Skip to main content

Genetic Predisposition to Non-Hodgkin Lymphoma

  • Chapter
  • First Online:
Non-Hodgkin's Lymphoma in Childhood and Adolescence

Abstract

Lymphoma develops in children commonly as an unfortunate consequence of a genetically and developmentally disturbed immune system that is incapable to appropriately adapt to and cope with certain environmental factors and to ward off specific infectious agents. According to current estimates, already well-defined single-gene defects affect up to two-thirds of children with non-Hodgkin lymphomas (NHL). Such mutations disrupt primarily components that are part of various immune and functionally closely related DNA repair pathways. Although many of them concur with clinically recognizable physical abnormalities and hematopoietic disturbances, their enormous heterogeneity and ensuing individual rarity, and their often-incomplete penetrance and striking variable expressivity together with incomplete family histories, small families and the possibility of de novo mutations pose nevertheless a considerable diagnostic challenge, which nowadays can be approached with appropriate screening methods and sequencing tools. Considering the increasing interest in germline defects that predispose to childhood malignancies, we believe that the implementation and embedment of systematic analyses in the respective lymphoma treatment studies would be an especially rewarding endeavor, since the knowledge of their presence can guide the clinical management of affected patients; enable carrier screening, family counseling, and planning; as well as facilitate clinical surveillance and the application of preventive measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arico M, Mussolin L, Carraro E, Buffardi S, Santoro N, D’Angelo P, et al. Non-Hodgkin lymphoma in children with an associated inherited condition: a retrospective analysis of the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP). Pediatr Blood Cancer. 2015;62(10):1782–9. https://doi.org/10.1002/pbc.25565.

    Article  CAS  PubMed  Google Scholar 

  2. Attarbaschi A, Carraro E, Abla O, Barzilai-Birenboim S, Bomken S, Brugieres L, et al. Non-Hodgkin lymphoma and pre-existing conditions: spectrum, clinical characteristics and outcome in 213 children and adolescents. Haematologica. 2016;101(12):1581–91. https://doi.org/10.3324/haematol.2016.147116.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vijai J, Wang Z, Berndt SI, Skibola CF, Slager SL, de Sanjose S, et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun. 2015;6(1):5751. https://doi.org/10.1038/ncomms6751.

    Article  CAS  PubMed  Google Scholar 

  4. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. https://doi.org/10.1182/blood-2016-01-643569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tran H, Nourse J, Hall S, Green M, Griffiths L, Gandhi MK. Immunodeficiency-associated lymphomas. Blood Rev. 2008;22(5):261–81. https://doi.org/10.1016/j.blre.2008.03.009.

    Article  PubMed  Google Scholar 

  6. Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rosen-Wolff A, et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001;98(1):194–200.

    Article  CAS  PubMed  Google Scholar 

  7. Clementi R, Dagna L, Dianzani U, Dupre L, Dianzani I, Ponzoni M, et al. Inherited perforin and Fas mutations in a patient with autoimmune lymphoproliferative syndrome and lymphoma. N Engl J Med. 2004;351(14):1419–24. https://doi.org/10.1056/NEJMoa041432.

    Article  CAS  PubMed  Google Scholar 

  8. Alexander DD, Mink PJ, Adami HO, Chang ET, Cole P, Mandel JS, et al. The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer. 2007;120 Suppl 12(S12):1–39. https://doi.org/10.1002/ijc.22719.

    Article  CAS  Google Scholar 

  9. Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematology Am Soc Hematol Educ Program. 2012;2012:301–5. https://doi.org/10.1182/asheducation-2012.1.301.

    Article  PubMed  Google Scholar 

  10. Morton LM, Slager SL, Cerhan JR, Wang SS, Vajdic CM, Skibola CF, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014(48):130–44. https://doi.org/10.1093/jncimonographs/lgu013.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Osinska I, Popko K, Demkow U. Perforin: an important player in immune response. Cent Eur J Immunol. 2014;39(1):109–15. https://doi.org/10.5114/ceji.2014.42135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skibola CF, Curry JD, Nieters A. Genetic susceptibility to lymphoma. Haematologica. 2007;92(7):960–9.

    Article  CAS  PubMed  Google Scholar 

  13. Similuk M, Rao VK, Churpek J, Lenardo M. Predispositions to lymphoma: a practical review for Genetic Counselors. J Genet Couns. 2016;25(6):1157–70. https://doi.org/10.1007/s10897-016-9979-0.

    Article  PubMed  Google Scholar 

  14. Sharapova SO, Fedorova AS, Pashchenko OE, Vahliarskaya SS, Guryanova IE, Migas AA, et al. Novel mutations in SH2D1A gene in X-linked lymphoproliferative syndrome, diagnosed after B-cell non-Hodgkin lymphoma. J Pediatr Hematol Oncol. 2017;39(4):e203–e6. https://doi.org/10.1097/MPH.0000000000000815.

    Article  CAS  PubMed  Google Scholar 

  15. Jongmans MC, Loeffen JL, Waanders E, Hoogerbrugge PM, Ligtenberg MJ, Kuiper RP, et al. Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet. 2016;59(3):116–25. https://doi.org/10.1016/j.ejmg.2016.01.008.

    Article  PubMed  Google Scholar 

  16. Seidemann K, Tiemann M, Henze G, Sauerbrey A, Muller S, Reiter A. Therapy for non-Hodgkin lymphoma in children with primary immunodeficiency: analysis of 19 patients from the BFM trials. Med Pediatr Oncol. 1999;33(6):536–44.

    Article  CAS  PubMed  Google Scholar 

  17. Bienemann K, Burkhardt B, Modlich S, Meyer U, Moricke A, Bienemann K, et al. Promising therapy results for lymphoid malignancies in children with chromosomal breakage syndromes (Ataxia telangiectasia or Nijmegen-breakage syndrome): a retrospective survey. Br J Haematol. 2011;155(4):468–76. https://doi.org/10.1111/j.1365-2141.2011.08863.x.

    Article  CAS  PubMed  Google Scholar 

  18. Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O, Boztug K, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55. https://doi.org/10.1053/j.gastro.2012.04.045.

    Article  CAS  PubMed  Google Scholar 

  19. Chihara D, Nastoupil LJ, Williams JN, Lee P, Koff JL, Flowers CR. New insights into the epidemiology of non-Hodgkin lymphoma and implications for therapy. Expert Rev Anticancer Ther. 2015;15(5):531–44. https://doi.org/10.1586/14737140.2015.1023712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL, Guideline Development Group ACoMGaGPPaGCaNSoGCPGC. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2015;17(1):70–87.

    Article  PubMed  Google Scholar 

  21. Wolfe Schneider K, Jasperson K. Unique genetic counseling considerations in the pediatric oncology setting. Curr Genet Med Rep. 2015;3(2):65–73. https://doi.org/10.1007/s40142-015-0064-z.

    Article  Google Scholar 

  22. Walsh MF, Chang VY, Kohlmann WK, Scott HS, Cunniff C, Bourdeaut F, et al. Recommendations for childhood cancer screening and surveillance in DNA repair disorders. Clin Cancer Res. 2017;23(11):e23–31. https://doi.org/10.1158/1078-0432.CCR-17-0465.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cerhan JR, Slager SL. Familial predisposition and genetic risk factors for lymphoma. Blood. 2015;126(20):2265–73. https://doi.org/10.1182/blood-2015-04-537498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Desai AV, Perpich M, Godley LA. Clinical assessment and diagnosis of Germline predisposition to hematopoietic malignancies: the University of Chicago Experience. Front Pediatr. 2017;5:252. https://doi.org/10.3389/fped.2017.00252.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bakry D, Aronson M, Durno C, Rimawi H, Farah R, Alharbi QK, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer. 2014;50(5):987–96. https://doi.org/10.1016/j.ejca.2013.12.005.

    Article  PubMed  Google Scholar 

  26. Ripperger T, Beger C, Rahner N, Sykora KW, Bockmeyer CL, Lehmann U, et al. Constitutional mismatch repair deficiency and childhood leukemia/lymphoma – report on a novel biallelic MSH6 mutation. Haematologica. 2010;95(5):841–4. https://doi.org/10.3324/haematol.2009.015503.

    Article  CAS  PubMed  Google Scholar 

  27. Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, et al. Childhood cancer predisposition syndromes-a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A. 2017;173(4):1017–37. https://doi.org/10.1002/ajmg.a.38142.

    Article  PubMed  Google Scholar 

  28. Gladkowska-Dura M, Dzierzanowska-Fangrat K, Dura WT, van Krieken JH, Chrzanowska KH, van Dongen JJ, et al. Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation. J Pathol. 2008;216(3):337–44. https://doi.org/10.1002/path.2418.

    Article  CAS  PubMed  Google Scholar 

  29. Shapiro RS. Malignancies in the setting of primary immunodeficiency: implications for hematologists/oncologists. Am J Hematol. 2011;86(1):48–55. https://doi.org/10.1002/ajh.21903.

    Article  PubMed  Google Scholar 

  30. Seidemann K, Henze G, Beck JD, Sauerbrey A, Kuhl J, Mann G, et al. Non-Hodgkin’s lymphoma in pediatric patients with chromosomal breakage syndromes (AT and NBS): experience from the BFM trials. Ann Oncol. 2000;11(Suppl 1):141–5.

    Article  PubMed  Google Scholar 

  31. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(1):159. https://doi.org/10.1186/s13023-016-0543-7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suarez F, Mahlaoui N, Canioni D, Andriamanga C, Dubois d’Enghien C, Brousse N, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies. J Clin Oncol. 2015;33(2):202–8. https://doi.org/10.1200/JCO.2014.56.5101.

    Article  PubMed  Google Scholar 

  33. Chrzanowska KH, Gregorek H, Dembowska-Baginska B, Kalina MA, Digweed M. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7(1):13. https://doi.org/10.1186/1750-1172-7-13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dembowska-Baginska B, Perek D, Brozyna A, Wakulinska A, Olczak-Kowalczyk D, Gladkowska-Dura M, et al. Non-Hodgkin lymphoma (NHL) in children with Nijmegen breakage syndrome (NBS). Pediatr Blood Cancer. 2009;52(2):186–90. https://doi.org/10.1002/pbc.21789.

    Article  PubMed  Google Scholar 

  35. Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet. 2016;59(3):133–42. https://doi.org/10.1016/j.ejmg.2015.12.014.

    Article  PubMed  Google Scholar 

  36. Alexander TB, McGee RB, Kaye EC, McCarville MB, Choi JK, Cavender CP, et al. Metachronous T-lymphoblastic lymphoma and Burkitt lymphoma in a child with constitutional mismatch repair deficiency syndrome. Pediatr Blood Cancer. 2016;63(8):1454–6. https://doi.org/10.1002/pbc.25989.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lavoine N, Colas C, Muleris M, Bodo S, Duval A, Entz-Werle N, et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet. 2015;52(11):770–8. https://doi.org/10.1136/jmedgenet-2015-103299.

    Article  CAS  PubMed  Google Scholar 

  38. Tichy A, Vavrova J, Pejchal J, Rezacova M. Ataxia-telangiectasia mutated kinase (ATM) as a central regulator of radiation-induced DNA damage response. Acta Med (Hradec Kralove). 2010;53(1):13–7.

    Article  CAS  Google Scholar 

  39. Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87(2):423–38.

    CAS  PubMed  Google Scholar 

  40. van Os NJ, Roeleveld N, Weemaes CM, Jongmans MC, Janssens GO, Taylor AM, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17. https://doi.org/10.1111/cge.12710.

    Article  CAS  PubMed  Google Scholar 

  41. Schuetz JM, MaCarthur AC, Leach S, Lai AS, Gallagher RP, Connors JM, et al. Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma. BMC Med Genet. 2009;10:117. https://doi.org/10.1186/1471-2350-10-117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tabori U, Hansford JR, Achatz MI, Kratz CP, Plon SE, Frebourg T, et al. Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res. 2017;23(11):e32–e7. https://doi.org/10.1158/1078-0432.CCR-17-0574.

    Article  PubMed  Google Scholar 

  43. Durno CA, Sherman PM, Aronson M, Malkin D, Hawkins C, Bakry D, et al. Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. Eur J Cancer. 2015;51(8):977–83. https://doi.org/10.1016/j.ejca.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  44. Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J Med Genet. 2014;51(6):355–65. https://doi.org/10.1136/jmedgenet-2014-102284.

