.2008.02.002.

    Article  CAS  PubMed  Google Scholar 

  23. Rumbaut ER, Thiagarajan P. Platelet-vessel wall interactions in hemostasis and thrombosis. Colloq Ser Integr Syst Physiol Mol Funct. 2010;2(1):1–75. Morgan and Claypool Publishers. https://doi.org/10.4199/C00007ED1V01Y201002ISP004.

    Article  Google Scholar 

  24. Hoffman M, Monroe DM, Roberts HR. A rapid method to isolate platelets from human blood by density gradient centrifugation. Am J Clin Pathol. 1992;98:531–3.

    Article  CAS  PubMed  Google Scholar 

  25. Watson SP, Authi KS, editors. Platelets: a practical approach. Oxford/New York: IRL Press at Oxford University Press; 1996. ISBN: 0199635374.

    Google Scholar 

  26. Curwen KD, Kim HY, Vazquez M, Handin RI, Gimbrone MA Jr. Platelet adhesion to cultured vascular endothelial cells. A quantitative monolayer adhesion assay. J Lab Clin Med. 1982;100:425–36.

    CAS  PubMed  Google Scholar 

  27. Verheul HM, et al. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets. Blood. 2000;96:4216–21.

    CAS  PubMed  Google Scholar 

  28. Kojima H, et al. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem. 2003;278:36748–53. https://doi.org/10.1074/jbc.M300702200.

    Article  CAS  PubMed  Google Scholar 

  29. Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med. 1998;187:329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaugler MH, Vereycken-Holler V, Squiban C, Aigueperse J. PECAM-1 (CD31) is required for interactions of platelets with endothelial cells after irradiation. J Thromb Haemost. 2004;2:2020–6. https://doi.org/10.1111/j.1538-7836.2004.00951.x.

    Article  CAS  PubMed  Google Scholar 

  31. Burns MP, DePaola N. Flow-conditioned HUVECs support clustered leukocyte adhesion by coexpressing ICAM-1 and E-selectin. Am J Physiol Heart Circ Physiol. 2005;288:H194–204. https://doi.org/10.1152/ajpheart.01078.2003.

    Article  CAS  PubMed  Google Scholar 

  32. Kucik DF. Measurement of adhesion under flow conditions. Curr Protoc Cell Biol. 2009;Chapter 9:Unit 9.6. https://doi.org/10.1002/0471143030.cb0906s43.

    Article  PubMed  Google Scholar 

  33. Mulki L, Sweigard JH, Connor KM. Assessing leukocyte-endothelial interactions under flow conditions in an ex vivo autoperfused microflow chamber assay. J Vis Exp. 2014; https://doi.org/10.3791/52130.

  34. Zahr A, et al. Endomucin prevents leukocyte–endothelial cell adhesion and has a critical role under resting and inflammatory conditions. Nat Commun. 2016;7:10363. https://doi.org/10.1038/ncomms10363. https://www.nature.com/articles/ncomms10363#supplementary-information.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Song L, et al. Crocetin inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells. Cell Physiol Biochem. 2016;40:443–52. https://doi.org/10.1159/000452559.

    Article  CAS  PubMed  Google Scholar 

  36. Mayer T, et al. Cell-based assays using primary endothelial cells to study multiple steps in inflammation. Methods Enzymol. 2006;414:266–83. https://doi.org/10.1016/S0076-6879(06)14015-X.

    Article  CAS  PubMed  Google Scholar 

  37. Zeller I, et al. Inhibition of cell surface expression of endothelial adhesion molecules by ursolic acid prevents intimal hyperplasia of venous bypass grafts in rats. Eur J Cardiothorac Surg. 2012;42:878–84. https://doi.org/10.1093/ejcts/ezs128.

    Article  PubMed  Google Scholar 

  38. Ayres-Sander CE, et al. Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLoS One. 2013;8:e60025. https://doi.org/10.1371/journal.pone.0060025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chakraborty S, Ain R. Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem. 2017;292:6600–20. https://doi.org/10.1074/jbc.M116.742627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muller WA, Luscinskas FW. Assays of transendothelial migration in vitro. Methods Enzymol. 2008;443:155–76. https://doi.org/10.1016/S0076-6879(08)02009-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lampugnani MG. Cell migration into a wounded area in vitro. Methods Mol Biol. 1999;96:177–82. https://doi.org/10.1385/1-59259-258-9:177.

    Article  CAS  PubMed  Google Scholar 

  42. Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res. 2007;74:172–83. https://doi.org/10.1016/j.mvr.2007.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo S, et al. Assays to examine endothelial cell migration, tube formation, and gene expression profiles. Methods Mol Biol. 2014;1135:393–402. https://doi.org/10.1007/978-1-4939-0320-7_32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oommen S, Gupta SK, Vlahakis NE. Vascular endothelial growth factor A (VEGF-A) induces endothelial and cancer cell migration through direct binding to integrin {alpha}9{beta}1: identification of a specific {alpha}9{beta}1 binding site. J Biol Chem. 2011;286:1083–92. https://doi.org/10.1074/jbc.M110.175158.

    Article  CAS  PubMed  Google Scholar 

  45. Monsuur HN, et al. Methods to study differences in cell mobility during skin wound healing in vitro. J Biomech. 2016;49:1381–7. https://doi.org/10.1016/j.jbiomech.2016.01.040.

    Article  PubMed  Google Scholar 

  46. Yue PY, Leung EP, Mak NK, Wong RN. A simplified method for quantifying cell migration/wound healing in 96-well plates. J Biomol Screen. 2010;15:427–33. https://doi.org/10.1177/1087057110361772.

    Article  CAS  PubMed  Google Scholar 

  47. Ammann KR, et al. Collective cell migration of smooth muscle and endothelial cells: impact of injury versus non-injury stimuli. J Biol Eng. 2015;9:19. https://doi.org/10.1186/s13036-015-0015-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jonkman JE, et al. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr. 2014;8:440–51. https://doi.org/10.4161/cam.36224.

    Article  Google Scholar 

  49. Wang S, et al. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci U S A. 2008;105:7738–43. https://doi.org/10.1073/pnas.0802857105.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Messele T, et al. Nonradioactive techniques for measurement of in vitro T-cell proliferation: alternatives to the [(3)H]thymidine incorporation assay. Clin Diagn Lab Immunol. 2000;7:687–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ezaki T, et al. Time course of endothelial cell proliferation and microvascular remodeling in chronic inflammation. Am J Pathol. 2001;158:2043–55. https://doi.org/10.1016/S0002-9440(10)64676-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang S, et al. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol. 2015;35:1299–313. https://doi.org/10.1128/MCB.00306-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shu Q, Li W, Li H, Sun G. Vasostatin inhibits VEGF-induced endothelial cell proliferation, tube formation and induces cell apoptosis under oxygen deprivation. Int J Mol Sci. 2014;15:6019–30. https://doi.org/10.3390/ijms15046019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abdel-Malak NA, et al. Angiopoietin-1 promotes endothelial cell proliferation and migration through AP-1-dependent autocrine production of interleukin-8. Blood. 2008;111:4145–54. https://doi.org/10.1182/blood-2007-08-110338.

    Article  CAS  PubMed  Google Scholar 

  55. Logie JJ, et al. Glucocorticoid-mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration. PLoS One. 2010;5:e14476. https://doi.org/10.1371/journal.pone.0014476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poirier O, et al. Inhibition of apelin expression by BMP signaling in endothelial cells. Am J Physiol Cell Physiol. 2012;303:C1139–45. https://doi.org/10.1152/ajpcell.00168.2012.

    Article  CAS  PubMed  Google Scholar 

  57. Pearson LJ, Yandle TG, Nicholls MG, Evans JJ. Intermedin (adrenomedullin-2): a potential protective role in human aortic endothelial cells. Cell Physiol Biochem. 2009;23:97–108. https://doi.org/10.1159/000204098.

    Article  CAS  PubMed  Google Scholar 

  58. Sakao S, et al. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J. 2005;19:1178–80. https://doi.org/10.1096/fj.04-3261fje.

    Article  CAS  PubMed  Google Scholar 

  59. Thoppil RJ, et al. TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation. Sci Rep. 2015;5:14257. https://doi.org/10.1038/srep14257. https://www.nature.com/articles/srep14257#supplementary-information.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hwang SH, et al. Effects of gintonin on the proliferation, migration, and tube formation of human umbilical-vein endothelial cells: involvement of lysophosphatidic-acid receptors and vascular-endothelial-growth-factor signaling. J Ginseng Res. 2016;40:325–33. https://doi.org/10.1016/j.jgr.2015.10.002.

    Article  PubMed  Google Scholar 

  61. Duah E, et al. Cysteinyl leukotrienes regulate endothelial cell inflammatory and proliferative signals through CysLT2 and CysLT1 receptors. Sci Rep. 2013;3:3274. https://doi.org/10.1038/srep03274. https://www.nature.com/articles/srep03274#supplementary-information.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89:271–7.

    Article  CAS  PubMed  Google Scholar 

  63. Ma J, et al. Inhibition of endothelial cell proliferation and tumor angiogenesis by up-regulating NDRG2 expression in breast cancer cells. PLoS One. 2012;7:e32368. https://doi.org/10.1371/journal.pone.0032368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu XL, Hu X, Cai WX, Lu WW, Zheng LW. Effect of granulocyte-Colony stimulating factor on endothelial cells and osteoblasts. Biomed Res Int. 2016;2016:8485721. https://doi.org/10.1155/2016/8485721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahmad S, Ahmad A, Schneider KB, White CW. Cholesterol interferes with the MTT assay in human epithelial-like (A549) and endothelial (HLMVE and HCAE) cells. Int J Toxicol. 2006;25:17–23. https://doi.org/10.1080/10915810500488361.

    Article  CAS  PubMed  Google Scholar 

  66. Trevisi L, Pighin I, Bazzan S, Luciani S. Inhibition of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) endocytosis by ouabain in human endothelial cells. FEBS Lett. 2006;580:2769–73. https://doi.org/10.1016/j.febslet.2006.04.040.

    Article  CAS  PubMed  Google Scholar 

  67. Klaassen CD, Liu J, Diwan BA. Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol. 2009;238:215–20. https://doi.org/10.1016/j.taap.2009.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thirumoorthy N, et al. A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol. 2011;9:54. https://doi.org/10.1186/1477-7819-9-54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rahman MT, Haque N, Abu Kasim NH, De Ley M. In: Nilius B, et al., editors. Reviews of physiology, biochemistry and pharmacology, vol. 173: Springer International Publishing; 2017. p. 41–62.

    Google Scholar 

  70. Services., U. D. o. H. a. H. in How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general; 2010.

    Google Scholar 

  71. Northrup TF, et al. Thirdhand smoke: state of the science and a call for policy expansion. Public Health Rep. 2016;131:233–8. https://doi.org/10.1177/003335491613100206.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Diez-Izquierdo A, et al. Update on thirdhand smoke: a comprehensive systematic review. Environ Res. 2018;167:341–71. https://doi.org/10.1016/j.envres.2018.07.020.

    Article  CAS  PubMed  Google Scholar 

  73. Tillett T. Thirdhand smoke in review: research needs and recommendations. Environ Health Perspect. 2011;119:a399. https://doi.org/10.1289/ehp.119-a399b.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bernhard D, et al. Development and evaluation of an in vitro model for the analysis of cigarette smoke effects on cultured cells and tissues. J Pharmacol Toxicol Methods. 2004;50:45–51. https://doi.org/10.1016/j.vascn.2004.01.003.

    Article  CAS  PubMed  Google Scholar 

  75. Bernhard D, et al. Cigarette smoke metal-catalyzed protein oxidation leads to vascular endothelial cell contraction by depolymerization of microtubules. FASEB J. 2005;19:1096–107. https://doi.org/10.1096/fj.04-3192com.

    Article  CAS  PubMed  Google Scholar 

  76. Michel JB, Li Z, Lacolley P. Smooth muscle cells and vascular diseases. Cardiovasc Res. 2012;95:135–7. https://doi.org/10.1093/cvr/cvs172.

    Article  CAS  PubMed  Google Scholar 

  77. Dash BC, Jiang Z, Suh C, Qyang Y. Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochem J. 2015;465:185–94. https://doi.org/10.1042/BJ20141078.

    Article  CAS  PubMed  Google Scholar 

  78. Vazao H, das Neves RP, Graos M, Ferreira L. Towards the maturation and characterization of smooth muscle cells derived from human embryonic stem cells. PLoS One. 2011;6:e17771. https://doi.org/10.1371/journal.pone.0017771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rodriguez LV, et al. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A. 2006;103:12167–72. https://doi.org/10.1073/pnas.0604850103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yun SJ, et al. Akt1 isoform modulates phenotypic conversion of vascular smooth muscle cells. Biochim Biophys Acta. 2014;1842:2184–92. https://doi.org/10.1016/j.bbadis.2014.08.014.

    Article  CAS  PubMed  Google Scholar 

  81. Vo E, Hanjaya-Putra D, Zha Y, Kusuma S, Gerecht S. Smooth-muscle-like cells derived from human embryonic stem cells support and augment cord-like structures in vitro. Stem Cell Rev. 2010;6:237–47. https://doi.org/10.1007/s12015-010-9144-3.

    Article  Google Scholar 

  82. Wanjare M, Kuo F, Gerecht S. Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovasc Res. 2013;97:321–30. https://doi.org/10.1093/cvr/cvs315.

    Article  CAS  PubMed  Google Scholar 

  83. Benoit C, Gu Y, Zhang Y, Alexander JS, Wang Y. Contractility of placental vascular smooth muscle cells in response to stimuli produced by the placenta: roles of ACE vs. non-ACE and AT1 vs. AT2 in placental vessel cells. Placenta. 2008;29:503–9. https://doi.org/10.1016/j.placenta.2008.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Do KH, et al. Angiotensin II-induced aortic ring constriction is mediated by phosphatidylinositol 3-kinase/L-type calcium channel signaling pathway. Exp Mol Med. 2009;41:569–76. https://doi.org/10.3858/emm.2009.41.8.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu T, et al. Identification of BPIFA1/SPLUNC1 as an epithelium-derived smooth muscle relaxing factor. Nat Commun. 2017;8:14118. https://doi.org/10.1038/ncomms14118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilson JL, et al. Unraveling endothelin-1 induced hypercontractility of human pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. PLoS One. 2018;13:e0195780. https://doi.org/10.1371/journal.pone.0195780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Steinbach SK, et al. Directed differentiation of skin-derived precursors into functional vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31:2938–48. https://doi.org/10.1161/ATVBAHA.111.232975.

    Article  CAS  PubMed  Google Scholar 

  88. Hsieh HL, et al. Thrombin induces EGF receptor expression and cell proliferation via a PKC(delta)/c-Src-dependent pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2009;29:1594–601. https://doi.org/10.1161/ATVBAHA.109.185801.

    Article  CAS  PubMed  Google Scholar 

  89. Gennaro G, Menard C, Michaud SE, Deblois D, Rivard A. Inhibition of vascular smooth muscle cell proliferation and neointimal formation in injured arteries by a novel, oral mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor. Circulation. 2004;110:3367–71. https://doi.org/10.1161/01.CIR.0000147773.86866.CD.

    Article  CAS  PubMed  Google Scholar 

  90. Baron JH, Moiseeva EP, de Bono DP, Abrams KR, Gershlick AH. Inhibition of vascular smooth muscle cell adhesion and migration by c7E3 Fab (abciximab): a possible mechanism for influencing restenosis. Cardiovasc Res. 2000;48:464–72.

    Article  CAS  PubMed  Google Scholar 

  91. Sala-Newby GB, George SJ, Bond M, Dhoot GK, Newby AC. Regulation of vascular smooth muscle cell proliferation, migration and death by heparan sulfate 6-O-endosulfatase1. FEBS Lett. 2005;579:6493–8. https://doi.org/10.1016/j.febslet.2005.10.026.

    Article  CAS  PubMed  Google Scholar 

  92. Huang S, Sun Z, Li Z, Martinez-Lemus LA, Meininger GA. Modulation of microvascular smooth muscle adhesion and mechanotransduction by integrin-linked kinase. Microcirculation. 2010;17:113–27. https://doi.org/10.1111/j.1549-8719.2009.00011.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Witzenbichler B, et al. Regulation of smooth muscle cell migration and integrin expression by the Gax transcription factor. J Clin Invest. 1999;104:1469–80. https://doi.org/10.1172/JCI7251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fegley AJ, Tanski WJ, Roztocil E, Davies MG. Sphingosine-1-phosphate stimulates smooth muscle cell migration through galpha(i)- and pi3-kinase-dependent p38(MAPK) activation. J Surg Res. 2003;113:32–41.

    Article  CAS  PubMed  Google Scholar 

  95. Goueffic Y, et al. Hyaluronan induces vascular smooth muscle cell migration through RHAMM-mediated PI3K-dependent Rac activation. Cardiovasc Res. 2006;72:339–48. https://doi.org/10.1016/j.cardiores.2006.07.017.

    Article  CAS  PubMed  Google Scholar 

  96. Poon M, et al. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest. 1996;98:2277–83. https://doi.org/10.1172/JCI119038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shioi A, et al. Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1995;15:2003–9.

    Article  CAS  PubMed  Google Scholar 

  98. Trion A, Schutte-Bart C, Bax WH, Jukema JW, van der Laarse A. Modulation of calcification of vascular smooth muscle cells in culture by calcium antagonists, statins, and their combination. Mol Cell Biochem. 2008;308:25–33. https://doi.org/10.1007/s11010-007-9608-1.

    Article  CAS  PubMed  Google Scholar 

  99. Wada T, McKee MD, Steitz S, Giachelli CM. Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res. 1999;84:166–78.

    Article  CAS  PubMed  Google Scholar 

  100. Jono S, Nishizawa Y, Shioi A, Morii H. Parathyroid hormone-related peptide as a local regulator of vascular calcification. Its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997;17:1135–42.

    Article  CAS  PubMed  Google Scholar 

  101. Reynolds GD, St Clair RW. A comparative microscopic and biochemical study of the uptake of fluorescent and 125I-labeled lipoproteins by skin fibroblasts, smooth muscle cells, and peritoneal macrophages in culture. Am J Pathol. 1985;121:200–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Viola M, et al. Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells. J Biol Chem. 2013;288:29595–603. https://doi.org/10.1074/jbc.M113.508341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang H, et al. 17beta-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor alpha-dependent pathway. Int J Mol Med. 2014;33:550–8. https://doi.org/10.3892/ijmm.2014.1619.

    Article  CAS  PubMed  Google Scholar 

  104. Maiellaro K, Taylor WR. The role of the adventitia in vascular inflammation. Cardiovasc Res. 2007;75:640–8. https://doi.org/10.1016/j.cardiores.2007.06.023.

    Article  CAS  PubMed  Google Scholar 

  105. Majesky MW, Dong XR, Hoglund V, Mahoney WM Jr, Daum G. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 2011;31:1530–9. https://doi.org/10.1161/ATVBAHA.110.221549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rey FE, Pagano PJ. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol. 2002;22:1962–71.

    Article  CAS  PubMed  Google Scholar 

  107. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. https://doi.org/10.3389/fphar.2014.00123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chai X, et al. Hypoxia induces pulmonary arterial fibroblast proliferation, migration, differentiation and vascular remodeling via the PI3K/Akt/p70S6K signaling pathway. Int J Mol Med. 2018;41:2461–72. https://doi.org/10.3892/ijmm.2018.3462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cai XJ, et al. Adiponectin inhibits lipopolysaccharide-induced adventitial fibroblast migration and transition to myofibroblasts via AdipoR1-AMPK-iNOS pathway. Mol Endocrinol. 2010;24:218–28. https://doi.org/10.1210/me.2009-0128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu G, Eskin SG, Mikos AG. Integrin alpha(v)beta(3) is involved in stimulated migration of vascular adventitial fibroblasts by basic fibroblast growth factor but not platelet-derived growth factor. J Cell Biochem. 2001;83:129–35.

    Article  CAS  PubMed  Google Scholar 

  111. Liu Y, et al. AGEs increased migration and inflammatory responses of adventitial fibroblasts via RAGE, MAPK and NF-kappaB pathways. Atherosclerosis. 2010;208:34–42. https://doi.org/10.1016/j.atherosclerosis.2009.06.007.

    Article  CAS  PubMed  Google Scholar 

  112. Boyera N, Galey I, Bernard BA. Effect of vitamin C and its derivatives on collagen synthesis and cross-linking by normal human fibroblasts. Int J Cosmet Sci. 1998;20:151–8. https://doi.org/10.1046/j.1467-2494.1998.171747.x.

    Article  CAS  PubMed  Google Scholar 

  113. Schwarz RI. Collagen I and the fibroblast: high protein expression requires a new paradigm of post-transcriptional, feedback regulation. Biochem Biophys Rep. 2015;3:38–44. https://doi.org/10.1016/j.bbrep.2015.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Forte A, Della Corte A, De Feo M, Cerasuolo F, Cipollaro M. Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc Res. 2010;88:395–405. https://doi.org/10.1093/cvr/cvq224.

    Article  CAS  PubMed  Google Scholar 

  115. Coen M, Gabbiani G, Bochaton-Piallat ML. Myofibroblast-mediated adventitial remodeling: an underestimated player in arterial pathology. Arterioscler Thromb Vasc Biol. 2011;31:2391–6. https://doi.org/10.1161/ATVBAHA.111.231548.

    Article  CAS  PubMed  Google Scholar 

  116. Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell. 2011;22:3791–800. https://doi.org/10.1091/mbc.E11-05-0393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bishop ET, et al. An in vitro model of angiogenesis: basic features. Angiogenesis. 1999;3:335–44.

    Article  CAS  PubMed  Google Scholar 

  118. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745–54. https://doi.org/10.1016/j.tcb.2011.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol. 2015;35:118–26. https://doi.org/10.1016/j.copbio.2015.05.002.

    Article  CAS  PubMed  Google Scholar 

  120. Richards M, Mellor H. In vitro coculture assays of angiogenesis. In: Martin S, Hewett P, editors. Angiogenesis protocols. Methods in molecular biology, vol. 1430. New York: Humana Press; 2016. https://doi.org/10.1007/978-1-4939-3628-1_10.

    Chapter  Google Scholar 

  121. Duval K, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32:266–77. https://doi.org/10.1152/physiol.00036.2016.

    Article  CAS  Google Scholar 

  122. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12:207–18. https://doi.org/10.1089/adt.2014.573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fillinger MF, Sampson LN, Cronenwett JL, Powell RJ, Wagner RJ. Coculture of endothelial cells and smooth muscle cells in bilayer and conditioned media models. J Surg Res. 1997;67:169–78. https://doi.org/10.1006/jsre.1996.4978.

    Article  CAS  PubMed  Google Scholar 

  124. Sanchez-Palencia DM, Bigger-Allen A, Saint-Geniez M, Arboleda-Velasquez JF, D’Amore PA. Coculture assays for endothelial cells-mural cells interactions. Methods Mol Biol. 2016;1464:35–47. https://doi.org/10.1007/978-1-4939-3999-2_4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Arnaoutova I, George J, Kleinman HK, Benton G. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis. 2009;12:267–74. https://doi.org/10.1007/s10456-009-9146-4.

    Article  PubMed  Google Scholar 

  126. Troyanovsky B, Levchenko T, Mansson G, Matvijenko O, Holmgren L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 2001;152:1247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nacev BA, Liu JO. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole. PLoS One. 2011;6:e24793. https://doi.org/10.1371/journal.pone.0024793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sakurai T, et al. Stimulation of tube formation mediated through the prostaglandin EP2 receptor in rat luteal endothelial cells. J Endocrinol. 2011;209:33–43. https://doi.org/10.1530/JOE-10-0357.

    Article  CAS  PubMed  Google Scholar 

  129. Stratman AN, et al. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices. Blood. 2009;114:237–47. https://doi.org/10.1182/blood-2008-12-196451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol. 1988;107:1589–98.

    Article  CAS  PubMed  Google Scholar 

  131. Davis GE, Black SM, Bayless KJ. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev Biol Anim. 2000;36:513–9. https://doi.org/10.1290/1071-2690(2000)036<0513:CMDHEC>2.0.CO;2.

    Article  CAS  PubMed  Google Scholar 

  132. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A. 1986;83:7297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Smith EJ, Staton CA. Tubule formation assays. In: Staton CA, Lewis C, Bicknell R, editors. Angiogenesis assays – a critical appraisal of current techniques: Wiley Online Libary; 2007. p. 65–87. https://doi.org/10.1002/9780470029350.ch4.

  134. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31:108–15. https://doi.org/10.1016/j.tibtech.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  135. Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3:1172–84. https://doi.org/10.1002/biot.200700228.

    Article  CAS  PubMed  Google Scholar 

  136. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4:309. https://doi.org/10.1038/nprot.2008.226.

    Article  CAS  PubMed  Google Scholar 

  137. Blacher S, et al. Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour. PLoS One. 2014;9:e97019. https://doi.org/10.1371/journal.pone.0097019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface. 2017;14 https://doi.org/10.1098/rsif.2016.0877.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Fleming PA, et al. Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Dev Dyn. 2010;239:398–406. https://doi.org/10.1002/dvdy.22161.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Korff T, Kimmina S, Martiny-Baron G, Augustin HG. Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J. 2001;15:447–57. https://doi.org/10.1096/fj.00-0139com.

    Article  CAS  PubMed  Google Scholar 

  141. Welch-Reardon KM, et al. Angiogenic sprouting is regulated by endothelial cell expression of slug. J Cell Sci. 2014;127:2017–28. https://doi.org/10.1242/jcs.143420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Heiss M, et al. Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J. 2015;29:3076–84. https://doi.org/10.1096/fj.14-267633.

    Article  CAS  PubMed  Google Scholar 

  143. Dittrich A, et al. Key proteins involved in spheroid formation and angiogenesis in endothelial cells after long-term exposure to simulated microgravity. Cell Physiol Biochem. 2018;45:429–45. https://doi.org/10.1159/000486920.

    Article  CAS  PubMed  Google Scholar 

  144. Eckermann CW, Lehle K, Schmid SA, Wheatley DN, Kunz-Schughart LA. Characterization and modulation of fibroblast/endothelial cell co-cultures for the in vitro preformation of three-dimensional tubular networks. Cell Biol Int. 2011;35:1097–110. https://doi.org/10.1042/CBI20100718.

    Article  PubMed  Google Scholar 

  145. Kunz-Schughart LA, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol. 2006;290:C1385–98. https://doi.org/10.1152/ajpcell.00248.2005.

    Article  CAS  PubMed  Google Scholar 

  146. Zuppinger C. 3D culture for cardiac cells. Biochim Biophys Acta. 2016;1863:1873–81. https://doi.org/10.1016/j.bbamcr.2015.11.036.

    Article  CAS  PubMed  Google Scholar 

  147. Kelm JM, et al. VEGF profiling and angiogenesis in human microtissues. J Biotechnol. 2005;118:213–29. https://doi.org/10.1016/j.jbiotec.2005.03.016.

    Article  CAS  PubMed  Google Scholar 

  148. Pfisterer L, Korff T. In: Martin SG, Hewett PW, editors. Angiogenesis protocols. New York: Springer; 2016. p. 167–77.

    Chapter  Google Scholar 

  149. Figtree GA, Bubb KJ, Tang O, Kizana E, Gentile C. Vascularized cardiac spheroids as novel 3D in vitro models to study cardiac fibrosis. Cells Tissues Organs. 2017;204:191–8. https://doi.org/10.1159/000477436.

    Article  CAS  PubMed  Google Scholar 

  150. Resau JH, Sakamoto K, Cottrell JR, Hudson EA, Meltzer SJ. Explant organ culture: a review. Cytotechnology. 1991;7:137–49.

    Article  CAS  PubMed  Google Scholar 

  151. Al-Lamki RS, Bradley JR, Pober JS. Human organ culture: updating the approach to bridge the gap from in vitro to in vivo in inflammation, Cancer, and stem cell biology. Front Med. 2017;4 https://doi.org/10.3389/fmed.2017.00148.

  152. Baker M, et al. Use of the mouse aortic ring assay to study angiogenesis. Nat Protoc. 2011;7:89–104. https://doi.org/10.1038/nprot.2011.435.

    Article  CAS  PubMed  Google Scholar 

  153. Alm R, Edvinsson L, Malmsjo M. Organ culture: a new model for vascular endothelium dysfunction. BMC Cardiovasc Disord. 2002;2:8.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Mekontso-Dessap A, et al. Vascular-wall remodeling of 3 human bypass vessels: organ culture and smooth muscle cell properties. J Thorac Cardiovasc Surg. 2006;131:651–8. https://doi.org/10.1016/j.jtcvs.2005.08.048.

    Article  PubMed  Google Scholar 

  155. Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Investig. 1990;63:115–22.

    CAS  PubMed  Google Scholar 

  156. Masson VV, et al. Mouse aortic ring assay: a new approach of the molecular genetics of angiogenesis. Biol Proced Online. 2002;4:24–31. https://doi.org/10.1251/bpo30.

    Article  CAS  PubMed Central  Google Scholar 

  157. Zhu WH, Iurlaro M, MacIntyre A, Fogel E, Nicosia RF. The mouse aorta model: influence of genetic background and aging on bFGF- and VEGF-induced angiogenic sprouting. Angiogenesis. 2003;6:193–9. https://doi.org/10.1023/B:AGEN.0000021397.18713.9c.

    Article  CAS  PubMed  Google Scholar 

  158. Aplin AC, Fogel E, Zorzi P, Nicosia RF. The aortic ring model of angiogenesis. Methods Enzymol. 2008;443:119–36. https://doi.org/10.1016/S0076-6879(08)02007-7.

    Article  CAS  PubMed  Google Scholar 

  159. Nicosia RF, Zorzi P, Ligresti G, Morishita A, Aplin AC. Paracrine regulation of angiogenesis by different cell types in the aorta ring model. Int J Dev Biol. 2011;55:447–53. https://doi.org/10.1387/ijdb.103222rn.

    Article  CAS  PubMed  Google Scholar 

  160. Nicosia RF. The aortic ring model of angiogenesis: a quarter century of search and discovery. J Cell Mol Med. 2009;13:4113–36. https://doi.org/10.1111/j.1582-4934.2009.00891.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Blacher S, et al. Improved quantification of angiogenesis in the rat aortic ring assay. Angiogenesis. 2001;4:133–42.

    Article  CAS  PubMed  Google Scholar 

  162. Zhu WH, Nicosia RF. The thin prep rat aortic ring assay: a modified method for the characterization of angiogenesis in whole mounts. Angiogenesis. 2002;5:81–6.

    Article  CAS  PubMed  Google Scholar 

  163. Kruger EA, et al. Endostatin inhibits microvessel formation in the ex vivo rat aortic ring angiogenesis assay. Biochem Biophys Res Commun. 2000;268:183–91. https://doi.org/10.1006/bbrc.1999.2018.

    Article  CAS  PubMed  Google Scholar 

  164. Matsubara K, Mori M, Matsuura Y, Kato N. Pyridoxal 5′-phosphate and pyridoxal inhibit angiogenesis in serum-free rat aortic ring assay. Int J Mol Med. 2001;8:505–8.

    CAS  PubMed  Google Scholar 

  165. Carnevale ML, Bergdahl A. Study of the anti-angiogenic effects of cardiolipin by the aortic ring assay. Can J Physiol Pharmacol. 2015;93:1015–9. https://doi.org/10.1139/cjpp-2015-0016.

    Article  CAS  PubMed  Google Scholar 

  166. Stati T, et al. beta-Blockers promote angiogenesis in the mouse aortic ring assay. J Cardiovasc Pharmacol. 2014;64:21–7. https://doi.org/10.1097/FJC.0000000000000085.

    Article  CAS  PubMed  Google Scholar 

  167. Giustarini D, Tsikas D, Rossi R. Study of the effect of thiols on the vasodilatory potency of S-nitrosothiols by using a modified aortic ring assay. Toxicol Appl Pharmacol. 2011;256:95–102. https://doi.org/10.1016/j.taap.2011.07.011.

    Article  CAS  PubMed  Google Scholar 

  168. Salahdeen HM, Idowu GO, Yemitan OK, Murtala BA, Alada AR. Calcium-dependent mechanisms mediate the vasorelaxant effects of Tridax procumbens (Lin) aqueous leaf extract in rat aortic ring. J Basic Clin Physiol Pharmacol. 2014;25:161–6. https://doi.org/10.1515/jbcpp-2013-0030.

    Article  PubMed  Google Scholar 

  169. Ozaki H, Karaki H. Organ culture as a useful method for studying the biology of blood vessels and other smooth muscle tissues. Jpn J Pharmacol. 2002;89:93–100.

    Article  CAS  PubMed  Google Scholar 

  170. Ahnstedt H, Stenman E, Cao L, Henriksson M, Edvinsson L. Cytokines and growth factors modify the upregulation of contractile endothelin ET(A) and ET(B) receptors in rat cerebral arteries after organ culture. Acta Physiol (Oxf). 2012;205:266–78. https://doi.org/10.1111/j.1748-1716.2011.02392.x.

    Article  CAS  Google Scholar 

  171. Waldsee R, Eftekhari S, Ahnstedt H, Johnson LE, Edvinsson L. CaMKII and MEK1/2 inhibition time-dependently modify inflammatory signaling in rat cerebral arteries during organ culture. J Neuroinflammation. 2014;11:90. https://doi.org/10.1186/1742-2094-11-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Pederson DC, Bowyer DE. Endothelial injury and healing in vitro. Studies using an organ culture system. Am J Pathol. 1985;119:264–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Soyombo AA, Angelini GD, Bryan AJ, Jasani B, Newby AC. Intimal proliferation in an organ culture of human saphenous vein. Am J Pathol. 1990;137:1401–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Slomp J, et al. Nature and origin of the neointima in whole vessel wall organ culture of the human saphenous vein. Virchows Arch. 1996;428:59–67.

    Article  CAS  PubMed  Google Scholar 

  175. Del Rizzo DF, Moon MC, Werner JP, Zahradka P. A novel organ culture method to study intimal hyperplasia at the site of a coronary artery bypass anastomosis. Ann Thorac Surg. 2001;71:1273–9; discussion 1279-1280.

    Article  PubMed  Google Scholar 

  176. Xiao Y, Liu Q, Han HC. Buckling reduces eNOS production and stimulates extracellular matrix remodeling in arteries in organ culture. Ann Biomed Eng. 2016;44:2840–50. https://doi.org/10.1007/s10439-016-1571-0.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Lim CS, Kiriakidis S, Paleolog EM, Davies AH. Cell death pattern of a varicose vein organ culture model. Vascular. 2013;21:129–36. https://doi.org/10.1177/1708538113478413.

    Article  PubMed  Google Scholar 

  178. Wilson DP, Saward L, Zahradka P, Cheung PK. Angiotensin II receptor antagonists prevent neointimal proliferation in a porcine coronary artery organ culture model. Cardiovasc Res. 1999;42:761–72.

    Article  CAS  PubMed  Google Scholar 

  179. Reisinger U, et al. Leoligin, the major lignan from Edelweiss, inhibits intimal hyperplasia of venous bypass grafts. Cardiovasc Res. 2009;82:542–9. https://doi.org/10.1093/cvr/cvp059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zheng JP, et al. Vasomotor dysfunction in the mesenteric artery after organ culture with cyclosporin A. Basic Clin Pharmacol Toxicol. 2013;113:370–6. https://doi.org/10.1111/bcpt.12105.

    Article  CAS  PubMed  Google Scholar 

  181. Nilsson D, et al. Endothelin receptor-mediated vasodilatation: effects of organ culture. Eur J Pharmacol. 2008;579:233–40. https://doi.org/10.1016/j.ejphar.2007.09.031.

    Article  CAS  PubMed  Google Scholar 

  182. Akiyoshi T, et al. A novel organ culture model of aorta for vascular calcification. Atherosclerosis. 2016;244:51–8. https://doi.org/10.1016/j.atherosclerosis.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  183. Aragon-Sanabria V, et al. VE-cadherin disassembly and cell contractility in the endothelium are necessary for barrier disruption induced by tumor cells. Sci Rep. 2017;7:45835. https://doi.org/10.1038/srep45835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Benn A, Bredow C, Casanova I, Vukicevic S, Knaus P. VE-cadherin facilitates BMP-induced endothelial cell permeability and signaling. J Cell Sci. 2016;129:206–18. https://doi.org/10.1242/jcs.179960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hordijk PL, et al. Vascular-endothelial-cadherin modulates endothelial monolayer permeability. J Cell Sci. 1999;112(Pt 12):1915–23.

    CAS  PubMed  Google Scholar 

  186. Wang S, Liang B, Viollet B, Zou MH. Inhibition of the AMP-activated protein kinase-alpha2 accentuates agonist-induced vascular smooth muscle contraction and high blood pressure in mice. Hypertension. 2011;57:1010–7. https://doi.org/10.1161/HYPERTENSIONAHA.110.168906.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Messner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Türkcan, A., Bernhard, D., Messner, B. (2019). In Vitro Assays Used to Analyse Vascular Cell Functions. In: Geiger, M. (eds) Fundamentals of Vascular Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-12270-6_15

Download citation

Publish with us

Policies and ethics