Skip to main content

Peptide Drug Design for Diabetes and Related Metabolic Diseases

  • Chapter
  • First Online:
  • 832 Accesses

Abstract

This chapter reviews the major peptide modalities used in the treatment of diabetes and related metabolic disorders. The focus is on design principles for molecules and formulations in current and emerging applications. Insulin is by far the largest single category. Traditional and ongoing efforts on engineering predictable pharmacokinetic (PK) profiles have gradually refined the injectable insulin preparations we know today. A set of innovations for the future focus on ways to circumvent the intrinsic low therapeutic index of insulin, either by developing a glucose-responsive insulin or a “closed-loop” delivery system capable of operating as an artificial pancreas. Only discovered in the 1980’s, glucagon-like peptide-1 (GLP-1) is already established as an important and rapidly growing diabetes drug class. A variety of peptide engineering techniques have been used to develop GLP-1 analogs with a wide range of PK properties. The combination of glucose-dependent insulin release and the central effect on satiety makes GLP-1 particularly attractive in the treatment of type 2 diabetes, alone or together with insulin. Emerging combinations of the anorectic GLP-1 effect with a boost in energy expenditure or other pharmacologies currently seek to explore applications in co-morbidities such as obesity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kirkman MS, Umpierrez GE. Classification of diabetes. In: Umpierrez GE, editor. Therapy for diabetes mellitus. 6th ed. Virginia: American Diabetes Association; 2014. p. 13–20.

    Google Scholar 

  2. Chaundhury A, Duvoor C, Dendi VSR, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, Sasapu A, Beebe A, Patil N, Musham CK, Lohani GP, Mirza W. Clinical review of antidiabetic drugs: implications for type 2 diabetes melitus management. Front Endocrinol. 2017;8:6. https://doi.org/10.3389/fendo.2017.00006.

    Article  Google Scholar 

  3. White JR. A brief history of the development of diabetes medications. Diabetes Spectr. 2014;27:82–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krentz A, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005;65:385–411.

    Article  CAS  PubMed  Google Scholar 

  5. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin-dependent diabetes. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  6. UK Hypoglycaemia Study Group. Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia. 2007;50:1140–7.

    Article  CAS  Google Scholar 

  7. Frier BM. Hypoglycaemia in diabetes mellitus: epidemiology and clinical implications. Nat Rev Endocrinol. 2014;10:711–22.

    Article  CAS  PubMed  Google Scholar 

  8. Seaquist ER, et al. Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care. 2013;36:1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herring R, et al. Hepatoselectivity and the evolution of insulin. Diabetes Obes Metab. 2014;16:1–8.

    Article  CAS  PubMed  Google Scholar 

  10. Sekigami T, et al. Comparison between closed-loop portal and periperal venous insulin delivery systems for an artificial pancreas. J Artif Organs. 2004;7:91–100.

    Article  CAS  PubMed  Google Scholar 

  11. Polonsky KS, Rubenstein AH. C peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes. 1984;33:486–94.

    Article  CAS  PubMed  Google Scholar 

  12. Eaton RP, et al. Hepatic removal of insulin in normal man: dose response to endogenous insulin secretion. J Clin Endocrinol Metab. 1983;56:1294–300.

    Article  CAS  PubMed  Google Scholar 

  13. Mathieu C, et al. Insulin analogues in type 1 diabetes mellitus: getting better all the time. Nat Rev Endocrinol. 2017;13:385–99.

    Article  CAS  PubMed  Google Scholar 

  14. Bolli GB, Devries JH. New long-acting insulin analogs: from clamp studies to clinical practice. Diabetes Care. 2015;38:541–3.

    PubMed  Google Scholar 

  15. Heinemann L, Muchmore DB. Ultrafast-acting insulins: state of the art. Sci Technol. 2012;6:728–42.

    Google Scholar 

  16. Zaykov AN, et al. Pursuit of a perfect insulin. Nat Rev Drug Discov. 2016;15:425–39.

    Article  CAS  PubMed  Google Scholar 

  17. Dodson G, Steiner D. The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol. 1998;8:189–94.

    Article  CAS  PubMed  Google Scholar 

  18. Baker EN, et al. The structure of 2Zn pig insulin at 1.5 Å resolution. Phil Trans R Soc London. 1988;B319:369–456.

    Article  Google Scholar 

  19. Smith GD, et al. Structural stability in the 4-zinc insulin hexamer. Proc Natl Acad Sci U S A. 1984;81:7093–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Derewenda U, et al. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature. 1989;338:594–6.

    Article  CAS  PubMed  Google Scholar 

  21. Kaarsholm NC, et al. Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin and mini-proinsulin. Biochemistry. 1989;28:4427–35.

    Article  CAS  PubMed  Google Scholar 

  22. Bloom CR, et al. Ligand binding to wild-type and E-B13Q mutant insulins: a three-state allosteric model system showing half-site reactivity. J Mol Biol. 1995;245:324–30.

    Article  CAS  PubMed  Google Scholar 

  23. Rahuel-Clermont S, et al. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions. Biochemistry. 1997;36:5837–45.

    Article  CAS  PubMed  Google Scholar 

  24. Brange J, et al. Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res. 1992;9:715–26.

    Article  CAS  PubMed  Google Scholar 

  25. Havelund S, et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res. 2004;21:1498–504.

    Article  CAS  PubMed  Google Scholar 

  26. Howey DC, et al. (LysB28, ProB29)- insulin; a rapidly absorbed analog of human insulin. Diabetes. 1994;43:396–402.

    Article  CAS  PubMed  Google Scholar 

  27. Brange J, et al. Monomeric insulins obtained by protein engineering and their medical implications. Nature. 1988;333:679–82.

    Article  CAS  PubMed  Google Scholar 

  28. Dreyer M, et al. Efficacy and safety of insulin glulisine in patients with type 1 diabetes. Horm Metab Res. 2005;37:702–7.

    Article  CAS  PubMed  Google Scholar 

  29. Olsen HB, et al. Preparations comprising insulin, nicotinamide and an amino acid. US patent application 20128324157 B2. Dec 4, 2012.

    Google Scholar 

  30. Russell-Jones D, et al. Fast-acting insulin aspart improves glycemic control in basal-bolus treatment for type 1 diabetes: results of a 26-week multicenter, active-controlled, treat-to-target, randomized, parallel-group trial (onset 1). Diabetes Care. 2017;40:943–50.

    Article  CAS  PubMed  Google Scholar 

  31. Christie ME, Hardy TA. Rapid-acting insulin compositions. Patent application WO 2015171484 A1. Nov 12, 2015.

    Google Scholar 

  32. Soula O, et al. Rapid acting insulin formulation comprising an oligosaccharide. US patent application 20130231281 A2. Sept 5, 2013.

    Google Scholar 

  33. Steiner S, et al. A novel insulin formulation with a more rapid onset of action. Diabetologia. 2008;51:1602–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morrow L, et al. Comparative pharmacokinetics and insulin action for three insulin analogs injected subcutaneously with and without hyaluronidase. Diabetes Care. 2013;36:273–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Novo pipeline information November 2017. https://www.novonordisk.com/rnd/rd-pipeline.html.

  36. Weiss M. Insulin analogs with chlorinated amino acids. US patent application 20159079975 B2. Jul 14, 2015.

    Google Scholar 

  37. Zhang Z, et al. Protein engineering of insulin: two novel fast-acting insulins (B16Ala) insulin and (B26Ala) insulin. Sci China C Life Sci. 2003;46:474–80.

    Article  CAS  PubMed  Google Scholar 

  38. Krayenbuhl C, Poulsen JE. Protamine-zinc-insulin in crystalline suspension. Dan Med Bull. 1959;6:270–2.

    CAS  PubMed  Google Scholar 

  39. Hallas-Moller K. Chemical, biological, and physiological background of the new insulin-zinc suspensions. Lancet. 1954;267:1029–34.

    Article  CAS  PubMed  Google Scholar 

  40. Hilgenfeld R, et al. The evolution of insulin glargine and its continuing contribution to diabetes care. Drugs. 2014;74:911–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Becker RH, et al. New insulin glargine 300 units mL-1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 Units mL-1. Diabetes Care. 2015;38:637–43.

    CAS  PubMed  Google Scholar 

  42. Markussen J, et al. Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia. 1996;39:281–8.

    Article  CAS  PubMed  Google Scholar 

  43. Sørensen AR, et al. Insulin detemir is a fully efficacious, low affinity agonist at the insulin receptor. Diabetes Obes Metab. 2010;12:665–73.

    Article  PubMed  Google Scholar 

  44. Olsen HB, Kaarsholm NC. Structural effects of protein lipidation as revealed by LysB29-myristoyl, des(B30) insulin. Biochemistry. 2000;39:11893–900.

    Google Scholar 

  45. Jonassen I, et al. Novel insulin derivatives. European patent application 20092107069 A2. Oct 7, 2009.

    Google Scholar 

  46. Jonassen I, et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long basal insulin. Pharm Res. 2012;29:2104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haahr H, Heise T. A review of the pharmacological properties of insulin degludec and their clinical relevance. Clin Pharmacokinet. 2014;53:787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beals JM, et al. Pegylated insulin lispro compounds. US patent application 20090312236 A1. Dec 17, 2009.

    Google Scholar 

  49. Buse JB, et al. Randomized clinical trial comparing basal insulin peglispro and insulin glargine in patients with type 2 diabetes previously treated with basal insulin: IMAGINE 5. Diabetes Care. 2016;39:92–100.

    Article  CAS  PubMed  Google Scholar 

  50. Jacober SJ, et al. Basal insulin peglispro: overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes Metab. 2016;18(Suppl 2):3–16.

    Article  CAS  PubMed  Google Scholar 

  51. Muñoz-Garach A, et al. How can a good idea fail? basal insulin peglispro [LY2605541] for the treatment of Type 2 diabetes. Diabetes Ther. 2017;8:9–22.

    Article  PubMed  CAS  Google Scholar 

  52. Wronkowitz N, et al. LAPS Insulin115: a novel ultra-long-acting basal insulin with a unique action profile. Diabetes Obes Metab. 2017;19:1722–31.

    Article  CAS  PubMed  Google Scholar 

  53. Baldwin DB, et al. Fusion proteins. Patent application WO 2016178905 A1. Nov 10, 2016.

    Google Scholar 

  54. Roberts BK, et al. The in vitro and in vivo pharmacology of AB101, a potential once-weekly basal subcutaneous insulin. Abstract 97-OR presented at the ADA 75th meeting, Boston, June 6, 2015.

    Google Scholar 

  55. Madsen P, et al. Novel derivative of an insulin analogue. Patent application WO 2015052088 A1. Apr 16, 2015.

    Google Scholar 

  56. Rosenstock J, et al. Two-year pulmonary safety and efficacy of inhaled human insulin (Exubera) in adult patients with type 2 diabetes. Diabetes Care. 2008;31:1723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Setji TL, et al. Technosphere insulin: inhaled prandial insulin. Expert Opin Biol Ther. 2016;16:111–7.

    Article  CAS  PubMed  Google Scholar 

  58. Mannkind Corporation website information accessed November 2017. http://investors.mannkindcorp.com/releasedetail.cfm?ReleaseID=948810.

  59. Fonte P, et al. Oral insulin delivery: how far are we? J Diabetes Sci Technol. 2013;7:520–31.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hazra P, et al. Development of a process to manufacture PEGylated orally available insulin. Biotechnol Prog. 2010;26:1695–704.

    Article  CAS  PubMed  Google Scholar 

  61. Khedkar A, et al. A dose range finding study of novel oral insulin (IN-105) under fed conditions in type 2 diabetes mellitus subjects. Diabetes Obes Metab. 2010;12:659–64.

    Article  CAS  PubMed  Google Scholar 

  62. Eldor R, et al. Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes:a pilot study. PLoS One. 2013;8:e59524. https://doi.org/10.1371/journal.pone.0059524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arbit E, Kidron M. Oral insulin delivery in a physiologic context: a review. J Diabetes Sci Technol. 2017;11:825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aguirre TAS, et al. Current status of selected oral peptide technologies. Adv Drug Deliv Rev. 2016;106:223–41.

    Article  CAS  PubMed  Google Scholar 

  65. Madsen P, et al. Protease stabilized, acylated insulin analogues. Patent application WO 2009115469 A1. Sep 24, 2009.

    Google Scholar 

  66. Plum-Mörschel L, et al. Efficacy and safety of oral basal insulin: eight-week feasibility study in people with type 2 diabetes. Abstract 380-OR presenterd at the ADA 77th meeting San Diego, 2017.

    Google Scholar 

  67. Geho WB, et al. A single-blind, placebo-controlled, dose-ranging trial of oral hepatic-directed vesicle insulin add-on to oral antidiabetic treatment in patients with type 2 diabetes mellitus. J Diabetes Sci Technol. 2014;8:551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gregory JM, et al. Insulin delivery into the pheripheral circulation: a key contributor to hypoglycemia in type 1 diabetes. Diabetes. 2015;64:3439–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Edgerton SD, et al. Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest. 2006;116:521–5277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Edgerton DS, et al. Changes in glucose and fat metabolism in response to the administration of a hepato-preferential insulin analog. Diabetes. 2014;63:3946–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol Ther. 2016;18(S2):3–11.

    Article  CAS  Google Scholar 

  72. Blauw H, et al. A review of safety and design requirements of the artificial pancreas. Ann Biomed Eng. 2016;44:3158–72.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bouwens L, et al. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol. 2013;9:598–606.

    Article  CAS  PubMed  Google Scholar 

  74. Pagliuca FW, et al. Generation of functional human pancreatic β-cells in vitro. Cell. 2014;159:428–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang J, Cao Z. Glucose-responsive insulin release: analysis of mechanisms, formulations, and evaluation criteria. J Control Release. 2017;263:231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu J, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci U S A. 2015;112:8260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zion TC. Glucose-responsive materials for self-regulated insulin delivery, Department of Chemical Engineering, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28359.

  78. Matsumoto A, et al. A synthetic approach toward a self-regulated insulin delivery system. Angew Chem Int Ed. 2002;51:2124–8.

    Article  CAS  Google Scholar 

  79. Chou DH, et al. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc Natl Acad Sci U S A. 2015;112:2401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoeg-Jensen T, et al. Insulin derivatives. Patent application WO 2011000823 A1. Jan 6, 2011.

    Google Scholar 

  81. Zion TC, Lancaster TL. Conjugate based systems for controlled drug delivery. Patent application WO2010088294 A1. Aug 5, 2010.

    Google Scholar 

  82. Taylor ME, Dricamer K. Convergent and divergent mechanisms of sugar recognition across kingdoms. Curr Opin Struct Biol. 2014;28:14–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaarsholm NC, et al. Engineering glucose responsiveness into insulin. Diabetes. 2018;67:299–308.

    Article  CAS  PubMed  Google Scholar 

  84. Shaw JE, et al. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14.

    Article  CAS  PubMed  Google Scholar 

  85. Lund PK. The discovery of glucagon-like peptide 1. Regul Pept. 2005;128:93–6.

    Article  CAS  PubMed  Google Scholar 

  86. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39.

    Article  CAS  PubMed  Google Scholar 

  87. McIntyre N, et al. New interpretation of oral glucose tolerance. Lancet. 1964;2:20–1.

    Article  CAS  PubMed  Google Scholar 

  88. La Barre J. Sur le possibilite’s d’un traitement du diabete par l’icretine. Bull Acad R Med Belg. 1932;12:620–34.

    Google Scholar 

  89. Meier JJ, et al. Secretion, degradation, elimination of glucagon-like peptide-1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes. 2004;53:654–62.

    Article  CAS  PubMed  Google Scholar 

  90. Thornberry NA, Weber AE. Discovery of Januvia (Sitagliptin) a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Curr Top Med Chem. 2007;7:557–68.

    Article  CAS  PubMed  Google Scholar 

  91. Manandhar B, Ahn J-M. Glucagon-like peptide-1 (GLP-1) analogs: recent advances, new possibilities, and therapeutic implications. J Med Chem. 2015;58:1020–37.

    Article  CAS  PubMed  Google Scholar 

  92. Schnabel CA, et al. Metabolic effects of the incretin mimetic exenatide in the treatment of type 2 diabetes. Vasc Health Risk Manag. 2006;2:69–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barnett AH. Exenatide. Drugs Today. 2005;4:563–78.

    Article  CAS  Google Scholar 

  94. Taylor K, et al. Exenatide once weekly treatment maintained improvements in glycemic control and weight loss over 2 years. BMC Endocr Disord. 2011;11:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Henry RR, et al. Continuous subcutaneous delivery of exenatide via ITCA 650 leads to sustained glycemic control and weight loss for 48 weeks in metformin-treated subjects with type 2 diabetes. J Diabetes Complicat. 2014;28:393–8.

    Article  PubMed  Google Scholar 

  96. Thorkildsen C, et al. Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice. J Pharmacol Exp Ther. 2003;307:490–6.

    Article  CAS  PubMed  Google Scholar 

  97. Christensen M, et al. The design and discovery of lixisenatide for the treatment of type 2 diabetes mellitus. Expert Opin Drug Discov. 2014;9:1223–51.

    Article  CAS  PubMed  Google Scholar 

  98. Knudsen LB, et al. GLP-1 derivatives as novel compounds for the treatment of type 2 diabetes: selection of NN2211 for clinical development. Drugs Future. 2001;26:677–85.

    Article  CAS  Google Scholar 

  99. Wang Y, et al. Transformation of oligomers of lipidated peptide induced by change in pH. Mol Pharm. 2015;12:411–9.

    Article  CAS  PubMed  Google Scholar 

  100. Nuffer WA, Trujillo JM. Liraglutide: a new option for the treatment of obesity. Pharmacotherapy. 2015;35:926–34.

    Article  CAS  PubMed  Google Scholar 

  101. Glaeser W, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev. 2010;26:287–96.

    Article  CAS  Google Scholar 

  102. Bush MA, et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes Metab. 2009;11:498–505.

    Article  CAS  PubMed  Google Scholar 

  103. Lau J, et al. Discovery of the once weekly Glucagon-Like Peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58:7370–80.

    Article  CAS  PubMed  Google Scholar 

  104. Davies M, et al. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes a randomized clinical trial. JAMA. 2017;318:1460–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karsdal MA, et al. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. Osteoarthr Cartil. 2015;23:532–43.

    Article  CAS  PubMed  Google Scholar 

  106. Choi I, et al. Superagonistic mechanism of increased glucodynamic and weight loss effects of (LAPS)CA-exendin-4 (efpeglenatide). Diabetologia. 2015;58:S379.

    Google Scholar 

  107. Buse JB. Contribution of liraglutide in the fixed-ratio combination of Insulin Degludec and Liraglutide (IDegLira). Diabetes Care. 2014;37:2926–33.

    Article  CAS  PubMed  Google Scholar 

  108. Davies MJ, et al. Impact of baseline glycated haemoglobin, diabetes duration and body mass index on clinical outcomes in the LixiLan-O trial testing a titratable fixed-ratio combination of insulin glargine/lixisenatide (iGlarLixi) vs insulin glargine and lixisenatide monocomponents. Diabetes Obes Metab. 2017;19:1798–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meier JJ, et al. Impact of insulin glargine and lixisenatide on β-cell function in patients withtype 2 diabetes mellitus: a randomized open-label study. Diabetes Obes Metab. 2017;19:1625–9.

    Article  CAS  PubMed  Google Scholar 

  110. Scholz GH, Fleischmann H. Basal insulin combined incretin mimetic therapy with glucagon-like protein 1 receptor agonists as an upcoming option in the treatment of type 2 diabetes: a practical guide to decision making. Ther Adv Endocrinol Metab. 2014;5:95–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Paneni F, Lüscher TF. Cardiovascular protection in the treatment of type 2 diabetes: a review of clinical trial results across drug classes. Am J Med. 2017;130:S18–29.

    Article  CAS  PubMed  Google Scholar 

  112. Daneschvar HL. FDA-approved anti-obesity drugs in the United States. Am J Med. 2016;129:879.e1–6.

    Article  CAS  Google Scholar 

  113. Pocai A, et al. Glucagon-like peptide I/glucagon receptor dual agonism reverses obesity in mice. Diabetes. 2009;58:2258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Day JW, et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol. 2009;5:749–57.

    Article  CAS  PubMed  Google Scholar 

  115. Druce MR, et al. Investigation of structure-activity relationships of Oxyntomodulin (Oxm) using Oxm analogs. Endocrinology. 2009;150:1712–21.

    Article  CAS  PubMed  Google Scholar 

  116. Drucker DJ. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab. 2005;1:22–31.

    Article  CAS  PubMed  Google Scholar 

  117. Habegger KM, et al. The metabolic actions of glucagon revisited. Nat Rev Endocrinol. 2010;6:689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Merck pipeline information. November 2017. http://www.merck.com/research/index.html#Pipeline.

  119. Transition Therapeutics pipeline information November 2017. http://www.transitiontherapeutics.com/technology/pipeline.php.

  120. Sanofi pipeline information. November 2017. https://en.sanofi.com/Images/40641_RD_Portfolio_PharmaVaccines_2017-11-02.pdf.

  121. Hanmi Pharmaceuticals pipeline information. November 2017. http://www.hanmipharm.com/ehanmi/handler/Rnd-Pipeline.

  122. Henderson SJ, et al. Robust anti-obesity and metabolic effects of a dual GLP-1/glucagon receptor peptide agonist in rodents and non-human primates. Diabetes Obes Metab. 2016;18:1176–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Eli Lilly pipeline information. November 2017. https://www.lilly.com/pipeline/index.html.

  124. Frias JP, et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 2017;26:343–52.

    Article  CAS  PubMed  Google Scholar 

  125. Finan B, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015;21:27–36.

    Article  CAS  PubMed  Google Scholar 

  126. van Witteloostuijn SB, et al. GUB06-046, a novel secretin/glucagon-like peptide 1 co-agonist, decreases food intake, improves glycemic control, and preserves beta cell mass in diabetic mice. J Pept Sci. 2017;23:845–54.

    Article  PubMed  CAS  Google Scholar 

  127. Zealand Pharma pipeline information. November 2017. https://www.zealandpharma.com/longacting-amylin-a.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels C. Kaarsholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaarsholm, N.C. (2019). Peptide Drug Design for Diabetes and Related Metabolic Diseases. In: Krentz, A., Weyer, C., Hompesch, M. (eds) Translational Research Methods in Diabetes, Obesity, and Nonalcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-11748-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11748-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11747-4

  • Online ISBN: 978-3-030-11748-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics