Skip to main content

Non-conventional Plant Fibres

  • Chapter
  • First Online:
  • 468 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

There are many non-conventional fibre-yielding plants with the potential for use for different applications. Some of them are presented in the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kundu SK, Mojumder P, Bhaduri SK (2005) Physical characteristics of khimp fibre. Indian J Fibre Text Res 30:153–156

    CAS  Google Scholar 

  2. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27

    Article  CAS  Google Scholar 

  3. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohyd Polym 106:77–83

    Article  CAS  Google Scholar 

  4. Belkhir S, Koubaa A, Khadhri A (2012) Variations in the morphological characteristics of Stipa tenacissima fiber: the case of Tunisia. Ind Crops Prod 37(1):200–206

    Article  Google Scholar 

  5. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23(1):1–8

    Article  CAS  Google Scholar 

  6. Prusty JK, Patro SK, Basarkar SS (2016) Concrete using agro-waste as fine aggregate for sustainable built environment—a review. Int J Sustain Built Environ 5(2):312–333

    Article  Google Scholar 

  7. Putra A, Abdullah Y, Efendy H (2013) Utilizing sugarcane wasted fibers as a sustainable acoustic absorber. Procedia Eng 53:632–638

    Article  Google Scholar 

  8. Navarro-Lisboa R, Herrera C, Zúñiga RN et al (2017) Quinoa proteins (Chenopodium quinoa Willd.) fractionated by ultrafiltration using ceramic membranes: the role of pH on physicochemical and conformational properties. Food Bioprod Process 102:20–30

    Article  CAS  Google Scholar 

  9. Vilcacundo R, Hernández-Ledesma B (2017) Nutritional and biological value of quinoa (Chenopodium Quinoa Willd). Curr Opin Food Sci 14:1–6

    Article  Google Scholar 

  10. Wickens GE (2001) Economic botany. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  11. van Wyk BE (2005) Food plants of the world—identification, culinary uses and nutritional value. Briza, Pretoria

    Google Scholar 

  12. Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa—an Indian perspective. Ind Crops Prod 23(1):73–87

    Article  CAS  Google Scholar 

  13. Sfiligoj-Smole M, Hribernik S, Stana-Kleinschek K et al (2013) Plant fibres for textile and technical applications. In: Grundas S, Stepniewski A (eds) Advances in agrophysical research. InTech, Rijekap, pp 369–397

    Google Scholar 

  14. Gasparic P, Urisk Z, Krizanec A et al (2012) Sustainable plant textile fibres. Tekstilec 55(4):302–313

    Google Scholar 

  15. Debnath S (2015) Great potential of stinging nettle for sustainable textile and fashion. In: Gardetti MA, Muthu SS (eds) Handbook of sustainable luxury textiles and fashion. Springer, Berlin

    Google Scholar 

  16. Taylor K (2009) Biological Flora of the British Isles: Urtica dioica L. J Ecol 97:1436–1458. https://doi.org/10.1111/j.1365-2745.2009.01575.x

    Article  CAS  Google Scholar 

  17. Bodros E, Baley C (2008) Study of the tensile properties of stinging nettle fibres (Urtica dioica). Mater Lett 62:2143–2145

    Article  CAS  Google Scholar 

  18. Waskow F (1995) Die Renaissance der heimischen Faserpflanzen. Hrsg. Vom Katalyse-institut für Angewandte Umweltforschung. Verlag die Werkstat, Göttingen, pp 93–144

    Google Scholar 

  19. Bredemann G (1942) Die Bestimmung des Fasergehaltes bei Massenuntersuchungen von Hanf, Flachs, Fasernesseln und anderen Bastfaserpflanzen. Faserforschung 16:14–39

    CAS  Google Scholar 

  20. Bredemann G (1959) Die große Brennessel Urtica dioica L. Forschung über ihren Anbau zur Fasergewinnung. Akademieverlag, Berlin

    Google Scholar 

  21. Bacci L, di Lonardo S, Albanese L et al (2011) Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.). Text Res J 81(8):827–837

    Article  CAS  Google Scholar 

  22. Baltina A, Lapsa L, Jankauskiene Z et al (2012) Nettle fibers as a potential natural raw material for textile in Latvia. Mater Sci Text Clothing Technol 7:23–27

    Google Scholar 

  23. Dreyer J, Edom G (2005) Nettle. In: Franck RR (ed) Bast and other plant fibres. Woodhead Publishing Abington Hall, pp 332–339

    Google Scholar 

  24. Bacci L, Baronti S, Predieri S et al (2009) Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Ind Crops Prod 29(2–3):480–484

    Article  Google Scholar 

  25. Grundmann E (2007) Versuche zum ökologischen Anbau der Fasernessel. Faserpflanzen aus ökologischem Anbau Tagungsband, Kassel. Schriftenreihe IBDF 20:42–45

    Google Scholar 

  26. Pinelli P, Ieri F, Vignolini P, Bacci L, Baronti S, Romani A (2008) Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J Agric Food Chem 56:9127–9132

    Article  CAS  PubMed  Google Scholar 

  27. Wurl G, Graf T, Vetter A, Biertrümpfel A (2003) 10 Jahre anbautechnische Versuche zu Fasernesseln (Urtica dioica L.) in Thüringen. https://www.tll.de. Accessed 20 Sept 2017

  28. Singh R, Bagachi A, Semwal A, Kaur S, Bharadwaj A (2013) Traditional uses, phytochemistry and pharmacology of Morus alba Linn.: a review. J Med Plants Res 7(9):461–469

    Google Scholar 

  29. Binnqüist CL, Quintanar-Isaia, Vander Meeren M (2012) Mexican bark paper: evidence of history of tree species used and their fiber characteristics. Econ Bot 66(2):138–148

    Article  Google Scholar 

  30. Peters CM, Rosenthal J, Urbina T (1987) Otomi bark paper in Mexico: commercialization of a pre-hispanic technology. Econ Bot 41(3):423–432

    Article  Google Scholar 

  31. Cushman HB, Debo A (eds) (1999) History of the Choctaw, Chickasaw and Natchez Indians. University of Oklahoma Press

    Google Scholar 

  32. Dong Z, Ding Z, Zhang S, Zhang Y, Fan H, Yang Y (2017) Natural fibers from the bark of mulberry branches for textile application. Fibres Text Eastern Europe 25, 3(123):20–25

    Article  CAS  Google Scholar 

  33. Li R, Fei J, Cai Y et al (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohyd Polym 76(1–2):94–99

    Article  CAS  Google Scholar 

  34. Qu C, Wang S (2011) Macro-micro structure, antibacterial activity, and physico-mechanical properties of the mulberry bast fibers. Fibers Polym 12(4):471–477

    Article  CAS  Google Scholar 

  35. Samanta AK, Konar A (2011) Dying of textiles with natural dyes. In: Kumbasar EA (ed) Natural dyes. In Tech, pp 30–31

    Google Scholar 

  36. Wang H, Tang Z, Zhou W (2016) A method for dyeing cotton fabric with anthocyanin dyes extracted from mulberry (Morus rubra) fruits. Color Technol 132:222–231

    Article  CAS  Google Scholar 

  37. Neve RA (1991) Hops. Chapman and Hall, London and Van Nostrand Reinhold Publishing Cy, New York

    Google Scholar 

  38. Small E (1978) A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Syst Bot 3:37–76

    Article  Google Scholar 

  39. Jakše J, Kindlhofer K, Javornik B (2001) Assessment of genetic variation and differentiation of hop genotypes by microsatellite and AFLP markers. Genome 44:773–782

    Article  PubMed  Google Scholar 

  40. Seefelder S, Ehrmaier H, Schweizer G et al (2000) Genetic diversity and phylogenetic relationships among accessions of hops, Humulus lupulus, as determined by amplified fragment length polymorphism fingerprinting compared with pedigree data. Plant Breed 119:257–263

    Article  CAS  Google Scholar 

  41. Javornik B, Jake J, Štajner N, Kozjak P (2005) Molecular genetic hop (Humulus lupulus L.) research in Slovenia. Acta horticultuae 668:31–34

    Article  CAS  Google Scholar 

  42. Murakami A, Darby P, Javornik B, Pais MSS, Seigner E, Lutz A, Svoboda P (2006) Molecular phylogeny of wild Hops, Humulus lupulus L. Heredity 97:66–74

    Article  CAS  PubMed  Google Scholar 

  43. Zanoli P, Zavatti M (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol 116:383–396

    Article  CAS  PubMed  Google Scholar 

  44. DeLyser DY, Kasper WJ (1994) Hopped beer: the case for cultivation. Econ Bot 48(2):166–170

    Article  Google Scholar 

  45. Pavlovič M (2014) Hop industry. Quality Management Decision Support Modeling. Verlag Dr. Kovač, Hamburg

    Google Scholar 

  46. Reddy N, Yang Y (2009) Properties of natural cellulose fibers from hop stems. Carbohyd Polym 77:898–902

    Article  CAS  Google Scholar 

  47. Neto WPF, Silvério HA, Dantas NO et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488

    Article  CAS  Google Scholar 

  48. Leitner J, Hinterstoisser B, Wastyn M et al (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    Article  CAS  Google Scholar 

  49. Li ZY, Zhai HM, Zhang Y et al (2012) Cell morphology and chemical characteristics of corn stover fractions. Ind Crops Prod 37(1):130–136

    Article  CAS  Google Scholar 

  50. Liu Z, Cao Y, Wang Z et al (2015) The utilization of Soybean straw: fibre morphology and chemical characteristics. BioResources 10(2):2266–2280

    CAS  Google Scholar 

  51. Martelli-Tosi M, da Silva Torricillas M, Martins MA et al (2016) Using commercial enzymes to produce cellulose nanofibers from soybean straw. J Nanomater 2016. https://doi.org/10.1155/2016/8106814

    Article  CAS  Google Scholar 

  52. Arcioni S, Damiani F, Pezzotti M et al (1990) Alfalfa, lucerne (Medicago spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry Vol 10: Legumes and oilseed crops I. Springer, Berlin, pp 197–241

    Google Scholar 

  53. Simpson BB, Conner-Ogorzaly M (1986) Economic botany. Plants in our world. McGraw-Hill, New York, pp 497–507

    Google Scholar 

  54. Samac DA, Jung HJG, Lamb JAFS (2006) Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bioproducts. In: Minteer S (ed) Alcoholic fuels. CRC Boca Raton, pp 79–98

    Google Scholar 

  55. Ai J, Tschirner U (2010) Fiber length and pulping characteristics of switch-grass, alfalfa stems, hybridpoplar and willow biomasses. Bioresour Technol 101(1):215–221. https://doi.org/10.1016/j.biortech.2009.07.090

    Article  CAS  PubMed  Google Scholar 

  56. Sfiligoj-Smole M, Kreze T, Strnad S et al (2005) Characterisation of grass fibres. J Mater Sci 40(20):5349–5353

    Article  CAS  Google Scholar 

  57. Botha PW, Visser V, Richardson DM et al (2013) Why do French (Genista monspessulana) and Spanish brooms (Spartium junceum) not sweep across South Africa? S Afr J Bot 86:165

    Article  Google Scholar 

  58. Gabriele B, Cerchiara T, Salerno G et al (2010) A new physical-chemical process for the efficient production of cellulose fibers from Spanish broom (Spartium junceum L.). Bioresour Technol 101(2):724–729. https://www.ncbi.nlm.nih.gov/pubmed/19734042. https://doi.org/10.1016/j.biortech.2009.08.014

    Article  CAS  Google Scholar 

  59. Geerts S, Botha PW, Visser V et al (2013) Montpellier broom (Genista monspessulana) and Spanish broom (Spartium junceum) in South Africa: an assessment of invasiveness and options for management. S Afr J Bot 87:134–145

    Article  Google Scholar 

  60. Kovacevic Z, Bischof-Vukusic S, Zimniewska M (2012) Comparison of Spanish broom (Spartium junceum L.) and flax (Linum usitatissimum) fibre. Text Res J 82(17):1786–1798

    Article  CAS  Google Scholar 

  61. Sanhueza C, Zalba SM (2012) Experimental control of Spanish broom (Spartium junceum) invading natural grasslands. Manage Biol Invasions 3(2):97–104. https://doi.org/10.3391/mbi.2012.3.2.04

    Article  Google Scholar 

  62. Swearingen J, Bargeron C (2016) Invasive Plant Atlas of the United States. http://www.invasiveplantatlas.org/

  63. Cerchiara T, Chidichimo G, Ragusa MI et al (2010) Characterization and utilization of Spanish Broom (Spartium junceum L.) seed oil. Ind Crops Prod 31(2):423–426

    Article  CAS  Google Scholar 

  64. Angelini LG, Tavarini S, Foschi L (2013) Spanish broom (Spartium junceum L.) as new fiber for biocomposites: the effect of crop age and microbial retting on fiber quality. In: Conference papers in materials science 2013, Article ID 274359. https://doi.org/10.1155/2013/274359

    Article  CAS  Google Scholar 

  65. Katovic A, Katovic D, Antonovic A (2011) Extraction methods of Spanish Broom. Drvna Industrija 62(4):255–261

    Article  Google Scholar 

  66. Angelini LG, Lazzeri A, Levita G et al (2000) Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind Crops Prod 11:145–161

    Article  Google Scholar 

  67. Kovacevic Z, Krncevic M, Katovic A (2010) Brnistra – zaboravljena tekstilna sirovina. Tekstil 59(9):410–421

    Google Scholar 

  68. Cerchiara T, Chidichimo G, Gallucci MC et al (2009) Use of Spanish broom (Spartium junceum L.) canvas as a painting support: evaluation of the effects of environmental conditions. J Cult Heritage 10(3):396–402

    Article  Google Scholar 

  69. Picuno P (2016) Use of traditional material in farm buildings for a sustainable rural environment. Int J Sustain Built Environ 5(2):451–460

    Article  Google Scholar 

  70. Cassano R, Trombino S, Bloise E et al (2007) New broom fiber (Spartium junceum L.) derivatives: preparation and characterization. J Agric Food Chem 55(23):9489–9495

    Article  CAS  PubMed  Google Scholar 

  71. Cerchiara T, Abruzzo A, Palomino RAÑ et al (2017) Spanish Broom (Spartium junceum L.) fibers impregnated with vancomycin-loaded chitosan nanoparticles as new antibacterial wound dressing: Preparation, characterization and antibacterial activity. Eur J Pharm Sci 99:105–112

    Article  CAS  Google Scholar 

  72. Boynard CA, Monteiro SN, d’Almeida JRM (2003) Aspects of alkali treatment of sponge gourd (Luffa cylindrica) fibers on the flexural properties of polyester matrix composites. J Appl Polym Sci 87:1927–1932. https://doi.org/10.1002/app.11522

    Article  CAS  Google Scholar 

  73. Purseglove JW (1977) Tropical crops dicotyledons. Longman Group, London

    Google Scholar 

  74. Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fibre, microfibrillate cellulose and cellulose nanocrystals. BioResources 5(2):727–740

    CAS  Google Scholar 

  75. Demir H, Top A, Balköse D, Ülkü S (2008) Dye adsorption behavior of Luffa cylindrica fibers. J Hazard Mater 153:389–394

    Article  CAS  PubMed  Google Scholar 

  76. Fortunati E, Puglia D, Monti M et al (2012) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci. https://doi.org/10.1002/app.38524

    Article  CAS  Google Scholar 

  77. Sathish Kumar D, Tony Eswar, Praveen Kumar A (2013) A review on: Abelmoschus esculentus (okra). Int Res J Pharm Appl Sci 3(4):129–132

    Google Scholar 

  78. Khan GMA, Yilmaz ND, Yilmaz K (2017) Okra bast fibre as potential reinforcement element of biocomposites: can it be the flax of the future. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials; functionalization. Wiley, Hoboken

    Chapter  Google Scholar 

  79. Khan GMA, Saheruzzaman M, Razzaque ASM et al (2009) Grafting of acrylonitrile monomer onto bleached okra bast fibre and its textile properties. Indian J Fibre Text Res 34:321–327

    CAS  Google Scholar 

  80. Khan GMA (2007) Chemical analysis of okra bast fiber (Abelmoschus esculentus) and its physico-chemical properties. J Text Apparel Technol Manage 5(4):1

    Google Scholar 

  81. Alam MS, Khan GMA (2007) Grafting of acrylonitrile monomer onto bleached okra bast fibre and its textile properties. Text Apparel Technol Manage 5(4):1

    Google Scholar 

  82. Fortunati E, Puglia D, Monti M, et al (2013) Okra (Abelmoschus esculentus) fibre based PLA composites: mechanical behaviour and biodegradation. J Polym Environ 21(3). https://doi.org/10.1007/s10924-013-0571-5

    Article  CAS  Google Scholar 

  83. Santulli C, Sarasini F, Fortunati E et al (2014) Okra fibres as potential reinforcement in biocomposites. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy; processing and properties. Springer International Publishing Switzerland, pp 176–187. https://doi.org/10.1007/978-3-319-07641-6_11

    Google Scholar 

  84. Perdereau AC, Douglas GC, Hodkinson TR et al (2013) High levels of variation in Salix lignocellulose genes revealed using poplar genomic resources. Biotechnol Biofuels 6:114. https://doi.org/10.1186/1754-6834-6-114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhengyi W, Raven PH, Deyuan H (2004) Flora of China 4. Salicaceae, Science Press (Beijing) & Missouri Botanical Garden (St. Louis). FOC 4:162–274

    Google Scholar 

  86. Diop CIK, Lavoie JM, Huneault MA (2015) Structural changes of Salix miyabeana cellulose fibres during dilute-acid steam explosion: impact of reaction temperature and retention time. Carbohyd Polym 119:8–17

    Article  CAS  Google Scholar 

  87. Lebot V (2010) Tropical root and tuber crops. Cassava, sweet potato, yams and aroids. Econ Bot 64(1):86–87.

    Google Scholar 

  88. Teixeira EM, Pasquini D, Curvelo AAS (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohyd Polym 78:422–431

    Article  CAS  Google Scholar 

  89. Masrahi YS (2015) A new species of Leptadenia (Apocynaceae) and two other new records from southwestern Saudi Arabia. Saudi J Biol Sci 22(5):631–636

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mojumder P, Mondal SB, Mukhopadhya S et al (2001) Chemical characterization of Khimp fibre (Leptadenia pyrotechnica). J Sci Ind Res 60:675–677

    CAS  Google Scholar 

  91. Atalay Z, Celep F, Bilgili B, Dogan M (2016) Pollen morphology of the genus Lamium L. (Lamiaceae) and its systematic implication. Flora 219:68–84

    Article  Google Scholar 

  92. Bendiksby M, Brysting AK, Thorbek L, Gussarova G, Ryding O (2011) Molecular phylogeny and taxonomy of the genus Lamium L. (Lamiaceae): disentangling origins of presumed allotetraploids. https://www.researchgate.net/publication/266655362_Molecular_phylogeny_and_taxonomy_of_the_genus_Lamium_L_Lamiaceae_Disentangling_origins_of_presumed_allotetraploids. Accessed 20 Sept 2017

  93. Govaerts R et al (2014) Lamium in World Checklist of Selected Plant Families. The Board of Trustees of the Royal Botanic Gardens, Kew. Published on the internet. Accessed 2 June 2014

    Google Scholar 

  94. Govaerts R, Paton A, Harvey Y, Navarro T (2010) World check list of Lamiaceae and Verbenaceae. Kew, Richmond: The Board of Trustees of the Royal Botanic Gardens. http://www.kew.org/wcsp/lamiaceae/. Accessed 10 Oct 2010

  95. Krawczyk K, Głowacka K (2015) Nutlet micromorphology and its taxonomic utility in Lamium L. (Lamiaceae). Plant Syst Evol 301:1863–1874. https://doi.org/10.1007/s00606-015-1199-9

    Article  Google Scholar 

  96. Martinčič A, Wraber T, Jogan N et al (2007) Mala flora Slovenije: ključ za določevanje praprotnic in semenk. 4. izdaja. Tehniška založba Slovenije, Ljubljana

    Google Scholar 

  97. Franck AR (2012) Guide to agave, cinnamomum, corymbia, eucalyptus, pandanus, and sansevieria in the flora of Florida. Phytoneuron 102:1–23

    Google Scholar 

  98. Gentry HS (1982) Agaves of Continental North America. University of Arizona Press, Tucson

    Google Scholar 

  99. Nava-Cruz NY, Medina-Morales MA, Martinez JL, Rodriguez R, Aguilar CN (2015) Agave biotechnology: an overview. Crit Rev Biotechnol 35:546–559

    Article  PubMed  CAS  Google Scholar 

  100. Li Y, Mai YW, Ye L (2000) Sisal fibre and its composites: a review of recent developments. Compos Sci Technol 60(11):2037–2055

    Article  CAS  Google Scholar 

  101. Piven N, Barredo F, Borges-Argaez C et al (2001) Reproductive biology of henequen (Agave fourcroydes) and its wild ancestor Agave angustifolia (Agavaceae). I. Gametophyte development. Am J Bot 88:1966–1976. https://doi.org/10.2307/3558424

    Article  CAS  PubMed  Google Scholar 

  102. Iñiguez-Covarrubias G, Lange S, Rowell R (2001) Utilization of byproducts from the tequila industry: Part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour Technol 77:25–32. https://doi.org/10.1016/S0960-8524(00)00137-1.

    Article  PubMed  Google Scholar 

  103. Hidalgo-Reyes M, Caballero-Caballero M, Hernandez-Gomez LH, Urriolagoitia-Calderon G (2015) Chemical and morphological characterization of Agave angustifolia bagasse fibres. Bot Sci 93(4):807–817

    Article  Google Scholar 

  104. Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez JR (2013) Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water. Ind Crops Prod 43:200–206. https://doi.org/10.1016/j.indcrop.2012.06.049

    Article  CAS  Google Scholar 

  105. Mohr GM Jr (1999) Blue Agave and its importance in the Tequila Industry. South Ill Univ Carbondale Ethnobotanical Leaflets 3:1–4

    Google Scholar 

  106. Rosli N, Ahmad I, Abdullah I (2013) Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre. BioResources 8(2):1893–1908

    Article  Google Scholar 

  107. Ruvalcaba-Ruiz D, Rodríguez-Garay B (2002) Aberrant meiotic behavior in Agave tequilana Weber var. Azul. BMC Plant Biol 2(1):10. https://doi.org/10.1186/1471-2229-2-10

    Article  PubMed  PubMed Central  Google Scholar 

  108. Valenzuela A (2011) A new agenda for blue agave landraces: food, energy and tequila review. Bioenergy 3:15–24

    Google Scholar 

  109. Espino E, Cakir M, Domenek S et al (2014) Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Ind Crops Prod 62:552–559

    Article  CAS  Google Scholar 

  110. Pintaud JC (2008) An overview of the taxonomy of Attalea (Arecaceae). Rev Peruana Biol 15(supl. 1):55–63

    Google Scholar 

  111. Pintaud JC, Rodrigez Del Castillo AM, Ferreira EJ, Morales RM, Mejia K (2016) Towards a revision of Attalea in Western Amazonia. Palms 60(2):57–77

    Google Scholar 

  112. d’Almeida JRM, Aquino RCMP, Monteiro SN (2006) Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Compos A Appl Sci Manuf 37(9):1473–1479

    Article  CAS  Google Scholar 

  113. Bayton RP (2007) A revision of Borassus L. (Arecaceae). Kew Bull 62(4):561–585

    Google Scholar 

  114. Reddy KO, Shukla M, Maheswari UC, Rajulu VA (2012) Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. J For Res 23(4):667–674

    Article  CAS  Google Scholar 

  115. Reddy KO, Maheswari CU, Shukla M (2013) Tensile and structural characterization of alkali treated Borassus fruit finefibers. Compos B Eng 44(1):433–438

    Article  CAS  Google Scholar 

  116. Srinivasababu N, Kumar JS, Reddy KVK (2014) Manufacturing and characterization of long palmyra palm/Borassus flabellifer petiole fibre reinforced polyester composites. Procedia Technol 14:252–259

    Article  Google Scholar 

  117. Sudhakara P, Jagadeesh D, Wang Y et al (2013) Fabrication of Borassus fruit ligno-cellulose fiber/PP composites and comparison with jute, sisal and coir fibers. Carbohyd Polym 98(1):1002–1010

    Article  CAS  Google Scholar 

  118. Boopathi L, Sampath PS, Mylsamy K (2012) Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos B Eng 43(8):3044–3052

    Article  CAS  Google Scholar 

  119. Suni S, Kosunen AL, Hautala M et al (2004) Use of a by-product of peat excavation, cotton grass fibre, as a sorbent for oil-spills. Mar Pollut Bull 49(11–12):916–921

    Article  CAS  PubMed  Google Scholar 

  120. Fritz E (1995) The current importance of peat textiles. J Antrophosof Med 12:1–4

    Google Scholar 

  121. Mikucioniene D, Cepukone L, Milasiene D (2017) Investigation on mechanical and thermal properties of knits from peat fibers and their combination with other natural fibers. Text Res J. https://www.researchgate.net/publication/316286779_Investigation_on_mechanical_and_thermal_properties_of_knits_from_peat_fibers_and_their_combination_with_other_natural_fibers. Accessed 20 Sep 2017

  122. Ahmad F, Khan MA, Ahmad M et al (2009) Taxonomic studies of grasses and their indigenous uses in the salt range area of Pakistan. Afr J Biotech 8(2):231–249

    Google Scholar 

  123. Stevens PF (2013) Angiosperm phylogeny website. Version 12. Retrieved from www.mobot.org/mobot/research/APweb/2018

  124. Thomas B, Murray BG, Murphy DJ (2017) Encyclopedia of applied plant sciences. Elsevier, Oxford

    Google Scholar 

  125. Holmes W (1989) Grass, its Production and Utilization. Blackwell Scientific Publications The British Grassland Society Oxford, London, Edinburgh

    Google Scholar 

  126. Petersen A (1981) Die Gräser als Kulturpflanzen und Unkräuter auf Wiese, Weide und Acker Akademie Verlag Berlin

    Google Scholar 

  127. Sfiligoj-Smole M, Stana-Kleinschek K, Kreze T et al (2004) Physical properties of grass fibres. Chem Biochem Eng Q 18(1):47–53

    Google Scholar 

  128. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fibers Polym 9(6):735–739

    Article  CAS  Google Scholar 

  129. Hardin IR, Wilson SS, Dhandapani R, Dhende V (2009) An assessment of the validity of claims for “Bamboo” fibers. AATCC Rev 9(10):33–36

    CAS  Google Scholar 

  130. Nayak L, Mishra SP (2016) Fash Text 3:2. https://doi.org/10.1186/s40691-015-0054-5

    Article  Google Scholar 

  131. Khalil HPSA, Bhat IUH, Jawaid M et al (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  CAS  Google Scholar 

  132. Yueping W, Ge W, Haitao C et al (2010) Structures of bamboo fiber for textiles. Text Res J 80(4):334–343. https://doi.org/10.1177/0040517509337633

    Article  CAS  Google Scholar 

  133. Chaowana P (2013) Bamboo: an alternative raw material for wood and wood-based composites. J Mater Sci Res 2(2):90–102

    CAS  Google Scholar 

  134. Liese W, Tang TKH, Liese W ed., Kohl M ed. (2015) Properties of the bamboo culm. Tropical forestry, bamboo: the plant and its uses. Switzerland: Springer International Publishing 227–256

    Google Scholar 

  135. Wang F, Shao J, Keer LM et al (2015) The effect of elementary fibre variability on bamboo fibre strength. Mater Des 75(15):136–142

    Article  Google Scholar 

  136. Wang X, Ren H, Zhang B et al (2012) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. J R Soc Interface 9(70):988–996

    Article  PubMed  Google Scholar 

  137. Manalo AC, Wani E, Zukarnain NA et al (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Compos B Eng 80:73–83

    Article  CAS  Google Scholar 

  138. Duan WJ, Zou DS, Luo JX (2003) The soil and water conservation efficiency of Eulaliopsis binata in the deserted sloping field of purple soil in South China. J Hunan Agric Univ (Nat Sci) 29:204–206

    CAS  Google Scholar 

  139. Huang Y, Zou DS, Wang H, Yu YL, Luo JX (2003) Ecological benefit of Eulaliopsis binata grown in slope wasteland. J Agro-Environ Sci 22:217–220

    Google Scholar 

  140. Satpathy AR, Sahu UN (2010) The role of Sabai grass industry in the economic development of Mayurbhanj district of Orissa (India). Int J Appl Agric Res 5(2):221–242

    Google Scholar 

  141. Khandual A, Sahu S (2016) Sabai grass: possibility of becoming a potential textile. In: Muthu SS, Gardetti M (eds) Sustainable fibres for fashion industry. Springer Science+Business Media, Singapore, pp 45–60

    Chapter  Google Scholar 

  142. Sahu S, Khandual A, Behera L (2016) Sabai grass fibre: insight into thermal stability, chemical constitution and morphology. Int J Adv Chem Sci Appl 4(4):1–5

    Google Scholar 

  143. Newman RK, Newman CW (2008) Barley for food and health: science, technology and products. Wiley

    Google Scholar 

  144. Bouasker M, Belayachi N, Hoxha D et al (2014) Physical characterization of natural straw fibers as aggregates for construction materials applications. Materials 7:3034–3048. https://doi.org/10.3390/ma7043034

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hyvärinen M, Kärki T (2015) The effects of the substitution of wood fiber with agro-based fiber (barley straw) on the properties of natural fiber/polypropylene composites. In: MATEC web of conferences, vol 30. https://doi.org/10.1051/matecconf/20153001014

    Article  CAS  Google Scholar 

  146. Sun JX, Xu F, Sun XF et al (2005) Physico-chemical and thermal characterization of cellulose from barley straw. Polym Degrad Stab 88(3):521–531

    Article  CAS  Google Scholar 

  147. Loos BP (1994) The genus Lolium; Taxonomy and genetic resources. Thesis

    Google Scholar 

  148. Quattrocchi U (2006) CRC world dictionary of grasses: common names, scientific names, eponyms, synonyms, and etymology—3 Volume Set. CRC, p 2408

    Google Scholar 

  149. Evans PS (1964) A study of leaf strength in four ryegrass varieties. Grasslands Division, Department of Scientific and Industrial Research, Palmerston North

    Article  Google Scholar 

  150. King C, McEniry J, Richardson M et al (2014) Characterization for industrial purposes of the fibre anatomy of perennial ryegrass and tall fescue stem and leaf at three stages in the primary growth. Grass Forage Sci 69:64–73. https://doi.org/10.1111/gfs.12032

    Article  Google Scholar 

  151. Chen SL, Renvoize SA (2006) Miscanthus Andersson. In: Wu ZY, Raven PH (eds) Flora of China, vol 22. Beijing: Science Press; St. Louis, MO: Missouri Botanical Garden Press, pp 581–583

    Google Scholar 

  152. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind Crops Prod 28:320–327

    Article  Google Scholar 

  153. Jones MB, Walsh M (2001) Miscanthus for energy and fibre. James & James, London

    Google Scholar 

  154. James LEA (2009) Quinoa (Chenopodium quinoa Willd.) Chapter 1, Composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res 58:1–31

    Google Scholar 

  155. Sun Q, Lin Q, Yi ZL, Yang ZR, Zhou FS (2010) A taxonomic revision of Miscanthus s.l. (Poaceae) from China. Bot J Linn Soc 164:178–220

    Article  Google Scholar 

  156. Vanderghem C, Brostaux Y, Jacquet N, Blecker C, Paquot M (2012) Optimization of formic/acetic acid delignification of Miscanthus × giganteus for enzymatic hydrolysis using response surface methodology. Ind Crop Prod 35:280–286. https://doi.org/10.1016/j.indcrop.2011.07.014

    Article  CAS  Google Scholar 

  157. da Silva CG, Grelier S, Pichavant F, Frollini E, Castellan A (2013) Adding value to lignins isolated from sugarcane bagasse and Miscanthus. Ind Crops Prod 42:87–95

    Article  CAS  Google Scholar 

  158. Chupin L, de Ridder D, Clément-Vidal A et al (2017) Influence of the radial stem composition on the thermal behaviour of miscanthus and sorghum genotypes. Carbohyd Polym 167:12–19. https://doi.org/10.1016/j.carbpol.2017.03.002

    Article  CAS  Google Scholar 

  159. Cudjoe E, Hunsen M, Xue Z et al (2017) Miscanthus Giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohyd Polym 155:230–241. https://doi.org/10.1016/j.carbpol.2016.08.049

    Article  CAS  Google Scholar 

  160. Bakker H (1999) Sugar cane cultivation and management. Springer, New York

    Book  Google Scholar 

  161. Sun JX, Sun XF, Zhao H et al (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84(2):331–339

    Article  CAS  Google Scholar 

  162. Purseglove JW (1986) Tropical crops monocotyledons. Longman Group, London

    Google Scholar 

  163. Reddy PS, Patil JV (eds) (2017) Millets and sorghum biology and genetic improvement. Wiley, West Sussex, United Kingdom

    Google Scholar 

  164. Reddy N, Yang Y (2007) Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. J Agric Food Chem 55(14):5569–5574

    Article  CAS  PubMed  Google Scholar 

  165. Zhong J, Li H, Yu J et al (2011) Effects of natural fiber surface modification on mechanical properties of poly(lactic acid) (PLA)/sweet sorghum fiber composites. Polym Plast Technol Eng 50(15):1583–1589

    Article  CAS  Google Scholar 

  166. Qi C, Yadama V, Guo K et al (2015) Thermal stability evaluation of sweet sorghum fiber and degradation simulation during hot pressing of sweet sorghum–thermoplastic composite panels. Ind Crops Prod 69:335–343

    Article  CAS  Google Scholar 

  167. Vo LTT, Girones J, Beloli C et al (2017) Processing and properties of sorghum stem fragment-polyethylene composites. Ind Crops Prod 107:386–398. https://doi.org/10.1016/j.indcrop.2017.05.047

    Article  CAS  Google Scholar 

  168. Wiecko G (2007) Management of tropical turfgrasses. In: Pessarakli M (ed) Handbook of turfgrass management and physiology. CRP Press Taylor & Francis

    Google Scholar 

  169. Pandey JK, Lee JW, Chu WS et al (2008) Cellulose nano whiskers from grass of Korea. Macromol Res 16(5):396–398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majda Sfiligoj Smole .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sfiligoj Smole, M., Hribernik, S., Kurečič, M., Urbanek Krajnc, A., Kreže, T., Stana Kleinschek, K. (2019). Non-conventional Plant Fibres. In: Surface Properties of Non-conventional Cellulose Fibres. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-10407-8_3

Download citation

Publish with us

Policies and ethics