Skip to main content

Synthesis, Properties, and Applications of Graphene Nanocomposite

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Nanocomposite moieties are found to be the best option to match with today’s fascinating technological development. Their extraordinary properties can be realized by gathering a number of nanomaterials. Among such nanomoieties, graphene is likely to dominate because its attractive novelty is confirmed by its exclusive features. Graphene-based nanocomposites have attracted great interest for their prospective applications in emerging fields, including electrical, electronic, storage systems, thermal sensing, contaminant detoxification, and, widely, in energy-related sectors. For its potential use, graphene should be homogeneously compiled with metal matrix components. Thus, an appropriate selection of suitable techniques is sought to synthesize composites with characteristic properties. Hence, this chapter discusses the salient routes of synthesis, built-in properties, and emerging applications of such graphene-based nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aparna ML, Grace AN, Sathyanarayanan P, Sahu NKA (2018) Comparative study on the super capacitive behaviour of solvo thermally prepared metal ferrite (MFe2O4, M=Fe, Co, Ni, Mn, Cu, Zn) nano assemblies. J Alloys Compd 745:385–395. https://doi.org/10.1016/j.jallcom.2018.02.127

    Article  CAS  Google Scholar 

  • Aristov VY, Urbanik G, Kummer K, Vyalikh DV, Molodtsova OV, Preobrajenski AB, Zakharov AA, Hess C, Haonke T, Buochner B, Vobornik I, Fujii J, Panaccione G, Ossipyan YA, Knupfer M (2010) Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett 10(3):992–995

    CAS  Google Scholar 

  • Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri KH, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 5(8):574–578

    CAS  Google Scholar 

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    CAS  Google Scholar 

  • Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8(6):1704–1708

    Google Scholar 

  • Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Mullen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466(7305):470–473

    CAS  Google Scholar 

  • Dang TT, Pham VH, Hur SH, Kim EJ, Kong BS, Chung JS (2012) Superior dispersion of highly reduced graphene oxide in N,N-dimethyl formamide. J Colloid Interface Sci 376(1):91–96

    CAS  Google Scholar 

  • Deng D, Pan X, Zhang H, Fu Q, Tan D, Bao X (2010) Freestanding graphene by thermal splitting of silicon carbide granules. Adv Mater 22(19):2168–2171

    CAS  Google Scholar 

  • Dervishi E, Li Z, Watanabe F, Biswas A, Xu Y, Biris AR, Saini V, Biris AS (2009) Large-scale graphene production by RF-cCVD method. Chem Commun 27:4061–4072

    Google Scholar 

  • Dubal DP, Holze R (2014) All-solid-state flexible thin film super capacitor based on Mn3O4 stacked nano sheets with gel electrolyte. Energy 51:407–412

    Google Scholar 

  • Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, Farrar J, Varshneya R, Yang Y, Kaner RB (2010) A one-step, solvo thermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7):3845–3852

    CAS  Google Scholar 

  • Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11(9):2345–2351

    CAS  Google Scholar 

  • Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20:9635–9643

    CAS  Google Scholar 

  • Fu C, Zhao G, Zhang H, Li S (2013) Evaluation and characterization of reduced graphene oxide nano sheets as anode materials for lithium-ion batteries. Int J Electrochem Sci 8:6269–6280

    CAS  Google Scholar 

  • Kamat PV (2011) Graphene-based nano assemblies for energy conversion. J Phys Chem Lett 2(3):242–251

    CAS  Google Scholar 

  • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    CAS  Google Scholar 

  • Kuila T, Bose S, Hong CE, Uddin ME, Khanra P, Kim NH, Lee JH (2011) Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49(3):1033–1037

    CAS  Google Scholar 

  • Kuila T, Banerjee P, Murmu NC (2014) Surface modification of graphene. In: Tiwari A, Shukla SK (eds) Advanced carbon materials and technology. Wiley-Scrivener, Hoboken

    Google Scholar 

  • Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultra smooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232

    CAS  Google Scholar 

  • Liu Z, Liu L, Li H, Dong Q, Yao S, Kidd AB et al (2012) Green polymer solar cell based on water-soluble poly[3-(potassium-6-hexanoate) thiophene-2,5-diyl] and aqueous dispersible noncovalent functionalized graphene sheets. Sol Energy Mater Sol Cells 97:28–33

    CAS  Google Scholar 

  • Loh KP, Bao Q, Ang PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    CAS  Google Scholar 

  • Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, Mc Govern IT, Duesberg GS (2009a) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620

    CAS  Google Scholar 

  • Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, Mc Govern IT, Duesberg GS, Coleman JN (2009b) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620

    CAS  Google Scholar 

  • Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant stabilized graphene dispersions. ACS Nano 4:3155–3162

    CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    CAS  Google Scholar 

  • Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance super capacitor electrode materials. Chem Commun 51:12365–12368

    CAS  Google Scholar 

  • Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1(73):201–213

    Google Scholar 

  • Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvo thermal synthesis of graphene nano sheets and their polyaniline nanocomposites for energy storage. Chem Mater 21(21):5004–5006

    CAS  Google Scholar 

  • Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1318

    CAS  Google Scholar 

  • Nandamuri G, Roumimov S, Solanki R (2010) Chemical vapor deposition of graphene films. Nanotechnology 21:145604–145614

    CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  Google Scholar 

  • Novoselov AK, Geim SV, Morozov D, Jiang MI, Katsnelson IV, Grigorieva SV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    CAS  Google Scholar 

  • Ohlan A, Singh K, Chandra A, Dhawan SK (2010) Microwave absorption behaviour of core−shell structured poly (3,4-ethylenedioxy thiophene) barium ferrite nanocomposites. ACS Appl Mater Interfaces 2:927–933

    CAS  Google Scholar 

  • Park H, Rowehl JA, Kim KK, Bulovic V, Kong J (2010) Doped graphene electrodes for organic solar cells. Nanotechnology 21(505204):237–250

    Google Scholar 

  • Park OK, Hahm MG, Lee S, Joh HI, Na SI, Vajtai R, Lee JH, Ku BC, Ajayan PM (2012) In situ synthesis of thermos chemically reduced graphene oxide conducting nanocomposites. Nano Lett 12:1789–1793

    CAS  Google Scholar 

  • Pham VH, Cuong TV, Nguyen PTD, Pham HD, Kim EJ, Hur SH, Shin EW, Kim S, Chung JS (2010) One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem Commun 46(24):4375–4377

    CAS  Google Scholar 

  • Pham VH, Cuong TV, Dang TT, Hur SH, Kong BS, Kim EJ, Shin EW, Chung JS (2011) Superior conductive polystyrene chemically converted graphene nanocomposite. J Mater Chem 21(30):11312–11316

    CAS  Google Scholar 

  • Pötschke P, Abdel GM, Pegel S, Jehnichen D, Mark JE, Zhou D, Heinrich G (2009) Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromol Sci 47(1):12–19

    Google Scholar 

  • Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu ZZ et al (2010) Fracture and fatigue in graphene nanocomposites. SMALL 6:179–183

    CAS  Google Scholar 

  • Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8(3):235–242

    CAS  Google Scholar 

  • Saravanan N, Rajasekar R, Mahalakshmi S, Sathishkumar TP, Sasikumar KSK, Sahoo S (2014) Graphene and modified graphene-based polymer nanocomposites: a review. J Reinf Plast Compos 33:1158–1180

    Google Scholar 

  • Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera AM, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539

    CAS  Google Scholar 

  • Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2009) Water-soluble graphene covalently functionalized by biocompatible poly-l-lysine. Langmuir 25(20):12030–12033

    CAS  Google Scholar 

  • Shivaraman S, Barton RA, Yu X, Alden J, Herman L, Chandrashekhar MVS, Park J, McEuen PL, Parpia JM, Craighead HG, Spencer MG (2009) Free-standing epitaxial graphene. Nano Lett 9(9):3100–3105

    CAS  Google Scholar 

  • Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    CAS  Google Scholar 

  • Smith RJ, Lotya M, Coleman JN (2010) The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New J Phys 12:125008

    Google Scholar 

  • Srivastava A, Galande C, Ci L, Song L, Rai C, Jariwala D, Kelly KF, Ajayan PM (2010) Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem Mater 22(11):3457–3461

    CAS  Google Scholar 

  • Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21(10):3301–3310

    CAS  Google Scholar 

  • Vignesh V, Subramani K, Sathish M, Navamathavan R (2018) Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for super capacitor applications. Colloids Surf A Physicochem Eng Asp 538:668–677. https://doi.org/10.1016/j.colsurfa.2017.11.045

    Article  CAS  Google Scholar 

  • Wang W, Hao Q, Lei W, Xia X, Wang X (2014) Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance super capacitors. J Power Sources 269:250–259

    CAS  Google Scholar 

  • Wei C et al (2016) Valence change ability and geometrical occupation of substitution cations determine the pseudo capacitance of spinel ferrite XFe2O4 (X=Mn, Co, Ni, Fe). Chem Mater 28:4129–4133. https://doi.org/10.1021/acs.chemmater.6b00713

    Article  CAS  Google Scholar 

  • Wu ZS, Ren W, Gao L, Liu B, Jia C, Cheng HM (2009) Synthesis of high quality graphene with a pre-determined number of layers. Carbon 47(2):493–499

    CAS  Google Scholar 

  • Yang H, Zhang Q, Shan C, Li F, Han D, Niu L (2010) Stable, conductive supramolecular composite of graphene sheets with conjugated polyelectrolyte. Langmuir 26(9):6708–6712

    CAS  Google Scholar 

  • Yavari F, Rafiee MA, Rafiee J, Yu Z-Z, Koratkar N (2010) Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl Mater Interfaces 2:2738–2743

    CAS  Google Scholar 

  • Zha D, Xiong P, Wang X (2015) Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost super capacitors with high rate capability. Electrochim Acta 185:218–228

    CAS  Google Scholar 

  • Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204

    CAS  Google Scholar 

  • Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as super capacitor electrodes. Chem Mater 22(4):1392–1401

    CAS  Google Scholar 

  • Zhao X, Zhang Q, Chen D, Lu P (2010a) Enhanced mechanical properties of graphene based poly (vinyl alcohol) composites. Macromolecules 43(5):2357–2363

    CAS  Google Scholar 

  • Zhao J, Pei S, Ren W, Gao L, Cheng HM (2010b) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9):5245–5252

    CAS  Google Scholar 

  • Zhou H, Han G (2016) One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance super capacitors. Electrochim Acta 192:448–455. https://doi.org/10.1016/j.electacta.2016.02.015

    Article  CAS  Google Scholar 

  • Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2):1227–1233

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Aravind Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aravind Kumar, J., Krithiga, T., Venkatesan, D., Sathish, S., Amarnath, D.J. (2021). Synthesis, Properties, and Applications of Graphene Nanocomposite. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_72-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics