Skip to main content

Submergence Stress in Rice: Physiological Disorders, Tolerance Mechanisms, and Management

  • Chapter
  • First Online:

Abstract

Submergence negatively affects the rice production in flood prone and rain-fed lowland areas of Asia. Though rice is semi-aquatic plant, prolonged submerged conditions are deleterious to get high yield. Submergence disturbs the morpho-physiological growth and development of rice plant. This chapter discussed the harmful effects of submergence on growth, metabolic responses, photosynthesis, gaseous exchange, oxidative metabolism, and carbohydrate consumption of rice. For survival, rice plant adopts tolerant mechanisms such as quiescence and escape strategies, formation of barrier to radial oxygen loss (ROL), gas films and aerenchyma formation. In quiescence strategy, several transcription factors are involved in negative regulation of genes to reduce the elongation. On the other hand, in escape strategy ethylene mediated factors are involved in elongation of internodal distance. We also proposed the physiological (e.g., seed priming) and molecular approaches for enhancing the rice tolerance to flood prone and rain-fed lowland conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashraf MA, Ahmad MS, Ashraf M, Al-Qurainy F, Ashraf MY (2011) Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci 62:25–38

    CAS  Google Scholar 

  • Ayi Q, Zeng B, Liu J, Li S, van Bodegom PM, Cornelissen JH (2016) Oxygen absorption by adventitious roots promotes the survival of completely submerged terrestrial plants. Ann Bot 118:675–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey-Serres J, Chang R (2005) Sensing and signaling in response to oxygen deprivation in plants and other organisms. Ann Bot 96:507–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S, Mackill D (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138–147

    Google Scholar 

  • Collard BCY, Septiningsih EM, Das SR, Carandang JJ, Pamplona AM, Sanchez DL, Kato Y, Ye G, Reddy JN, Singh US, Iftekharuddaula KM, Venuprasad R, Vera-Cruz CN, Mackill DJ, Ismail AM (2013) Developing new flood-tolerant varieties at the International Rice Research Institute (IRRI). SABRAO J Breed Genet 45:42–56

    Google Scholar 

  • Colmer TD (2003a) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    CAS  Google Scholar 

  • Colmer TD (2003b) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot 91:301–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colmer TD, Pedersen O (2008) Under water photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol 177:918–926

    CAS  PubMed  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    PubMed  Google Scholar 

  • Colmer TD, Winkel A, Pedersen O (2011) A perspective on underwater photosynthesis in submerged terrestrial wetland plants. AoB Plants 2011:plr030. https://doi.org/10.1093/aobpla/plr030

    Article  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Barroso JB, del Rio LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    CAS  PubMed  Google Scholar 

  • Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47:145–159

    CAS  Google Scholar 

  • Dar MH, Janvry AD, Emerick K, Raitzer D, Sadoulet E (2013) Flood tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups. Sci Rep 3:1–8

    Google Scholar 

  • Das A, Nanda BB, Sarkar RK, Lodh SB (2000) Effect of complete submergence on the activity of starch phosphorylase enzyme in rice (Oryza sativa L.) leaves. J Plant Biochem Biot 9(1):41–3

    CAS  Google Scholar 

  • Das KK, Panda D, Sarkar RK, Reddy JN, Ismail AM (2009) Submergence tolerance in relation to variable floodwater conditions in rice. Environ Exp Bot 66(3):425–434. https://doi.org/10.1016/j.envexpbot.2009.02.015

    Article  CAS  Google Scholar 

  • Dat S, Vandenabeele E, Vranová M, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    CAS  PubMed  Google Scholar 

  • Del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    PubMed  Google Scholar 

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    CAS  PubMed  Google Scholar 

  • Ella ES, Kawano N, Yamauchi Y, Tanaka K, Ismail AM (2003a) Blocking ethylene perception during submergence reduced chlorophyll degradation and improved seedling survival in rice. Funct Plant Biol 30:813–819

    CAS  PubMed  Google Scholar 

  • Ella ES, Kawano N, Ito O (2003b) Importance of active oxygen scavenging system in the recovery of rice seedlings after submergence. Plant Sci 165:85–93

    CAS  Google Scholar 

  • Ella ES, Dionisio-Sese ML, Ismail AM (2011) Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB Plants 2011:plr007. https://doi.org/10.1093/aobpla/plr007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans DE (2003) Aerenchyma formation. New Phytol 161:35–49

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Khaliq A, Kobayashi N (2009) Rice seed invigoration: a review. In: Lichtfouse E (ed) Organic farming, pest control and remediation of soil pollutants. Springer, New York, pp 137–175

    Google Scholar 

  • Fukao T, Harris T, Bailey-Serres J (2008) Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice. Ann Bot 103(2):143–50

    PubMed  PubMed Central  Google Scholar 

  • Fukao T, Bailey-Serres J (2008a) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc Natl Acad Sci U S A 105:16814–16819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Bailey-Serres J (2008b) Ethylene—a key regulator of submergence responses in rice. Plant Sci 175:43–51

    CAS  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler-Lee J, Caldwell C, Gallie DR (2010) Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia. J Exp Bot 61:857–871

    CAS  PubMed  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Giuliani R, Koteyeva N, Voznesenskaya E, Evans M, Cousins A, Edwards G (2013) Coordination of leaf photosynthesis, transpiration and structural traits in Rice and wild relatives (Genus Oryza). Plant Physiol 162:1632–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haque ME, Abe F, Kawaguchi K (2010) Formation and extension of lysigenous aerenchyma in seminal root cortex of spring wheat (Triticum aestivum cv. Bobwhite line SH 98 26) seedlings under different strengths of waterlogging. Plant Root 4:31–39

    Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsuoka T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Ashikari M (2011) Rice growth adapting to deep water. Curr Opin Plant Biol 14:100–105

    PubMed  Google Scholar 

  • He CJ, Morgan PW, Drew MC (1996) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016a) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116. https://doi.org/10.3389/fpls.2016.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Cui K, Nie L (2016b) Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front Plant Sci 7:1125

    PubMed  PubMed Central  Google Scholar 

  • Iftekharuddaula K, Newaz M, Salam M, Ahmed H, Mahbub M, Septiningsih E, Collard B, Sanchez D, Pamplona A, Mackill D (2011) Rapid and high-precision marker assisted backcrossing to introgress SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178:83–97

    Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 17:1387–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito O, Ella E, Kawano N (1999) Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crops Res 64:75–90

    Google Scholar 

  • Jackson MB (2008) Ethylene-promoted elongation: an adaptation to submergence stress. Ann Bot 101:229–248

    CAS  PubMed  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    CAS  Google Scholar 

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91:227–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jisha KC, Vijaya kumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396. https://doi.org/10.1007/s11738-012-1186-5

    Article  Google Scholar 

  • Kang YY, Guo SR, Li J, Duan JJ (2009) Effect of root applied 2, 4-epibrassinolide on carbohydrate status and fermentative enzyme activities in cucumber (Cucumis sativus L.) seedlings under hypoxia. Plant Growth Regul 57:259–269

    CAS  Google Scholar 

  • Kato-Noguchi H, Yasuda Y, Sasaki R (2010) Soluble sugar availability of aerobically germinated barley, oat and rice coleoptiles in anoxia. J Plant Physiol 167:1571–1576

    CAS  PubMed  Google Scholar 

  • Kende H, van der Knaap E, Cho HT (1998) Deep water rice: a model plant to study stem elongation. Plant Physiol 118:1105–1110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khaliq A, Aslam F, Matloob A, Hussain S, Geng M, Wahid A, ur Rehman H (2015) Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biol Trace Elem Res 166:236–244. https://doi.org/10.1007/s12011-015-0260-4

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Kende H (2001) Expression of β-expansins is correlated with internodal elongation in deep water rice. Plant Physiol 127:645–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenochova Z, Soukup A, Votrubova O (2009) Aerenchyma formation in maize roots. Biol Plant 53:263–270

    Google Scholar 

  • Lin KC, Jwo WS, Chandrika NNP, Wu TM, Lai MH, Wang CS, Hong CY (2016) A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress. Biol Plant 60:86–94

    CAS  Google Scholar 

  • Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56

    PubMed  Google Scholar 

  • Liu E, Liu X, Zeng S, Zhao K, Zhu C, Liu Y, Breria MC, Zhang B, Hong D (2015) Time-course association mapping of the grain-filling rate in rice (Oryza sativa L.). PLoS One 10(3):e0119959.

    PubMed  PubMed Central  Google Scholar 

  • Lorbiecke R, Sauter M (1999) Adventitious root growth and cell-cycle induction in deep water rice. Plant Physiol 119:21–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maberly SC, Madsen TV (1998) Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3. Funct Ecol 12:99–106

    Google Scholar 

  • Mackill DJ, Ismail AM, Singh US, Labios RV, Paris TR (2012) Development and rapid adoption of submergence-tolerant (Sub1) rice varieties. Adv Agron 115:299–352

    Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer LM (2003) Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environ 26:1713–1722

    Google Scholar 

  • Manzanilla DO, Paris TR, Vergara GV, Ismail AM, Pandey S, Labios RV, Tatlonghari GT, Acda RD, Chi TTN, Duoangsila K, Siliphouthone I, Manikmas MOA, Mackill DJ (2011) Submergence risk and farmers’ preference: implications for breeding Sub1 rice in Southeast Asia. Agric Syst 104:335–347

    Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2002) Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ 25:441–451

    Google Scholar 

  • Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124:609–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miro B, Ismail AM (2013) Tolerance of anaerobic conditions caused by flooding during germination and early growth with in rice (Oryza sativa L.). Front Plant Sci 4:269. https://doi.org/10.3389/fpls.2013.00269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mommer L, Visser EJW (2005) Under water photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann Bot 96:581–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW (2005) Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol 139:497–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mommer L, Wolters-Arts M, Andersen C, Visser EJW, Pedersen O (2007) Submergence-induced leaf acclimation in terrestrial species varying in flooding tolerance. New Phytol 176:337–345

    PubMed  Google Scholar 

  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez DLM, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    CAS  PubMed  Google Scholar 

  • Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice 5:11–14

    Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Panda D, Rao DN, Sharma SG, Strasser RJ, Sarkar RK (2006) Submergence effects on rice genotypes during seedling stage: probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction O-J-I-P transient. Photosynthetica 44:69–75

    CAS  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293. https://doi.org/10.1007/s00299-015-1784-y

    Article  CAS  PubMed  Google Scholar 

  • Parlanti S, Kudahettige NP, Lombardi L, Mensuali-Sodi A, Alpi A, Perata P, Pucciariello C (2011) Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance. Ann Bot 107:1335–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen O, Rich SM, Colmer TD (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. Plant J 58:147–156

    CAS  PubMed  Google Scholar 

  • Pedersen O, Colmer TD, Sand-Jensen K (2013) Underwater photosynthesis of submerged plants recent advances and methods. Front Plant Sci 4:140

    PubMed  PubMed Central  Google Scholar 

  • Polthanee A, Changdee T (2008) Influence of adventitious root removing and timing of fertilizer application in flooded soil on growth, yield and N, P, K uptake of kenaf (Hibiscus cannabinus L.) under greenhouse and field conditions. Asian J Plant Sci 7:352–359

    CAS  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    CAS  PubMed  Google Scholar 

  • Ranathunge K, Lin J, Steudle E, Schreiber L (2011) Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ 34:1223–1240

    CAS  PubMed  Google Scholar 

  • Ribeiro CW, Korbes AP, Garighan JA, Jardim-Messeder D, Carvalho FE, Sousa RH, Caverzan A, Teixeira FK, Silveira JA, Margis-Pinheiro M (2017) Rice peroxisomal ascorbate peroxidase knockdown affects ROS signaling and triggers early leaf senescence. Plant Sci 263:55–65

    CAS  PubMed  Google Scholar 

  • Rich SM, Ludwig M, Colmer TD (2012) Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii. Ann Bot 110:405–414

    PubMed  PubMed Central  Google Scholar 

  • Saika H, Matsumura H, Takano T, Tsutsumi N, Nakazono M (2007) A point mutation of Adh1 gene is involved in the repression of coleoptile elongation under submergence in rice. Breed Sci 56:69–74

    Google Scholar 

  • Sand-Jensen K, Frost-Christensen H (1999) Plant growth and photosynthesis in the transition zone between land and stream. Aquat Bot 63:23–35

    CAS  Google Scholar 

  • Santosa IE, Ram PC, Boamfa EI, Laarhoven LJJ, Reuss J, Jackson MB, Harren FJM (2007) Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon. Planta 226:193–202

    CAS  PubMed  Google Scholar 

  • Sarkar RK, Das S, Ravi I (2001) Changes in certain antioxidative enzymes and growth parameters as a result of complete submergence and subsequent re-aeration of rice cultivars differing in submergence tolerance. J Agron Crop Sci 187:69–74

    CAS  Google Scholar 

  • Sarkar RK, Reddy JN, Sharma SG, Ismail AM (2006) Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr Sci 10:899–906

    Google Scholar 

  • Sauter M (2000) Rice in deep water: “how to take heed against a sea of troubles”. Naturwissensehaften 87:289–303

    CAS  Google Scholar 

  • Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16:282–286

    PubMed  Google Scholar 

  • Sauter M, Seagull RW, Kende H (1993) Internodal elongation and orientation of cellulose microfibrils and microtubules in deep water rice. Planta 190:354–362

    CAS  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    CAS  PubMed  Google Scholar 

  • Septiningsih EM, Collard BCY, Heuer S, Bailey-Serres J, Ismail AM, Mackill DJ (2013) Applying genomics tools for breeding submergence tolerance in rice. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding: abiotic stress, yield and quality. Wiley, Chichester, pp 9–30

    Google Scholar 

  • Setter TL, Kupkanchanakul T, Kupkanchanakul K, Bhekasut P, Wiengweera A, Greenway H (1988). Environmental factors in deepwater rice areas in Thailand: oxygen, carbon dioxide, and ethylene. In: International Deepwater Rice Workshop, Bangkok (Thailand), 26–30 Oct 1987. IRRI

    Google Scholar 

  • Setter TL, Bhekasut P, Greenway H (2010) Desiccation of leaves after de-submergence is one cause for intolerance to complete submergence of the rice cultivar IR42. Funct Plant Biol 37:1096–1104

    Google Scholar 

  • Shiono K, Takahashi H, Colmer TD, Nakazono M (2008) Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci 175:52–58

    CAS  Google Scholar 

  • Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai Jasmine rice carrying QTLCh9 (Sub1 QTL) is submergence tolerant. Ann Bot 91:225–261

    Google Scholar 

  • Singh S, Mackill DJ, Ismail AM (2009) Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Res 113:12–23

    Google Scholar 

  • Singh N, Dang T, Vergara G, Pandey D, Sanchez D, Neeraja C, Septiningsih E, Mendioro M, Tecson Mendoza R, Ismail A, Mackill D, Heuer S (2010) Molecular marker survey and expression analysis of rice submergence-tolerance genes SUB1A and SUB1C. Theor Appl Genet 121:1441–1453

    CAS  PubMed  Google Scholar 

  • Singh S, Mackill DJ, Ismail AM (2014a) Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene. AoB Plants 6:plu060. https://doi.org/10.1093/aobpla/plu060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Singh P, Singh VN, Khan AH, Singh S, Srivastava AK, Singh US, Ismail AM, Haefele SM (2014b) The beneficial effects of applying potassium alone or with phosphorus during nursery management in enhancing the survival and yield of the rice variety Swarna-Sub1 in a flood-prone ecosystem. Better Crops 38:3–11

    Google Scholar 

  • Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 173:264–278

    CAS  PubMed  Google Scholar 

  • Srivalli B, Sharma G, Khanna-Chopra R (2003) Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plantarum 119(4):503–12

    CAS  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617

    CAS  PubMed  Google Scholar 

  • Steffens B, Sauter M (2005) Epidermal cell death in rice (Oryza sativa L.) is regulated by ethylene, gibberellin and abscisic acid. Plant Physiol 139:713–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Wang J, Sauter M (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604–612

    CAS  PubMed  Google Scholar 

  • Steffens B, Geske T, Sauter M (2011) Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol 190:369–378

    CAS  PubMed  Google Scholar 

  • Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    CAS  PubMed  Google Scholar 

  • Thomson MJ, Ismail AM, McCouch SR, Mackill MJ (2010) Marker assisted breeding. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, physiological, molecular and genomic foundation. Photosynthetica. Springer, New York, pp 474–474

    Google Scholar 

  • Upadhyay RK (2018) Oxidative injury and its detoxification in rice plants after submergence stress. Proc Natl Acad Sci India Sect B Biol Sci 88(1):15–21. https://doi.org/10.1007/s40011-016-0724-0

    Article  CAS  Google Scholar 

  • Upadhyay RK, Panda SK, Dutta BK (2009) Growth, chlorophyll and electrical conductivity responses of rice cultivars to different levels of submergence and post submergence stress. J Phytology 1:325–432

    Google Scholar 

  • Ushimaru T, Kanemotsu S, Shibasaka M, Tsuji H (1999) Effect of hypoxia on the antioxidative enzymes in aerobically grownrice (Oryza sativa L.) seedlings. Physiol Plant 107:181–187

    CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390. https://doi.org/10.1104/pp.106.078295.384

    Article  PubMed  PubMed Central  Google Scholar 

  • Vartapetian BB (2005) Plant anaerobiosis stress as novel trend in ecological physiology, biochemistry, and molecular biology. 1. Establishment of a new scientific discipline. Russ J Plant Physiol 52:826–844

    CAS  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79:3–20

    CAS  Google Scholar 

  • Verboven P, Pedersen O, Ho QT, Nicolai BM, Colmer TD (2014) The mechanism of improved aeration due to gas films on leaves of submerged rice. Plant Cell Environ 37:2433–2452

    CAS  PubMed  Google Scholar 

  • Vergara GV, Nugraha Y, Esguerra MQ, Mackill DJ, Ismail AM (2014) Variation in tolerance of rice to long-term stagnant flooding that submerges most of the shoot will aid in breeding tolerant cultivars. AoB Plants 6:plu055. https://doi.org/10.1093/aobpla/plu055

    Article  PubMed  PubMed Central  Google Scholar 

  • Visser EJW, Bögemann GM (2006) Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. New Phytol 171:305–314

    CAS  PubMed  Google Scholar 

  • Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245

    Google Scholar 

  • Visser EJW, Voesenek L, Vartapetian BB, Jackson MB (2003) Flooding and plant growth. Ann Bot 91:107–109

    CAS  PubMed Central  Google Scholar 

  • Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006) How plants cope with complete submergence. New Phytol 170:213–226

    CAS  PubMed  Google Scholar 

  • Winkel A, Colmer TD, Pedersen O (2011) Leaf gas films of Spartina anglica enhance rhizome and root oxygen during tidal submergence. Plant Cell Environ 34:2083–2092

    CAS  PubMed  Google Scholar 

  • Winkel A, Colmer TD, Ismail AM, Pedersen O (2013) Internal aeration of paddy field rice (Oryza sativa) during complete submergence—importance of light and floodwater O2. New Phytol 197:1193–1203. https://doi.org/10.1111/nph.12048

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang RR, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    CAS  PubMed  Google Scholar 

  • Xu K, Chun S, Li T, Ma X, Liang X, Ding X, Liu H, Luo L (2015) OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress responsive genes. BMC Plant Biol 15:141

    PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Rajhi I, Nakazono M (2011) Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav 6:759–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin C-C, Zhao H, Ma B, Chen S-Y, Zhang J-S (2017) Diverse roles of ethylene in regulating agronomic traits in Rice. Front Plant Sci 8:1676

    PubMed  PubMed Central  Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Cui K, Nie L (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178. https://doi.org/10.1007/s10725-015-0083-5

    Article  CAS  Google Scholar 

  • Zhou Z, de Almeida Engler J, Rouan D, Michiels F, Van Montagu M, Van Der Straeten D (2002) Tissue localization of a submergence-induced 1-aminocyclopropane-1-carboxylic acid synthase in rice. Plant Physiol 129:72–84

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, U., Hussain, H.A., Hussain, S., Ashraf, U., Khaliq, A., Hussain, S. (2019). Submergence Stress in Rice: Physiological Disorders, Tolerance Mechanisms, and Management. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_7

Download citation

Publish with us

Policies and ethics