Skip to main content

Whole-Genome Duplications in Pear and Apple

  • Chapter
  • First Online:
The Pear Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Whole-genome duplications (WGDs) are widespread in angiosperms, and are proposed to have contributed to angiosperm diversification. Pear (Pyrus) and apple (Malus) belong to the large and diverse Maleae tribe, and their genome sequences have extensive syntenic blocks covering much of the chromosomes, thus providing strong support for WGDs. Comparative analyses further indicate that at least a single WGD is shared by both pear and apple, and it has likely occurred following pear/apple lineage split from that of strawberry (Fragaria). Furthermore, phylogenomic analysis of thousands of nuclear genes, from public genome datasets and from over 120 transcriptomic datasets, has uncovered strong evidence of presence of thousands of gene duplicates for a WGD in the ancestor of pear, apple, and of other fleshy-fruit-producing genera of the subtribe Malinae, following divergence of dry-fruit-bearing lineages of Maleae. Moreover, over 1000 gene duplicates from the Malinae WGD have been mapped to syntenic blocks in the apple genome, thus supporting the hypothesis that syntenic blocks found in apple (and pear) have been generated by the Malinae WGD, dated in late Eocene (~38–42 million years ago). Further, nearly two-thirds of gene duplicates, initially retained following the Malinae WGD, have been lost in the apple genome, with relatively rapid losses in early Oligocene. Finally, the Malinae-WGD-generated duplicates are enriched in GO categories for transcriptional regulation, including members of the MADS-box gene family, possibly contributing to the evolution of fleshy fruits in Malinae. There is also supporting evidence for this finding provided by functional analysis of several apple MADS-box genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albalat R, Canestro C (2016) Evolution by gene loss. Nat Rev Genet 17:379–391

    Article  CAS  PubMed  Google Scholar 

  • Arrigo N, Barker MS (2012) Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol 15:140–146

    Article  CAS  PubMed  Google Scholar 

  • Bekaert M, Edger PP, Pires JC, Conant GC (2011) Two-phase resolution of polyploidy in the Arabidopsis metabolic network gives rise to relative and absolute dosage constraints. Plant Cell 23:1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess MB, Cushman KR, Doucette ET, Talent N, Frye CT, Campbell CS (2014) Effects of apomixis and polyploidy on diversification and geographic distribution in Amelanchier (Rosaceae). Am J Bot 101:1375–1387

    Article  PubMed  Google Scholar 

  • Cannon SB, McKain MR, Harkess A, Nelson MN, Dash S, Deyholos MK, Peng Y, Joyce B, Stewart CN, Rolf M, Kutchan T, Tan X, Chen C, Zhang Y, Carpenter E, Wong GK-S, Doyle JJ, Leebens-Mack J (2015) Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol Biol Evol 32:193–210

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knabel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VGM, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 9: e92644

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin S-W, Shaw J, Haberle R, Wen J, Potter D (2014) Diversification of almonds, peaches, plums and cherries—molecular systematics and biogeographic history of Prunus (Rosaceae). Mol Phylogenet Evol 76:34–48

    Article  PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    Article  CAS  PubMed  Google Scholar 

  • Considine MJ, Wan YZ, D’Antuono MF, Zhou Q, Han MY, Gao H, Wang M (2012) Molecular genetic features of polyploidization and aneuploidization reveal unique patterns for genome duplication in diploid Malus. PLoS ONE 7:57–65

    Article  Google Scholar 

  • Cusack BP, Wolfe KH (2007) When gene marriages don’t work out: divorce by subfunctionalization. Trends Genet 23:270–272

    Article  CAS  PubMed  Google Scholar 

  • Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H, Bianco L, Micheletti D, Velasco R, Di Pierro EA, Gouzy J, Rees DJG, Guerif P, Muranty H, Durel CE, Laurens F, Lespinasse Y, Gaillard S, Aubourg S, Quesneville H, Weigel D, van de Weg E, Troggio M, Bucher E (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet 49:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Dickinson TA, Lo E, Talent N (2007) Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst Evol 266:59–78

    Article  Google Scholar 

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Amer J Bot 89:1478–1484

    Article  CAS  Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plant evolution. In: Leitch IJ (ed) Plant genome diversity. Springer, Vienna, pp 277–294

    Chapter  Google Scholar 

  • Fougere-Danezan M, Joly S, Bruneau A, Gao XF, Zhang LB (2015) Phylogeny and biogeography of wild roses with specific attention to polyploids. Ann Bot 115:275–291

    Article  CAS  PubMed  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617

    Article  CAS  PubMed  Google Scholar 

  • Hooker JJ, Collinson ME, Sille NP (2004) Eocene-Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event. J Geol Soc London 161:161–172

    Article  Google Scholar 

  • Huang CH, Zhang CF, Liu M, Hu Y, Gao TG, Qi J, Ma H (2016) Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol Biol Evol 33:2820–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson CM, Puckett EE, Bekaert M, Pires JC, Conant GC (2011) Selection for higher gene copy number after different types of plant gene duplications. Genome Biol Evol 3:1369–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, USA, pp 1–17

    Google Scholar 

  • Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu X, Zhang Y, Wang J, Zhang Y, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires JC, Wong GK-S, Soltis DE, dePamphilis CW (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13:R3

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  • Kellogg EA (2016) Has the connection between polyploidy and diversification actually been tested? Curr Opin Plant Biol 30:25–32

    Article  PubMed  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Li H, Shi Q, Zhang ZB, Zeng LP, Qi J, Ma H (2016) Evolution of the leucine-rich repeat receptor-like protein kinase gene family: ancestral copy number and functional divergence of BAM1 and BAM2 in Brassicaceae. J Syst Evol 54:204–218

    Article  Google Scholar 

  • Li LT, Deng CH, Knabel M, Chagne D, Kumar S, Sun JM, Zhang SL, Wu J (2017) Integrated high-density consensus genetic map of Pyrus and anchoring of the ‘Bartlett’ v1.0 (Pyrus communis) genome. DNA Res 24:289–301

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Baniaga AE, Sessa EB, Scascitelli M, Graham SW, Rieseberg LH, Barker MS (2015) Early genome duplications in conifers and other seed plants. Sci Adv 1:e1501084

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo EYY, Stefanovic S, Dickinson TA (2010) Reconstructing reticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae). Evolution 64:3593–3608

    Article  PubMed  Google Scholar 

  • Lombard PB, Westwood MN (1987) Pear rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for Fruit crops. Wiley, New York, pp 145–183

    Google Scholar 

  • Lu M, An HM, Li LL (2016) Genome survey sequencing for the characterization of the genetic background of Rosa roxburghii Tratt and leaf ascorbate metabolism genes. PLoS ONE 11:e0147530

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    Article  CAS  PubMed  Google Scholar 

  • Maere S, Van de Peer Y (2010) Duplicate retention after small- and large-scale duplications. In: Dittmar K, Liberles D (eds) Evolution after gene duplication. Wiley, Hoboken, New Jersey, pp 31–56

    Google Scholar 

  • Masiero S, Li MA, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Sommer Z, Sommer H (2004) INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum. Development 131:5981–5990

    Article  CAS  PubMed  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Hirakawa H, Sato S, Otagaki S, Matsumoto S, Tabata S, Tanaka Y (2018) Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Res 25:113–121

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Book  Google Scholar 

  • Phipps JB (2014) Flora of North America North of Mexico, Vol. 9, Magnoliophyta: Picramniaceae to Rosaceae. Oxford University Press, New York and Oxford

    Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43

    Article  Google Scholar 

  • Pratt C (1988) Apple flower and fruit: morphology and anatomy. Hort Rev 10:273–307

    Google Scholar 

  • Raymond O, Gouzy J, Just J, Badouin H, Verdenaud M, Lemainque A, Vergne P, Moja S, Choisne N, Pont C, Carrere S, Caissard JC, Couloux A, Cottret L, Aury JM, Szecsi J, Latrasse D, Madoui MA, Francois L, Fu XP, Yang SH, Dubois A, Piola F, Larrieu A, Perez M, Labadie K, Perrier L, Govetto B, Labrousse Y, Villand P, Bardoux C, Boltz V, Lopez-Roques C, Heitzler P, Vernoux T, Vandenbussche M, Quesneville H, Boualem A, Bendahmane A, Liu C, Le Bris M, Salse J, Baudino S, Benhamed M, Wincker P, Bendahmane M (2018) The Rosa genome provides new insights into the domestication of modern roses. Nat Genet 50:772–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau-Gueutin M, Gaston A, Ainouche A, Ainouche ML, Olbricht K, Staudt G, Richard L, Denoyes-Rothan B (2009) Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol Phylogenet Evol 51:515–530

    Article  CAS  PubMed  Google Scholar 

  • Schranz EM, Mohammadin S, Edger PP (2012) Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. Curr Op Plant Biol 15:147–153

    Article  Google Scholar 

  • Schulze-Menz GK (1964) Rosaceae. In: Melchior H (ed) Engler’s Syllabus der Pflanzenfamilien. Gebrüder Borntraeger, Berlin, pp 209–218

    Google Scholar 

  • Seymour GB, Ostergaard L, Chapman NH, Knapp S, Martin C (2013) Fruit development and ripening. Annu Rev Plant Biol 64:219–241

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Isuzugawa K, Ikenaga M, Saito Y, Yamamoto T, Hirakawa H, Isobe S (2017) The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Res 24:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJG, Williams KP, Holt SH, Rojas JJR, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Girona EL, Zdepski A, Wang WQ, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    Article  Google Scholar 

  • Stebbins GL (1940) The significance of polyploidy in plant evolution. Am Natur 74:54–66

    Article  Google Scholar 

  • Tian T, Liu Y, Yan HY, You Q, Yi X, Du Z, Xu WY, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucl Acids Res 45:W122–W129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vamosi JC, Dickinson TA (2006) Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int J Plant Sci 167:349–358

    Article  Google Scholar 

  • VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA, Dossett M, Finn CE, Bassil NV, Mockler TC (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87:535–547

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L, Bassi D, Troggio M, Shu SQ, Grimwood J, Tartarini S, Dettori MT, Schmutz J (2017) The peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18:225

    Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Huang C-H, Hu Y, Wen J, Li S, Yi T, Chen H, Xiang J, Ma H (2017) Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol Biol Evol 34:262–281

    CAS  PubMed  Google Scholar 

  • Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK-S, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y, Sage RF, Covshoff S, Hibberd JM, Nelson MN, Smith SA (2015) Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol Biol Evol 32:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Dong Y, Kvarnheden A, Morris B (1999) Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hort Sci 124:8–13

    Article  CAS  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  CAS  PubMed  Google Scholar 

  • Zhang QX, Chen WB, Sun LD, Zhao FY, Huang BQ, Yang WR, Tao Y, Wang J, Yuan ZQ, Fan GY, Xing Z, Han CL, Pan HT, Zhong X, Shi WF, Liang XM, Du DL, Sun FM, Xu ZD, Hao RJ, Lv T, Lv YM, Zheng ZQ, Sun M, Luo L, Cai M, Gao YK, Wang JY, Yin Y, Xu X, Cheng TR, Wang J (2012) The genome of Prunus mume. Nat Commun 3:1318

    Article  PubMed  Google Scholar 

  • Zhao L, Li X, Zhang N, Zhang S-D, Yi T-S, Ma H, Guo Z-H, Li D-Z (2016) Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. Mol Phylogenet Evol 105:166–176

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ji Qi for his constructive comments and technical supports on WGD analysis, and Qichao Lian and Duoyuan Chen for their technical assistance. This work was supported by a grant received from the National Natural Science Foundation of China (31670209), funds provided by the State Key Laboratory of Genetic Engineering at Fudan University, as well as support provided by the Biology Department and the Huck Institutes of the Life Sciences at the Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Huang, CH., Ma, H. (2019). Whole-Genome Duplications in Pear and Apple. In: Korban, S. (eds) The Pear Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11048-2_15

Download citation

Publish with us

Policies and ethics