    Article  CAS  PubMed  Google Scholar 

  45. Vasen HF, Ghorbanoghli Z, Bourdeaut F, Cabaret O, Caron O, Duval A, et al. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European consortium “care for CMMR-D” (C4CMMR-D). J Med Genet. 2014;51(5):283–93. https://doi.org/10.1136/jmedgenet-2013-102238.

    Article  CAS  PubMed  Google Scholar 

  46. Wimmer K, Kratz CP. Constitutional mismatch repair-deficiency syndrome. Haematologica. 2010;95(5):699–701. https://doi.org/10.3324/haematol.2009.021626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol. 2018;38(1):96–128. https://doi.org/10.1007/s10875-017-0464-9.

    Article  PubMed  Google Scholar 

  48. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. The 2017 IUIS phenotypic classification for primary Immunodeficiencies. J Clin Immunol. 2018;38(1):129–43. https://doi.org/10.1007/s10875-017-0465-8.

    Article  PubMed  Google Scholar 

  49. Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, et al. Cancer in primary immunodeficiency diseases: cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol. 2018;141(3):1028–35. https://doi.org/10.1016/j.jaci.2017.05.024.

    Article  PubMed  Google Scholar 

  50. Verhoeven D, Stoppelenburg AJ, Meyer-Wentrup F, Boes M. Increased risk of hematologic malignancies in primary immunodeficiency disorders: opportunities for immunotherapy. Clin Immunol. 2018;190:22–31. https://doi.org/10.1016/j.clim.2018.02.007.

    Article  CAS  PubMed  Google Scholar 

  51. de Jong D, Roemer MG, Chan JK, Goodlad J, Gratzinger D, Chadburn A, et al. B-cell and classical Hodgkin lymphomas associated with immunodeficiency: 2015 SH/EAHP Workshop Report-Part 2. Am J Clin Pathol. 2017;147(2):153–70. https://doi.org/10.1093/ajcp/aqw216.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Latour S, Winter S. Inherited Immunodeficiencies with high predisposition to Epstein–Barr virus-driven lymphoproliferative diseases. Front Immunol. 2018;9:1103. https://doi.org/10.3389/fimmu.2018.01103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arjunaraja S, Angelus P, Su HC, Snow AL. Impaired control of Epstein-Barr virus infection in B-cell expansion with NF-kappaB and T-cell Anergy Disease. Front Immunol. 2018;9:198. https://doi.org/10.3389/fimmu.2018.00198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Worth AJ, Houldcroft CJ, Booth C. Severe Epstein-Barr virus infection in primary immunodeficiency and the normal host. Br J Haematol. 2016;175(4):559–76. https://doi.org/10.1111/bjh.14339.

    Article  PubMed  Google Scholar 

  55. Parvaneh N, Filipovich AH, Borkhardt A. Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol. 2013;162(5):573–86. https://doi.org/10.1111/bjh.12422.

    Article  CAS  PubMed  Google Scholar 

  56. Voskoboinik I, Trapani JA. Perforinopathy: a spectrum of human immune disease caused by defective perforin delivery or function. Front Immunol. 2013;4:441. https://doi.org/10.3389/fimmu.2013.00441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trapani JA, Thia KY, Andrews M, Davis ID, Gedye C, Parente P, et al. Human perforin mutations and susceptibility to multiple primary cancers. Oncoimmunology. 2013;2(4):e24185. https://doi.org/10.4161/onci.24185.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chaudhry MS, Gilmour KC, House IG, Layton M, Panoskaltsis N, Sohal M, et al. Missense mutations in the perforin (PRF1) gene as a cause of hereditary cancer predisposition. Oncoimmunology. 2016;5(7):e1179415. https://doi.org/10.1080/2162402X.2016.1179415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cetica V, Sieni E, Pende D, Danesino C, De Fusco C, Locatelli F, et al. Genetic predisposition to hemophagocytic lymphohistiocytosis: report on 500 patients from the Italian registry. J Allergy Clin Immunol. 2016;137(1):188–96 e4. https://doi.org/10.1016/j.jaci.2015.06.048.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ciambotti B, Mussolin L, d’Amore ES, Pillon M, Sieni E, Coniglio ML, et al. Monoallelic mutations of the perforin gene may represent a predisposing factor to childhood anaplastic large cell lymphoma. J Pediatr Hematol Oncol. 2014;36(6):e359–65. https://doi.org/10.1097/MPH.0000000000000073.

    Article  CAS  PubMed  Google Scholar 

  61. Clementi R, Locatelli F, Dupre L, Garaventa A, Emmi L, Bregni M, et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood. 2005;105(11):4424–8. https://doi.org/10.1182/blood-2004-04-1477.

    Article  CAS  PubMed  Google Scholar 

  62. Cannella S, Santoro A, Bruno G, Pillon M, Mussolin L, Mangili G, et al. Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lymphoma. Cancer. 2007;109(12):2566–71. https://doi.org/10.1002/cncr.22718.

    Article  CAS  PubMed  Google Scholar 

  63. Manso R, Rodriguez-Pinilla SM, Lombardia L, Ruiz de Garibay G, Del Mar Lopez M, Requena L, et al. An A91V SNP in the perforin gene is frequently found in NK/T-cell lymphomas. PLoS One. 2014;9(3):e91521. https://doi.org/10.1371/journal.pone.0091521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Panchal N, Booth C, Cannons JL, Schwartzberg PL. X-linked Lymphoproliferative disease type 1: a clinical and molecular perspective. Front Immunol. 2018;9:666. https://doi.org/10.3389/fimmu.2018.00666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Candotti F. Clinical manifestations and pathophysiological mechanisms of the Wiskott-Aldrich syndrome. J Clin Immunol. 2018;38(1):13–27. https://doi.org/10.1007/s10875-017-0453-z.

    Article  CAS  PubMed  Google Scholar 

  66. Buchbinder D, Nugent DJ, Fillipovich AH. Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments. Appl Clin Genet. 2014;7:55–66. https://doi.org/10.2147/TACG.S58444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci. 2013;1285:26–43. https://doi.org/10.1111/nyas.12049.

    Article  CAS  PubMed  Google Scholar 

  68. Ochs HD, Filipovich AH, Veys P, Cowan MJ, Kapoor N. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant. 2009;15(1 Suppl):84–90. https://doi.org/10.1016/j.bbmt.2008.10.007.

    Article  PubMed  Google Scholar 

  69. Blundell MP, Worth A, Bouma G, Thrasher AJ. The Wiskott-Aldrich syndrome: the actin cytoskeleton and immune cell function. Dis Markers. 2010;29(3-4):157–75. https://doi.org/10.3233/DMA-2010-0735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45. https://doi.org/10.1056/NEJMoa0907206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shouval DS, CL Ebens, R Murchie, K McCann, R Rabah, C Klein, et al. Large B-cell lymphoma in an adolescent patient with Iinterleukin-10 receptor deficiency and history of infantile inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2016;63(1):e15–e17. https://doi.org/10.1097/MPG.0000000000000532.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Neven B, Mamessier E, Bruneau J, Kaltenbach S, Kotlarz D, Suarez F, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood. 2013;122(23):3713–22. https://doi.org/10.1182/blood-2013-06-508267.

    Article  CAS  PubMed  Google Scholar 

  73. Kandiel A, Fraser AG, Korelitz BI, Brensinger C, Lewis JD. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut. 2005;54(8):1121–5. https://doi.org/10.1136/gut.2004.049460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mitchell KJ. What is complex about complex disorders? Genome Biol. 2012;13(1):237. https://doi.org/10.1186/gb-2012-13-1-237.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cerhan JR. Host genetics in follicular lymphoma. Best Pract Res Clin Haematol. 2011;24(2):121–34. https://doi.org/10.1016/j.beha.2011.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Knapke S, Nagarajan R, Correll J, Kent D, Burns K. Hereditary cancer risk assessment in a pediatric oncology follow-up clinic. Pediatr Blood Cancer. 2012;58(1):85–9. https://doi.org/10.1002/pbc.23283.

    Article  PubMed  Google Scholar 

  77. Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in pediatric cancer. N Engl J Med. 2015;373(24):2336–46. https://doi.org/10.1056/NEJMoa1508054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mack TM, Cozen W, Shibata DK, Weiss LM, Nathwani BN, Hernandez AM, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332(7):413–8. https://doi.org/10.1056/NEJM199502163320701.

    Article  CAS  PubMed  Google Scholar 

  79. Crump C, Sundquist K, Sieh W, Winkleby MA, Sundquist J. Perinatal and family risk factors for Hodgkin lymphoma in childhood through young adulthood. Am J Epidemiol. 2012;176(12):1147–58. https://doi.org/10.1093/aje/kws212.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Friedman DL, Kadan-Lottick NS, Whitton J, Mertens AC, Yasui Y, Liu Y, et al. Increased risk of cancer among siblings of long-term childhood cancer survivors: a report from the childhood cancer survivor study. Cancer Epidemiol Biomark Prev. 2005;14(8):1922–7. https://doi.org/10.1158/1055-9965.EPI-05-0066.

    Article  Google Scholar 

  81. Lu Y, Sullivan-Halley J, Cozen W, Chang ET, Henderson K, Ma H, et al. Family history of haematopoietic malignancies and non-Hodgkin’s lymphoma risk in the California teachers study. Br J Cancer. 2009;100(3):524–6. https://doi.org/10.1038/sj.bjc.6604881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600–8. https://doi.org/10.1093/jnci/86.21.1600.

    Article  CAS  PubMed  Google Scholar 

  83. Goldin LR, McMaster ML, Ter-Minassian M, Saddlemire S, Harmsen B, Lalonde G, et al. A genome screen of families at high risk for Hodgkin lymphoma: evidence for a susceptibility gene on chromosome 4. J Med Genet. 2005;42(7):595–601. https://doi.org/10.1136/jmg.2004.027433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Skibola CF, Bracci PM, Nieters A, Brooks-Wilson A, de Sanjose S, Hughes AM, et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) polymorphisms and risk of non-Hodgkin lymphoma in the InterLymph Consortium. Am J Epidemiol. 2010;171(3):267–76. https://doi.org/10.1093/aje/kwp383.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nieters A, Conde L, Slager SL, Brooks-Wilson A, Morton L, Skibola DR, et al. PRRC2A and BCL2L11 gene variants influence risk of non-Hodgkin lymphoma: results from the InterLymph consortium. Blood. 2012;120(23):4645–8. https://doi.org/10.1182/blood-2012-05-427989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kuhlen M, Borkhardt A. Cancer susceptibility syndromes in children in the area of broad clinical use of massive parallel sequencing. Eur J Pediatr. 2015;174(8):987–97. https://doi.org/10.1007/s00431-015-2565-x.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kuhlen M, Borkhardt A. Trio sequencing in pediatric cancer and clinical implications. EMBO Mol Med. 2018;10(4):e8641–7. https://doi.org/10.15252/emmm.201708641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Al-Mousa H, Abouelhoda M, Monies DM, Al-Tassan N, Al-Ghonaium A, Al-Saud B, et al. Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases. J Allergy Clin Immunol. 2016;137(6):1780–7. https://doi.org/10.1016/j.jaci.2015.12.1310.

    Article  CAS  PubMed  Google Scholar 

  89. Nijman IJ, van Montfrans JM, Hoogstraat M, Boes ML, van de Corput L, Renner ED, et al. Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol. 2014;133(2):529–34. https://doi.org/10.1016/j.jaci.2013.08.032.

    Article  CAS  PubMed  Google Scholar 

  90. Stoddard JL, Niemela JE, Fleisher TA, Rosenzweig SD. Targeted NGS: a cost-effective approach to molecular diagnosis of PIDs. Front Immunol. 2014;5(1):531. https://doi.org/10.3389/fimmu.2014.00531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sandoval C, Swift M. Treatment of lymphoid malignancies in patients with ataxia-telangiectasia. Med Pediatr Oncol. 1998;31(6):491–7.

    Article  CAS  PubMed  Google Scholar 

  92. Taylor AM. Ataxia telangiectasia genes and predisposition to leukaemia, lymphoma and breast cancer. Br J Cancer. 1992;66(1):5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Os NJH, Haaxma CA, van der Flier M, Merkus PJFM, van Deuren M, de Groot IJM, et al. Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev Med Child Neurol. 2017;59(7):680–9.

    Article  PubMed  Google Scholar 

  94. Ben-Omran TI, Cerosaletti K, Concannon P, Weitzman S, Nezarati MM. A patient with mutations in DNA ligase IV: clinical features and overlap with Nijmegen breakage syndrome. Am J Med Genet A. 2005;137A(3):283–7. https://doi.org/10.1002/ajmg.a.30869.

    Article  PubMed  Google Scholar 

  95. Sharapova SO, Chang EY, Guryanova IE, Proleskovskaya IV, Fedorova AS, Rutskaya EA, et al. Next generation sequencing revealed DNA ligase IV deficiency in a “developmentally normal” patient with massive brain Epstein-Barr virus-positive diffuse large B-cell lymphoma. Clin Immunol. 2016;163:108–10. https://doi.org/10.1016/j.clim.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  96. Altmann T, Gennery AR. DNA ligase IV syndrome; a review. Orphanet J Rare Dis. 2016;11(1):137. https://doi.org/10.1186/s13023-016-0520-1.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cunniff C, Bassetti JA, Ellis NA. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8(1):4–23. https://doi.org/10.1159/000452082.

    Article  CAS  PubMed  Google Scholar 

  98. Kostjukovits S, Klemetti P, Valta H, Martelius T, Notarangelo LD, Seppanen M, et al. Analysis of clinical and immunologic phenotype in a large cohort of children and adults with cartilage-hair hypoplasia. J Allergy Clin Immunol. 2017;140(2):612–4 e5. https://doi.org/10.1016/j.jaci.2017.02.016.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Taskinen M, Ranki A, Pukkala E, Jeskanen L, Kaitila I, Makitie O. Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. Am J Med Genet A. 2008;146A(18):2370–5. https://doi.org/10.1002/ajmg.a.32478.

    Article  PubMed  Google Scholar 

  100. Ding Q, Yang LY. Perforin gene mutations in 77 Chinese patients with lymphomas. World J Emerg Med. 2013;4(2):128–32. https://doi.org/10.5847/wjem.j.1920-8642.2013.02.008.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mehta PA, Davies SM, Kumar A, Devidas M, Lee S, Zamzow T, et al. Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia. 2006;20(9):1539–41. https://doi.org/10.1038/sj.leu.2404299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koochakzadeh L, Hosseinverdi S, Hedayat M, Farahani F, Tofighi A, Eghbali M, et al. Study of SH2D1A gene mutation in paediatric patients with B-cell lymphoma. Allergol Immunopathol (Madr). 2015;43(6):568–70. https://doi.org/10.1016/j.aller.2015.01.007.

    Article  CAS  Google Scholar 

  103. Tangye SG. XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J Clin Immunol. 2014;34(7):772–9. https://doi.org/10.1007/s10875-014-0083-7.

    Article  CAS  PubMed  Google Scholar 

  104. Booth C, Gilmour KC, Veys P, Gennery AR, Slatter MA, Chapel H, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117(1):53–62. https://doi.org/10.1182/blood-2010-06-284935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Arico M, Imashuku S, Clementi R, Hibi S, Teramura T, Danesino C, et al. Hemophagocytic lymphohistiocytosis due to germline mutations in SH2D1A, the X-linked lymphoproliferative disease gene. Blood. 2001;97(4):1131–3.

    Article  CAS  PubMed  Google Scholar 

  106. Linka RM, Risse SL, Bienemann K, Werner M, Linka Y, Krux F, et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. 2012;26(5):963–71. https://doi.org/10.1038/leu.2011.371.

    Article  CAS  PubMed  Google Scholar 

  107. Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, et al. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica. 2013;98(3):473–8. https://doi.org/10.3324/haematol.2012.068791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Abolhassani H, Edwards ES, Ikinciogullari A, Jing H, Borte S, Buggert M, et al. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med. 2017;214(1):91–106. https://doi.org/10.1084/jem.20160849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214(1):73–89. https://doi.org/10.1084/jem.20160784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Winter S, Martin E, Boutboul D, Lenoir C, Boudjemaa S, Petit A, et al. Loss of RASGRP1 in humans impairs T-cell expansion leading to Epstein-Barr virus susceptibility. EMBO Mol Med. 2018;10(2):188–99. https://doi.org/10.15252/emmm.201708292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Stray-Pedersen A, Jouanguy E, Crequer A, Bertuch AA, Brown BS, Jhangiani SN, et al. Compound heterozygous CORO1A mutations in siblings with a mucocutaneous-immunodeficiency syndrome of epidermodysplasia verruciformis-HPV, molluscum contagiosum and granulomatous tuberculoid leprosy. J Clin Immunol. 2014;34(7):871–90. https://doi.org/10.1007/s10875-014-0074-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Moshous D, Martin E, Carpentier W, Lim A, Callebaut I, Canioni D, et al. Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol. 2013;131(6):1594–603. https://doi.org/10.1016/j.jaci.2013.01.042.

    Article  CAS  PubMed  Google Scholar 

  113. Martin E, Palmic N, Sanquer S, Lenoir C, Hauck F, Mongellaz C, et al. CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation. Nature. 2014;510(7504):288–92. https://doi.org/10.1038/nature13386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Verzegnassi F, Valencic E, Kiren V, Giurici N, Bianco AM, Marcuzzi A, et al. The challenge of next generation sequencing in a boy with severe mononucleosis and EBV-related lymphoma. J Pediatr Hematol Oncol. 2018;40(5):e323–6. https://doi.org/10.1097/MPH.0000000000001004.

    Article  PubMed  Google Scholar 

  115. Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest. 2012;122(3):821–32. https://doi.org/10.1172/JCI61014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li FY, Chaigne-Delalande B, Su H, Uzel G, Matthews H, Lenardo MJ. XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood. 2014;123(14):2148–52. https://doi.org/10.1182/blood-2013-11-538686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sherkat R, Sabri MR, Dehghan B, Bigdelian H, Reisi N, Afsharmoghadam N, et al. EBV lymphoproliferative-associated disease and primary cardiac T-cell lymphoma in a STK4 deficient patient: a case report. Medicine (Baltimore). 2017;96(48):e8852. https://doi.org/10.1097/MD.0000000000008852.

    Article  Google Scholar 

  118. Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest. 2012;122(9):3239–47. https://doi.org/10.1172/JCI62949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Skibola CF, Berndt SI, Vijai J, Conde L, Wang Z, Yeager M, et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet. 2014;95(4):462–71. https://doi.org/10.1016/j.ajhg.2014.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Conde L, Halperin E, Akers NK, Brown KM, Smedby KE, Rothman N, et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet. 2010;42(8):661–4. https://doi.org/10.1038/ng.626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Smedby KE, Foo JN, Skibola CF, Darabi H, Conde L, Hjalgrim H, et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet. 2011;7(4):e1001378. https://doi.org/10.1371/journal.pgen.1001378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cerhan JR, Berndt SI, Vijai J, Ghesquieres H, McKay J, Wang SS, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014;46(11):1233–8. https://doi.org/10.1038/ng.3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tan DE, Foo JN, Bei JX, Chang J, Peng R, Zheng X, et al. Genome-wide association study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility locus in the Chinese population. Nat Genet. 2013;45(7):804–7. https://doi.org/10.1038/ng.2666.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author(s) acknowledge the networking support by the COST Action CA16223 “LEukaemia GENe Discovery by data sharing, mining and collaboration (LEGEND)” as well as the “IBFM Leukemia & Lymphoma Genetic Predisposition Committee.” We also thank Fikret Rifatbegovic for help with designing and drawing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar A. Haas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haas, O.A., Borkhardt, A. (2019). Genetic Predisposition to Non-Hodgkin Lymphoma. In: Abla, O., Attarbaschi, A. (eds) Non-Hodgkin's Lymphoma in Childhood and Adolescence. Springer, Cham. https://doi.org/10.1007/978-3-030-11769-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11769-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11768-9

  • Online ISBN: 978-3-030-11769-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics