Skip to main content

Plant-Associated Rhodococcus Species, for Better and for Worse

  • Chapter
  • First Online:

Part of the book series: Microbiology Monographs ((MICROMONO,volume 16))

Abstract

Rhodococcus fascians, causative agent of the leafy gall syndrome, produces a mixture of cytokinins to modify the hormone landscape of its broad range of plant hosts leading to tissue deformations and developmental alterations. Recent developments indicate that the pathogenic nature of these bacteria is superimposed on its plant growth-promoting effect. In the last two decades, its unique position as the only species within the genus able to interact with plants has been overthrown. Indeed, Pistachio Bushy Top Syndrome is an emerging disease linked to the presence of two Rhodococcus species, R. fascians and R. corynebacterioides. Both bacteria would act synergistically to cause the symptoms, giving the prospect of virulence strategies that differ from those of the leafy gall inducers. Additionally, as a result of microbiome research, it is clear that many Rhodococcus species live in close association with plants, and several of them exhibit plant growth-promoting activities. Finally, genome analyses of a collection of R. fascians isolates imply that the taxonomic position of this group of bacteria within the genus will have to be reevaluated, and likely a new genus consisting of several species will be proposed soon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, de Melo Rangel W, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1

    Article  CAS  Google Scholar 

  • Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int J Microbiol 2014:296521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ampomah OY, Huss-Danell K (2011) Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst Appl Microbiol 34:267–275

    Article  PubMed  Google Scholar 

  • Anastasi E, MacArthur I, Scortti M, Alvarez S, Giguère S, Vázquez-Boland JA (2016) Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol 8(10):3140–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong DJ, Scarbrough E, Skoog F, Cole DL, Leonard NJ (1976) Cytokinins in Corynebacterium fascians cultures. Isolation and identification of 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-2-methylthiopurine. Plant Physiol 58:749–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balázs E, Sziráki I (1974) Altered levels of indoleacetic acid and cytokinin in geranium stems infected with Corynebacterium fascians. Acta Phytopathol Acad Sci Hungaricae 9:287–292

    Google Scholar 

  • Bafana A (2013) Diversity and metabolic potential of culturable root-associated bacteria from Origanum vulgare in sub-Himalayan region. World J Microbiol Biotechnol 29:63–74

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Baker KF (1950) Bacterial fasciation disease of ornamental plants in California. Plant Dis Rep 34:121–126

    Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  PubMed  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    Article  CAS  Google Scholar 

  • Brown NA (1927) Sweet pea fasciation, a form of crowngall. Phytopathology 17:29–30

    Google Scholar 

  • Buonaurio R, Moretti C, da Silva DP, Cortese C, Ramos C, Venturi V (2015) The olive knot disease as a model to study the role of interspecies bacterial communities in plant disease. Front Plant Sci 6:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH (2017) Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 18:593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cirou A, Diallo S, Kurt C, Latour X, Faure D (2007) Growth promotion of quorum-quenching bacteria in the rhizosphere of Solanum tuberosum. Environ Microbiol 9(6):1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Cohen MF, Meziane T, Yamasaki H (2004) A photocarotenogenic Rhodococcus sp. isolated from the symbiotic fern Azolla. Endocytobiosis Cell Res 15:350–355

    Google Scholar 

  • Cohen MF, Yamasaki H (2003) Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Nitric Oxide 9:1–9

    Article  CAS  PubMed  Google Scholar 

  • Cornelis K, Ritsema T, Nijsse J, Holsters M, Goethals K, Jaziri M (2001) The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants. Mol Plant Microbe Interact 14:599–608

    Article  CAS  PubMed  Google Scholar 

  • Creason AL, Vandeputte OM, Savory EA, Davis EW II, Putnam ML, Hu E, Swader-Hines D, Mol A, Baucher M, Prinsen E, Zdanowska M, Givan SA, El Jaziri M, Loper JE, Mahmud T, Chang JH (2014a) Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS One 9:e101996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Creason AL, Davis EW II, Putnam ML, Vandeputte OM, Chang JH (2014b) Use of whole genome sequences to develop a molecular phylogenetic framework for Rhodococcus fascians and the Rhodococcus genus. Front Plant Sci 5:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespi M, Messens E, Caplan AB, Van Montagu M, Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J 11:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespi M, Vereecke D, Temmerman W, van Montagu M, Desomer J (1994) The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J Bacteriol 176(9):2492–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Doležal K, Van Lijsebettens M, Moritz T, Holsters M, Vereecke D (2008a) Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol 146:1267–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Putnam M, Holsters M, Vereecke D (2008b) Rhodococcus fascians, an emerging threat for ornamental crops. In: Teixeira da Silva JA (ed) Floriculture, ornamental, and plant biotechnology: advances and topical issues, vol 5. Global Science Books, Isleworth, pp 480–489

    Google Scholar 

  • Depuydt S, De Veylder L, Holsters M, Vereecke D (2009a) Eternal youth, the fate of developing Arabidopsis leaves upon Rhodococcus fascians infection. Plant Physiol 149:1387–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou J-P, Vuylsteke M, Holsters M, Vereecke D (2009b) An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol 149:1366–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhandapani P, Song J, Novak O, Jameson P (2017) Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Ann Bot 119(5):841–852

    CAS  PubMed  Google Scholar 

  • Dhandapani P, Song J, Novak O, Jameson P (2018) Both epiphytic and endophytic strains of Rhodococcus fascians influence transporter gene expression and cytokinins in infected Pisum sativum L. seedlings. Plant Growth Regul 85:231–242

    Article  CAS  Google Scholar 

  • Dolzblasz A, Banasiak A, Vereecke D (2018) Neovascularization during leafy gall formation on Arabidopsis thaliana upon Rhodococcus fascians infection. Planta 247:215–228

    Article  CAS  PubMed  Google Scholar 

  • Dowson WJ (1942) On the generic name of the Gram-positive bacterial plant pathogens. Trans Br Mycol Soc 25:311–314

    Article  Google Scholar 

  • Eason JR, Jameson PE, Bannister P (1995) Virulence assessment of Rhodococcus fascians strains on pea cultivars. Plant Pathol 44:141–147

    Google Scholar 

  • Eason JR, Morris RO, Jameson PE (1996) The relationship between virulence and cytokinin production by Rhodococcus fascians. Plant Pathol 45:323–331

    Article  CAS  Google Scholar 

  • Faivre-Amiot A (1967) Quelques observations sur la presence de Corynebacterium fascians (Tilford) Dowson dans les cultures maraichères et florals en France. Phytiatr Phytopharm 16:165–176

    Google Scholar 

  • Francis I, De Keyser A, De Backer P, Simón-Mateo C, Kalkus J, Pertry I, Ardiles-Diaz W, De Rycke R, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D (2012) pFiD188, the linear virulence plasmid of Rhodococcus fascians D188. Mol Plant Microbe Interact 25(5):637–647

    Article  CAS  PubMed  Google Scholar 

  • Francis IM, Stes E, Zhang Y, Rangel D, Audenaert K, Vereecke D (2016) Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnol 33(5 Pt B):706–717

    Article  CAS  Google Scholar 

  • Giron D, Glevarec G (2014) Cytokinin-induced phenotypes in plant-insect interactions: learning from the bacterial world. J Chem Ecol 40(7):826–835

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M (1984) Reclassification of Corynebacterium fascians (Tilford) Dowson in the genus Rhodococcus, as Rhodococcus fascians comb. nov. Syst Appl Microbiol 5(2):225–229

    Article  Google Scholar 

  • Gürtler V, Mayall BC, Seviour R (2004) Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 28(3):377–403

    Article  PubMed  CAS  Google Scholar 

  • Gürtler V, Seviour R (2010) Systematics of members of the genus Rhodococcus (Zopf 1891) Emend Goodfellow et al. 1998. The past, present and future. In: Alvarez HM (ed) Biology of Rhodococcus, Microbiology Monographs, vol 16. Springer, Berlin, pp 1–28

    Chapter  Google Scholar 

  • Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42(2):157–171

    Article  CAS  PubMed  Google Scholar 

  • Hasuty A, Choliq A, Hidayat I (2018) Production of indole acetic acid (IAA) by Serratia marcescens subsp. marcescens and Rhodococcus aff. Qingshengii. Int J Agric Technol 14(3):299–312

    CAS  Google Scholar 

  • Helgeson JP, Leonard NJ (1966) Cytokinins: indentification of compounds isolated from Corynebacterium fascians. Proc Natl Acad Sci U S A 56:60–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong CE, Jeong H, Jo SH, Jeong JC, Kwon SY, An D, Park JM (2016) A leaf-inhabiting endophytic bacterium, Rhodococcus sp. KB6, enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriata. J Microbiol Biotechnol 26(3):488–492

    Article  CAS  PubMed  Google Scholar 

  • Hong CE, Jo SH, Moon JY, Lee JS, Kwon SY, Park JM (2015) Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytopathogens. Plant Biotechnol Rep 9(6):451–458

    Article  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70(5):2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van de Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Klämbt D, Thies G, Skoog F (1966) Isolation of cytokinins from Corynebacterium fascians. Proc Natl Acad Sci U S A 56:52–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Klatte S, Jahnke JD, Kroppenstedt RM, Rainey F, Stackebrandt E (1994) Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians. Int J Syst Bacteriol 44(4):627–630

    Article  Google Scholar 

  • Kwasiborski A, Mondy S, Chong TM, Barbey C, Chan KG, Beury-Cirou A, Latour X, Faure D (2015) Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum. Heredity 114:476–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacey MS (1939) Studies on a bacterium associated with leafy galls, fasciation and ‘cauliflower’ disease of various plants. Part III. Further isolations, inoculation experiments and cultural studies. Ann Appl Biol 26:262–278

    Article  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  CAS  PubMed  Google Scholar 

  • Latour X, Barbey C, Chane A, Groboillot A, Burini JF (2013) Rhodococcus erythropolis and its γ-lactone catabolic pathway: an unusual biocontrol system that disrupts pathogen quorum sensing communication. Agronomy 3:816–838

    Article  CAS  Google Scholar 

  • Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72(4):2331–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhao GZ, Chen HH, Qin S, Xu LH, Jiang CL, Li WJ (2008) Rhodococcus cercidiphylli sp. nov., a new endophytic actinobacterium isolated from a Cercidiphyllum japonicum leaf. Syst Appl Microbiol 31:108–113

    Article  CAS  PubMed  Google Scholar 

  • MacArthur I, Anastasi E, Alvarez S, Scortti M, Vázquez-Boland JA (2017) Comparative genomics of Rhodococcus equi virulence plasmids indicates host-driven evolution of the vap pathogenicity island. Genome Biol Evol 9(5):1241–1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Maes T, Vereecke D, Ritsema T, Cornelis K, Ngo Thi Thu H, Van Montagu M, Holsters M, Goethals K (2001) The att locus of Rhodococcus fascians strain D188 is essential for full virulence on tobacco through the production of an autoregulatory compound. Mol Microbiol 42:13–28

    Article  CAS  PubMed  Google Scholar 

  • Maropola MKA, Ramond JB, Trindade M (2015) Impact of metagenomics DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 112:104–117

    Article  CAS  PubMed  Google Scholar 

  • Miller HJ, Janse JD, Kamerman W, Muller PJ (1980) Recent observations of leafy gall in Liliaceae and some other families. Neth J Plant Pathol 86:55–68

    Article  Google Scholar 

  • Monteil CL, Yahara K, Studholme DJ, Mageiros L, Méric G, Swingle B, Morris CE, Vinatzer BA, Sheppard SK (2016) Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens. Microb Genom 2:e000089

    PubMed  PubMed Central  Google Scholar 

  • Motte H, Galuszka P, Spíchal L, Tarkowski P, Plíhal O, Šmehilová M, Jaworek P, Vereecke D, Werbrouck S, Geelen D (2013) Phenyl-adenine, identified in a LIGHT-DEPENDENT SHORT HYPOCOTYLS4-assisted chemical screen, is a potent compound for shoot regeneration through the inhibition of CYTOKININ OXIDASE/DEHYDROGENASE activity. Plant Physiol 161:1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murai N, Skoog F, Doyle ME, Hanson RS (1980) Relationships between cytokinin production, presence of plasmids, and fasciation caused by strains of Corynebacterium fascians. Proc Natl Acad Sci U S A 77:619–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugappan RM, Benazir Begun S, Usha C, Lok Kirubahar S, Karthikeyan M (2017) Growth promoting and probiotic potential of the endophytic bacterium Rhodococcus globerulus colonizing the medicinal plant Plectranthus amboinicus (Lour.) Spreng. Int J Curr Res Rev 9(14):7–13

    CAS  Google Scholar 

  • Newton AC, Gravouil C, Foutaine JM (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157:343–359

    Article  Google Scholar 

  • Nikolaeva EV, Park S-Y, Kang S, Olson TN, Kim SH (2009) Ratios of cells with and without virulence genes in Rhodococcus fascians populations correlate with degrees of symptom development. Plant Dis 93:499–506

    Article  CAS  PubMed  Google Scholar 

  • Oduro KA (1975) Factors affecting epidemiology of bacterial fasciation of Chrysanthemum maximum. Phytopathology 65:719–721

    Article  Google Scholar 

  • Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, Stes E, Schmülling T, Kakimoto T, Van Montagu M, Strnad M, Holsters M, Tarkowski P, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci U S A 106:929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertry I, Václavíková K, Gemrotová M, Spíchal L, Galuszka P, Depuydt S, Temmerman W, Stes E, De Keyser A, Riefler M, Biondi S, Novák O, Schmülling T, Strnad M, Tarkowski P, Holsters M, Vereecke D (2010) Rhodococcus fascians impacts plant development through the dynamic Fas-mediated production of a cytokinin mix. Mol Plant Microbe Interact 23:1164–1174

    Article  CAS  PubMed  Google Scholar 

  • Pham TTM, Pimo Rodriguez NJ, Hijri M, Sylvestre M (2015) Optimizing polychlorinated biphenyl degradation by flavonoid-induced cells of the rhizobacterium Rhodococcus erythropolis U23A. PLoS One 10(5):e0126033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Putnam ML, Miller ML (2007) Rhodococcus fascians in herbaceous perennials. Plant Dis 91(9):1064–1076

    Article  CAS  PubMed  Google Scholar 

  • Płociniczak T, Fic E, Pacwa-Płociniczak M, Pawlik M, Piotrowska-Seget Z (2017) Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. Int J Phytoremediation 19(7):614–620

    Article  PubMed  CAS  Google Scholar 

  • Radhika V, Ueda N, Tsuboi Y, Kojima M, Kikuchi J, Kudo T, Sakakibara H (2015) Methylated cytokinins from the phytopathogen Rhodococcus fascians mimic plant hormone activity. Plant Physiol 169:1118–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Randall JJ, Stamler RA, Kallsen CE, Fichtner EJ, Heerema RJ, Cooke P, Francis I (2018) Comment on “Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management”. eLife 7:e35272

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathbone MP, Hall RH (1972) Concerning the presence of the cytokinin, N6–(12–isopentenyl) adenine in cultures of Corynebacterium fascians. Planta 108:93–102

    Article  CAS  PubMed  Google Scholar 

  • Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L’Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J, Hoskisson PA, Sutcliffe I (2016) Next-generation systematics: an innovative approach to resolve the structure of complex taxa. Sci Rep 6:38392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI, Stevens DM, Creason AL, Belcher MS, Serdani M, Wiseman MS, Grünwald NJ, Putnam ML, Chang JH (2017) Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 6:e30925

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarbrough E, Armstrong DJ, Skoog F, Frihart CR, Leonard NJ (1973) Isolation of cis-zeatin from Corynebacterium fascians cultures. Proc Natl Acad Sci U S A 70:3825–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sing RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937

    Google Scholar 

  • Stamler RA, Heerema R, Randall JJ (2015a) First report of phytopathogenic Rhodococcus isolates on Pistachio Bushy Top Syndrome ‘UCB-1’ rootstock in New Mexico. Plant Dis 99:1854

    Article  Google Scholar 

  • Stamler RA, Kilcrease J, Kallsen C, Fichtner EJ, Cooke P, Heerema RJ, Randall JJ (2015b) First report of Rhodococcus isolates causing Pistachio Bushy Top Syndrome on ‘UCB-1’ rootstock in California and Arizona. Plant Dis 99:1468–1476

    Article  CAS  PubMed  Google Scholar 

  • Stamler RA, Vereecke D, Zhang Y, Schilkey F, Devitt N, Randall JJ (2016) Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus isolates PBTS 1 and PBTS 2. Genome Announc 4:e00495

    Article  PubMed  PubMed Central  Google Scholar 

  • Stange RR, Jeffares D, Young C, Scott DB, Eason JR, Jameson PE (1996) PCR amplification of the fas-1 gene for detection of virulent strains of Rhodococcus fascians. Plant Pathol 45:407–417

    Article  CAS  Google Scholar 

  • Stes E, Biondi S, Holsters M, Vereecke D (2011a) Bacterial and plant signal integration via D3-type cyclins enhances symptom development in the Arabidopsis-Rhodococcus fascians interaction. Plant Physiol 156:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Werbrouck S, Goormachtig S, Vereecke D (2015) Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. J Exp Bot 66(16):5123–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stes E, Francis I, Pertry I, Dolzblasz A, Depuydt S, Vereecke D (2013) The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiol Lett 342:187–194

    Article  CAS  PubMed  Google Scholar 

  • Stes E, Prinsen E, Holsters M, Vereecke D (2012) Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. Plant J 70:513–527

    Article  CAS  PubMed  Google Scholar 

  • Stes E, Vandeputte OM, El Jaziri ME, Holsters M, Vereecke D (2011b) A successful bacterial coup d’état: how Rhodococcus fascians redirects plant development. Annu Rev Phytopathol 49:69–86

    Article  CAS  PubMed  Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4(4):616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temmerman W, Vereecke D, Dreesen R, van Montagu M, Holsters M, Goethals K (2000) Leafy gall formation is controlled by fasR, an AraC-type regulatory gene in Rhodococcus fascians. J Bacteriol 182(20):5832–5840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thimann KV, Sachs T (1966) The role of cytokinins in the “fasciation” disease caused by Corynebacterium fascians. Am J Bot 53:731–739

    Article  CAS  Google Scholar 

  • Tilford PE (1936) Fasciation of sweet peas caused by Phytomonas fascians n. sp. J Agric Res 53:383–394

    Google Scholar 

  • Toussaint JP, Pham TTM, Barriault D, Sylvestre M (2012) Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol 95:1589–1603

    Article  CAS  PubMed  Google Scholar 

  • Traw MB, Kniskern JM, Bergelson J (2007) SAR increases fitness of Arabidopsis thaliana in the presence of natural bacterial populations. Evolution 61(10):2444–2449

    Article  PubMed  Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychotropic Rhodococcus erythropolis MtCC 7905. J Basic Microbiol 47:513–517

    Article  CAS  PubMed  Google Scholar 

  • van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261

    Article  PubMed  CAS  Google Scholar 

  • Vereecke D (2018) Comment on “Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management”. eLife 7:e35238

    Article  PubMed  PubMed Central  Google Scholar 

  • Vereecke D, Cornelis K, Temmerman W, Jaziri M, Van Montagu M, Holsters M, Goethals K (2002) Chromosomal locus that affects the pathogenicity of Rhodococcus fascians. J Bacteriol 184:1112–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bargen K, Haas A (2009) Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev 33:870–891

    Article  CAS  Google Scholar 

  • Weinthal D, Barash I, Panijel M, Valinsky L, Gaba V, Manulis-Sasson S (2007) Distribution and replication of the pathogenicity plasmid pPATH in diverse populations of the gall-forming bacterium Pantoea agglomerans. Appl Environ Microbiol 73:7552–7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Croes S, Janssen J, Haenen S, Witters N, Vangronsveld J (2013) Plant-associated bacteria and their role in the success or failure of metal phytoextraction projects: first observations of a field-related experiment. Microbiol Biotechnol 6(3):288–299

    Article  CAS  Google Scholar 

  • Zhang Y, Bignell DR, Zuo R, Fan Q, Huguet-Tapia JC, Ding Y, Loria R (2016) Promiscuous pathogenicity islands and phylogeny of pathogenic Streptomyces spp. Mol Plant Microbe Interact 29:640–650

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Loria R (2017) Emergence of novel pathogenic Streptomyces species by site-specific accretion and cis-mobilization of pathogenicity islands. Mol Plant Microbe Interact 30:72–82

    Article  CAS  PubMed  Google Scholar 

  • Zhao GZ, Li J, Zhu WY, Tian SZ, Zhao LX, Yang LL, Xu LH, Li WJ (2012) Rhodococcus artemisiae sp. nov., an endophytic actinobacterium isolated from the pharmaceutical plant Artemisia annua L. Int J Syst Evol Microbiol 62:900–905

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Francis, I.M., Vereecke, D. (2019). Plant-Associated Rhodococcus Species, for Better and for Worse. In: Alvarez, H. (eds) Biology of Rhodococcus. Microbiology Monographs, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-11461-9_13

Download citation

Publish with us

Policies and ethics