Skip to main content

The Chemistry of Strigolactones

  • Chapter
  • First Online:
Strigolactones - Biology and Applications

Abstract

Focus of this chapter is the chemistry of Strigolactones. The structural features that identify the canonical versus non canonical Strigolactones, as well as the stereochemistry of the Strigol type and Orobanchol type families will be described. A special emphasis will be devoted to the total synthesis of natural Strigolactones as the most reliable and recommended method for successful structure elucidation of these natural products. However, due the complexity of the target molecules and to the high stereochemical control required to retain bioactivity, the synthesis of natural Strigolactones is currently not feasible on a multigram scale for applications in agriculture. In order to study the effect of Strigolactones on various biological processes, model compounds were designed and prepared. Synthetic Strigolactones can be classified into two main categories: (a) analogues, whose structure is very similar to natural SLs; (b) mimics, whose structure is much simpler, but showing a bioactivity resembling that of SLs. A survey of the most promising structures for agricultural applications and the synthetic pathways to access them is herein provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Proc Natl Acad Sci 111:18084–18089

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Nature 435:824–827

    Article  CAS  Google Scholar 

  • Berlage U, Schmidt J, Milkova Z, Welzel P (1987) Tetrahedron Lett 28:3095–3098

    Article  CAS  Google Scholar 

  • Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P (2009) Org Biomol Chem 7:3413–3420

    Article  CAS  Google Scholar 

  • Boyer F-D, Germain ADS, Pillot J-P, Pouvreau J-B, Chen VX, Ramos S, Stevenin A, Simier P, Delavault P, Beau J-M, Rameau C (2012) Plant Physiol 159:1524–1544

    Article  CAS  Google Scholar 

  • Boyer FD, de Saint Germain A, Pouvreau JB, Clave G, Pillot JP, Roux A, Rasmussen A, Depuydt S, Lauressergues D, Frei Dit Frey N, Heugebaert TS, Stevens CV, Geelen D, Goormachtig S, Rameau C (2014) Mol Plant 7:675–690

    Article  CAS  Google Scholar 

  • Bromhead LJ, McErlean CSP (2017) Eur J Org Chem:5712–5723

    Google Scholar 

  • Bromhead LJ, Smith J, McErlean CSP (2015) Aust J Chem 68:1221–1227

    Article  CAS  Google Scholar 

  • Brooks DW, Bevinakatti HS, Powell DR (1985) J Org Chem 50:3779–3781

    Article  CAS  Google Scholar 

  • Ćavar S, Zwanenburg B, Tarkowski P (2015) Phytochem Rev 14:691–711

    Article  Google Scholar 

  • Chen VX, Boyer F-D, Rameau C, Retailleau P, Vors J-P, Beau J-M (2010) Chem Eur J 16:13941–13945

    Article  CAS  Google Scholar 

  • Coggan P, Luhan PA, McPhail AT (1973) J Chem Soc Perk Trans 2:465–469

    Article  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME (1966) Science 154:1189–1190

    Article  CAS  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Dailey OD (1987) J Org Chem 52:1984–1989

    Article  CAS  Google Scholar 

  • Dieckmann MC, Dakas P-Y, De Mesmaeker A (2018) J Org Chem 83:125–135

    Article  CAS  Google Scholar 

  • Dvorakova M, Soudek P, Vanek T (2017) J Nat Prod 80:1318–1327

    Article  CAS  Google Scholar 

  • Flematti GR, Scaffidi A, Waters MT, Smith SM (2016) Planta 243:1361–1373

    Article  CAS  Google Scholar 

  • Frischmuth K, Samson E, Kranz A, Welzel P, Meuer H, Sheldrick WS (1991) Tetrahedron 47:9793–9806

    Article  CAS  Google Scholar 

  • Frischmuth K, Wagner U, Samson E, Weigelt D, Koll P, Meuer H, Sheldrick WS, Welzel P (1993) Tetrahedron Asymmetry 4:351–360

    Article  CAS  Google Scholar 

  • Fukui K, Yamagami D, Ito S, Asami T (2017) Front Plant Sci 8:936

    Article  Google Scholar 

  • Hauck C, Schildknecht H (1990) J Plant Physiol 136:126–128

    Article  CAS  Google Scholar 

  • Hauck C, Muller S, Schildknecht H (1992) J Plant Physiol 139:474–478

    Article  CAS  Google Scholar 

  • Heather J, Mittal R, Sih CJ (1974) J Am Chem Soc 96:1976–1977

    Article  CAS  Google Scholar 

  • Heather JB, Mittal RSD, Sih CJ (1976) J Am Chem Soc 98:3661–3669

    Article  CAS  Google Scholar 

  • Hirayama K, Mori K (1999) Eur J Org Chem 1999:2211–2217

    Article  Google Scholar 

  • Kadas I, Arvai G, Miklo K, Horvath G, Toke L, Toth G, Szollosy A, Bihari M (1996) J Environ Sci Health, Part B B31:561–566

    Article  CAS  Google Scholar 

  • Kim HI, Kisugi T, Khetkam P, Xie X, Yoneyema K, Uchida K, Yokota T, Nomura T, McErlean CSP, Yoneyama K (2014) Phytochemistry 103:85–88

    Article  CAS  Google Scholar 

  • Kisugi T, Xie X, Kim HI, Yoneyama K, Sado A, Akiyama K, Hayashi H, Uchida K, Yokota T, Nomura T, Yoneyama K (2013) Phytochemistry 87:60–64

    Article  CAS  Google Scholar 

  • Kitahara S, Tashiro T, Sugimoto Y, Sasaki M, Takikawa H (2011) Tetrahedron Lett 52:724–726

    Article  CAS  Google Scholar 

  • Kondo Y, Tadokoro E, Matsuura M, Iwasaki K, Sugimoto Y, Miyake H, Takikawa H, Sasaki M (2007) Biosci Biotechnol Biochem 71:2781–2786

    Article  CAS  Google Scholar 

  • Kumagai H, Fujiwara M, Kuse M, Takikawa H (2015) Biosci Biotechnol Biochem 79:1240–1245

    Article  CAS  Google Scholar 

  • Lace B, Prandi C (2016) Mol Plant 9:1099–1118

    Article  CAS  Google Scholar 

  • Lachia M, Dakas PY, De Mesmaeker A (2014) Tetrahedron Lett 55:6577–6581

    Article  CAS  Google Scholar 

  • Lachia M, Wolf HC, Jung PJ, Screpanti C, De Mesmaeker A (2015) Bioorg Med Chem Lett 25:2184–2188

    Article  CAS  Google Scholar 

  • Lombardi C, Artuso E, Grandi E, Lolli M, Spirakys F, Priola E, Prandi C (2017) Org Biomol Chem 15:8218–8231

    Article  CAS  Google Scholar 

  • Macalpine GA, Raphael RA, Shaw A, Taylor AW, Wild HJ (1976) J Chem Soc Perkin Trans 1:410–416

    Article  Google Scholar 

  • Matsui J, Yokota T, Bando M, Takeuchi Y, Mori K (1999a) Eur J Org Chem 1999:2201–2210

    Article  Google Scholar 

  • Matsui J, Bando M, Kido M, Takeuchi Y, Mori K (1999b) Eur J Org Chem 1999:2195–2199

    Article  Google Scholar 

  • Matsui J, Bando M, Kido M, Takeuchi Y, Mori K (1999c) Eur J Org Chem:2183–2194

    Google Scholar 

  • Matsuura H, Ohashi K, Sasako H, Tagawa N, Takano Y, Ioka Y, Nabeta K, Yoshihara T (2008) Plant Growth Regul 54:31–36

    Article  CAS  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) Plant Physiol 139:920–934

    Article  CAS  Google Scholar 

  • Mori K, Matsui J (1997) Tetrahedron Lett 38:7891–7892

    Article  CAS  Google Scholar 

  • Mori K, Matsui J, Bando M, Kido M, Takeuchi Y (1997) Tetrahedron Lett 38:2507–2510

    Article  CAS  Google Scholar 

  • Mori K, Matsui J, Bando M, Kido M, Takeuchi Y (1998) Tetrahedron Lett 39:6023–6026

    Article  CAS  Google Scholar 

  • Morris JC, McErlean CSP (2016) Org Biomol Chem 14:1236–1238

    Article  CAS  Google Scholar 

  • Mwakaboko AS, Zwanenburg B (2016) Eur J Org Chem 2016:3495–3499

    Article  CAS  Google Scholar 

  • Nakamura H, Asami T (2014) Front Plant Sci 5:623

    Article  Google Scholar 

  • Oancea F, Georgescu E, Matusova R, Georgescu F, Nicolescu A, Raut I, Jecu ML, Vladulescu MC, Vladulescu L, Deleanu C (2017) Molecules 22. https://doi.org/10.3390/molecules22060961

  • Prandi C, Ghigo G, Occhiato EG, Scarpi D, Begliomini S, Lace B, Alberto G, Artuso E, Blangetti M (2014) Org Biomol Chem 12:2960–2968

    Article  CAS  Google Scholar 

  • Reizelman A, Scheren M, Nefkens GHL, Zwanenburg B (2000) Synthesis-Stuttgart 13:1944–1951

    Article  Google Scholar 

  • Samson E, Frischmuth K, Berlage U, Heinz U, Hobert K, Welzel P (1991) Tetrahedron 47:1411–1416

    Article  CAS  Google Scholar 

  • Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Plant Physiol 165:1221–1232

    Article  CAS  Google Scholar 

  • Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Proc Natl Acad Sci 111:1640–1645

    Article  CAS  Google Scholar 

  • Sugimoto Y, Wigchert SCM, Thuring J, Zwanenburg B (1997) Tetrahedron Lett 38:2321–2324

    Article  CAS  Google Scholar 

  • Sugimoto Y, Wigchert SCM, Thuring J, Zwanenburg B (1998) J Org Chem 63:1259–1267

    Article  CAS  Google Scholar 

  • Takahashi A, Ogura Y, Enomoto M, Kuwahara S (2016) Tetrahedron 72:6634–6639

    Article  CAS  Google Scholar 

  • Takikawa H, Jikumaru S, Sugimoto Y, Xie XN, Yoneyama K, Sasaki M (2009) Tetrahedron Lett 50:4549–4551

    Article  CAS  Google Scholar 

  • Thuring JWJF, Nefkens GHL, Wegman MA, Klunder AJH, Zwanenburg B (1996) J Org Chem 61:6931–6935

    Article  CAS  Google Scholar 

  • Thuring J, Nefkens GHL, Zwanenburg B (1997) J Agric Food Chem 45:1409–1414

    Article  Google Scholar 

  • Ueno K, Nomura S, Muranaka S, Mizutani M, Takikawa H, Sugimoto Y (2011) J Agric Food Chem 59:10485–10490

    Article  CAS  Google Scholar 

  • Welzel P, Rohrig S, Milkova Z (1999) Chem Commun:2017–2022

    Google Scholar 

  • Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999) J Agric Food Chem 47:1705–1710

    Article  CAS  Google Scholar 

  • Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) J Agric Food Chem 55:8067–8072

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K (2008a) Tetrahedron Lett 49:2066–2068

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y, Yoneyama K (2008b) Phytochemistry 69:427–431

    Article  CAS  Google Scholar 

  • Yasui M, Ota R, Tsukano C, Takemoto Y (2017) Nat Commun 8:674

    Article  Google Scholar 

  • Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Phytochemistry 49:1967–1973

    Article  CAS  Google Scholar 

  • Zwanenburg B, Pospisil T (2013) Mol Plant 6:38–62

    Article  CAS  Google Scholar 

  • Zwanenburg B, Nayak SK, Charnikhova TV, Bouwmeester HJ (2013) Bioorg Med Chem Lett 23:5182–5186

    Article  CAS  Google Scholar 

  • Zwanenburg B, Mwakaboko AS, Kannan C (2016a) Pest Manag Sci 72:2016–2025

    Article  CAS  Google Scholar 

  • Zwanenburg B, Regeling H, Van Tilburg-Joukema CW, Van Oss B, Molenveld P, De Gelder R, Tinnemans P (2016b) Eur J Org Chem 2016:2163–2169

    Article  CAS  Google Scholar 

  • Zwanenburg B, Pospíšil T, Ćavar Zeljković S (2016c) Planta 243:1311–1326

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Prandi .

Editor information

Editors and Affiliations

Glossary

Asymmetric induction

A term applied to the selective synthesis of one diastereomeric form of a compound resulting from the influence of an existing chiral centre adjacent to the developing asymmetric carbon atom.

Chiral auxiliary

Is a stereogenic group or unit that is temporarily incorporated into an organic compound in order to control the stereochemical outcome of the synthesis. The chirality present in the auxiliary can bias the stereoselectivity of one or more subsequent reactions.

Chirality

A term which may be applied to any asymmetric object or molecule. The property of nonidentity of an object with its mirror image.

Chromatography

A series of related techniques for the separation of a mixture of compounds by their distribution between two phases. In gas-liquid chromatography, the distribution is between a gaseous and a liquid phase. In column chromatography, the distribution is between a liquid and a solid phase.

Circular dichroism

The property (as of an optically active medium) of unequal absorption of right and left plane-polarized light so that the emergent light is elliptically polarized.

Configuration

The order and relative spatial arrangement of the atoms in a molecule. Absolute configuration is when the relative three-dimensional arrangements in space of atoms in a chiral molecule have been correlated with an absolute standard.

Enantiomers

A pair of isomers which are related as mirror images of one another.

Enantioselective synthesis, also called asymmetric synthesis

A chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereoisomeric) products in unequal amounts.

Diastereomers (or diastereoisomers)

Stereoisomeric structures which are not enantiomers (mirror images) of one another. Often applied to systems which differ only in the configuration at one carbon atom, e.g. meso- and d- or l-tartaric acids are diastereoisomeric.

Dextrorotatory

The phenomenon in which plane-polarized light is turned in a clockwise direction.

Isomers

Compounds having the same atomic composition (constitution) but differing in their chemical structure. They include structural isomers (chain or positional), tautomeric isomers, and stereoisomers—including geometrical isomers, optical isomers, and conformational isomers.

Mass spectrometry

A form of spectrometry in which, generally, high-energy electrons are bombarded onto a sample and this generates charged fragments of the parent substance; these ions are then focused by electrostatic and magnetic fields to give a spectrum of the charged fragments.

Nuclear magnetic resonance (NMR) spectroscopy

A form of spectroscopy which depends on the absorption and emission of energy arising from changes in the spin states of the nucleus of an atom. For aggregates of atoms, as in molecules, minor variations in these energy changes are caused by the local chemical environment. The energy changes used are in the radiofrequency range of the electromagnetic spectrum and depend upon the magnitude of an applied magnetic field.

Racemic mixture, racemate

An equimolar mixture of the two enantiomeric isomers of a compound. As a consequence of the equal numbers of levo- and dextrorotatory molecules present in a racemate, there is no net rotation of plane-polarized light.

Resolution

The separation of a racemate into its two enantiomers by means of some chiral agency.

Resonance

The representation of a compound by two or more canonical structures in which the valence electrons are rearranged to give structures of similar probability. The actual structure is considered to be a hybrid or the resonance forms.

R,S convention

A formal non-ambiguous, nomenclature system for the assignment of absolute configuration of structure to chiral atoms, using the Cahn, Ingold, and Prelog priority rules.

Stereochemistry

The study of the spatial arrangements of atoms in molecules and complexes.

Stereoisomer

Another name for configurational isomer.

Stereospecific reactions

Reactions in which the stereochemistry of reagents affects the stereochemistry of products. Different stereoisomers as reagents give different stereoisomer as products.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prandi, C., McErlean, C.S.P. (2019). The Chemistry of Strigolactones. In: Koltai, H., Prandi, C. (eds) Strigolactones - Biology and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-12153-2_6

Download citation

Publish with us

Policies and ethics