Skip to main content

Surface-Functionalized Lipid Nanoparticles for Site-Specific Drug Delivery

  • Chapter
  • First Online:

Abstract

Nanoparticles have been sought as drug carriers to increase bioavailability at the target site of action, improving drug therapeutic index. Among the several nanoparticulate systems proposed in the field of pharmaceutical technology, lipid-based nanoparticles (NPs) have attracted increasing attention due to their unique size-dependent properties, use of common well-tolerated, pharmaceutically accepted excipients, thus allowing for developing new delivery systems that could hold great promise for attaining the bioavailability enhancement along with controlled and site specific drug delivery. In the last years, passive and active modification approaches have been proposed to surface functionalization of lipid NPs intended for specific targeting. Internalizable ligands, specific targeted peptides, saccharide ligands, or even therapeutic molecules (e.g. antibodies or enzymes) are used for this purpose. Physicochemical properties of NPs can also be adjusted to improve drug targeting. The present chapter describes the recent advances in surface functionalization of lipid NPs, either solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), lipid–drug conjugate nanoparticles (LDC), or lipid nanocapsules (LNC) with specific ligands to enhance drug targeting performance as well as its therapeutic effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lundqvist, T., & Bredenberg, S. (2013). Pharmaceutical development. In R. G. R. H. Hill (Ed.), Drug discovery and development – Technology in transition (pp. 227–238). Edinburgh: Churchull Livingstone/Elsevier.

    Google Scholar 

  2. Peppas, N. A. (2013). Historical perspective on advanced drug delivery: How engineering design and mathematical modeling helped the field mature. Advanced Drug Delivery Reviews, 65(1), 5–9.

    Article  CAS  PubMed  Google Scholar 

  3. De Koker, S., De Cock, L. J., Rivera-Gil, P., Parak, W. J., Velty, R. A., Vervaet, C., et al. (2011). Polymeric multilayer capsules delivering biotherapeutics. Advanced Drug Delivery Reviews, 63(9), 748–761.

    Article  PubMed  CAS  Google Scholar 

  4. Bao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional nanoparticles for drug delivery and molecular imaging. Annual Review of Biomedical Engineering, 15(1), 253–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lima, A. C., Alvarez-Lorenzo, C., & Mano, J. F. (2016). Design advances in particulate systems for biomedical applications. Advanced Healthcare Materials, 5(14), 1687–1723.

    Article  CAS  PubMed  Google Scholar 

  6. Gaspar, D., Faria, V., Quintas, Q., & Almeida, A. J. (2017). Targeted delivery of lipid nanoparticles by means of surface chemical modification. Current Organic Chemistry, 21(1), 2360–2375.

    CAS  Google Scholar 

  7. Birrenbach, G., & Speiser, P. (1976). Polymerized micelles and their use as adjuvants in immunology. Journal of Pharmaceutical Sciences, 65(12), 1763–1766.

    Article  CAS  PubMed  Google Scholar 

  8. Wilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. (2012). Nanoparticles as drug delivery systems. Pharmacological Reports, 64(5), 1020–1037.

    Article  CAS  PubMed  Google Scholar 

  9. Hans, M., & Lowman, A. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 6(4), 319–327.

    Article  CAS  Google Scholar 

  10. Sung, J. C., Pulliam, B. L., & Edwards, D. A. (2007). Nanoparticles for drug delivery to the lungs. Trends in Biotechnology, 25(12), 563–570.

    Article  CAS  PubMed  Google Scholar 

  11. Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., & Chen, P. (2013). Biocompatibility of engineered nanoparticles for drug delivery. Journal of Controlled Release, 166(2), 182–194.

    Article  CAS  PubMed  Google Scholar 

  12. Singh, R., & Lillard, J. W. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Byrne, J. D., Betancourt, T., & Brannon-Peppas, L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60(15), 1615–1626.

    Article  CAS  PubMed  Google Scholar 

  14. Couvreur, P. (2013). Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews, 65(1), 21–23.

    Article  CAS  PubMed  Google Scholar 

  15. Speiser, P. (1990). Lipidnanopellets als Trägersystem für Arzneimittel zur peroralen Anwendung.

    Google Scholar 

  16. Domb, A. J., Bergelson, L., & Amselem, S. (1996). Lipospheres for controlled delivery of substances patent 0360-2583.

    Google Scholar 

  17. Schwarz, C., Mehnert, W., Lucks, J., & Müller, R. H. (1994). Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. Journal of Controlled Release, 30(1), 83–96.

    Article  CAS  Google Scholar 

  18. Müller, R. H., & Lucks, J. (1996). Arzneistoffträger aus festen lipidteilchen, feste lipidnanosphären (SLN).

    Google Scholar 

  19. Gasco, M. R. (1993) Method for producing solid lipid microspheres having a narrow size distribution.

    Google Scholar 

  20. Siekmann, B., & Westesen, K. (1992). Submicron-sized parenteral carrier systems based on solid lipids. Pharmaceutical and Pharmacological Letters, 1(3), 123–126.

    CAS  Google Scholar 

  21. Lopes, R., Eleutério, C., Gonçalves, L. M. D., Cruz, M., & Almeida, A. J. (2012). Lipid nanoparticles containing oryzalin for the treatment of leishmaniasis. European Journal of Pharmaceutical Sciences, 45(4), 442–450.

    Article  CAS  PubMed  Google Scholar 

  22. Mancini, G., Lopes, R. M., Clemente, P., Raposo, S., Gonçalves, L., Bica, A., et al. (2015). Lecithin and parabens play a crucial role in tripalmitin-based lipid nanoparticle stabilization throughout moist heat sterilization and freeze-drying. European Journal of Lipid Science and Technology, 117(12), 1947–1959.

    Article  CAS  Google Scholar 

  23. Souto, E., Almeida, A. J., & Müller, R. H. (2007). Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: Structure, protection and skin effects. Journal of Biomedical Nanotechnology, 3(4), 317–331.

    Article  CAS  Google Scholar 

  24. Vitorino, C., Carvalho, F., Almeida, A. J., Sousa, J., & Pais, A. (2011). The size of solid lipid nanoparticles: An interpretation from experimental design. Colloids and Surfaces B: Biointerfaces, 84(1), 117–130.

    Article  CAS  PubMed  Google Scholar 

  25. Gaspar, D. P., Faria, V., Gonçalves, L. M. D., Taboada, P., Remuñán-López, C., & Almeida, A. J. (2016). Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. International Journal of Pharmaceutics, 497(1–2), 199–209.

    Article  CAS  PubMed  Google Scholar 

  26. Das, S., & Chaudhury, A. (2011). Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 12(1), 62–76.

    Article  CAS  PubMed  Google Scholar 

  27. Silva, A., González-Mira, E., García, M., Egea, M., Fonseca, J., Silva, R., et al. (2011). Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces, 86(1), 158–165.

    Article  CAS  PubMed  Google Scholar 

  28. Gaspar, D. P., Gaspar, M. M., Eleutério, C. V., Grenha, A., Blanco, M., Gonçalves, L. M. D., et al. (2017). Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery. Molecular Pharmaceutics, 14(9), 2977–2990.

    Article  CAS  PubMed  Google Scholar 

  29. Wissing, S., Kayser, O., & Müller, R. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257–1272.

    Article  CAS  PubMed  Google Scholar 

  30. Jensen, L., Magnussson, E., Gunnarsson, L., Vermehren, C., Nielsen, H., & Petersson, K. (2010). Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. International Journal of Pharmaceutics, 390(1), 53–60.

    Article  CAS  PubMed  Google Scholar 

  31. Fathi, M., Mozafari, M., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science and Technology, 23(1), 13–27.

    Article  CAS  Google Scholar 

  32. Üner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2(3), 289–300.

    PubMed  PubMed Central  Google Scholar 

  33. Müller, R. H., Radtke, M., & Wissing, S. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews, 54(1), 131–155.

    Article  Google Scholar 

  34. Westesen, K., Siekmann, B., & Koch, M. H. (1993). Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. International Journal of Pharmaceutics, 93(1), 189–199.

    Article  CAS  Google Scholar 

  35. Mehnert, W., & Mäder, K. (2001). Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews, 47(2), 165–196.

    Article  CAS  PubMed  Google Scholar 

  36. Bunjes, H., Westesen, K., & Koch, M. H. (1996). Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. International Journal of Pharmaceutics, 129(1), 159–173.

    Article  CAS  Google Scholar 

  37. Müller, R. H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery – A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 50(1), 161–177.

    Article  PubMed  Google Scholar 

  38. Müller, R. H., Radtke, M., & Wissing, S. (2002). Nanostructured lipid matrices for improved microencapsulation of drugs. International Journal of Pharmaceutics, 242(1), 121–128.

    Article  PubMed  Google Scholar 

  39. Olbrich, C., Gessner, A., Kayser, O., & Müller, R. H. (2002). Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. Journal of Drug Targeting, 10(5), 387–396.

    Article  CAS  PubMed  Google Scholar 

  40. Almeida, A. J., Runge, S., & Müller, R. H. (1997). Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. International Journal of Pharmaceutics, 149(2), 255–265.

    Article  CAS  Google Scholar 

  41. Garcìa-Fuentes, M., Torres, D., & Alonso, M. (2003). Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules. Colloids and Surfaces B: Biointerfaces, 27(2), 159–168.

    Article  Google Scholar 

  42. Attama, A., Momoh, M., & Builders, P. (2012). Chapter 5 – Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. In A. Demir (Ed.), Recent advances in novel drug carrier systems (pp. 107–140). Croatia: InTech.

    Google Scholar 

  43. Beloqui, A., Solinís, M. Á., Rodríguez-Gascón, A., Almeida, A. J., & Préat, V. (2016). Nanostructured Lipid Carriers: Promising drug delivery systems for future clinics. Nanomedicine: Nanotechnology, Biology and Medicine, 12(1), 143–161.

    Article  CAS  Google Scholar 

  44. Patel, S., Chavhan, S., Soni, H., Babbar, A., Mathur, R., Mishra, A., et al. (2011). Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. Journal of Drug Targeting, 19(6), 468–474.

    Article  CAS  PubMed  Google Scholar 

  45. Xu, X., Ho, W., Zhang, X., Bertrand, N., & Farokhzad, O. (2015). Cancer nanomedicine: From targeted delivery to combination therapy. Trends in Molecular Medicine, 21(4), 223–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chono, S., Tanino, T., Seki, T., & Morimoto, K. (2007). Uptake characteristics of liposomes by rat alveolar macrophages: Influence of particle size and surface mannose modification. The Journal of Pharmacy and Pharmacology, 59(1), 75–80.

    Article  CAS  PubMed  Google Scholar 

  47. Gao, H., Shi, W., & Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9469–9474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sykes, E. A., Chen, J., Zheng, G., & Chan, W. C. (2014). Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano, 8(6), 5696–5706.

    Article  CAS  PubMed  Google Scholar 

  49. Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces, 44(2-3), 65–73.

    Article  CAS  PubMed  Google Scholar 

  50. Pearce, T. R., Shroff, K., & Kokkoli, E. (2012). Peptide targeted lipid nanoparticles for anticancer drug delivery. Advanced Materials, 24(28), 3803–3822.

    Article  CAS  PubMed  Google Scholar 

  51. Cho, K., Wang, X., Nie, S., & Shin, D. M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 14(5), 1310–1316.

    Article  CAS  PubMed  Google Scholar 

  52. Ye, J., Wang, Q., Zhou, X., & Zhang, N. (2008). Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis. International Journal of Pharmaceutics, 352(1–2), 273–279.

    Article  CAS  PubMed  Google Scholar 

  53. Beloqui, A., Solinís, M. Á., Gascón, A. R., del Pozo-Rodríguez, A., des Rieux, A., & Préat, V. (2013). Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. Journal of Controlled Release, 166(2), 115–123.

    Article  CAS  PubMed  Google Scholar 

  54. Lim, S.-J., & Kim, C.-K. (2002). Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. International Journal of Pharmaceutics, 243(1), 135–146.

    Article  CAS  PubMed  Google Scholar 

  55. Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), 505–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cadete, A., Figueiredo, L., Lopes, R., Calado, C. C. R., Almeida, A. J., & Gonçalves, L. M. D. (2012). Development and characterization of a new plasmid delivery system based on chitosan – Sodium deoxycholate nanoparticles. European Journal of Pharmaceutical Sciences, 45(4), 451–458.

    Article  CAS  PubMed  Google Scholar 

  57. Thakkar, A., Chenreddy, S., Wang, J., & Prabhu, S. (2015). Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles. Cell & Bioscience, 5(1), 1–14.

    Article  CAS  Google Scholar 

  58. Fonte, P., Nogueira, T., Gehm, C., Ferreira, D., & Sarmento, B. (2011). Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Delivery and Translational Research, 1(4), 299–308.

    Article  CAS  PubMed  Google Scholar 

  59. Pan, T.-L., Wang, P.-W., Hung, C.-F., Aljuffali, I. A., Dai, Y.-S., & Fang, J.-Y. (2016). The impact of retinol loading and surface charge on the hepatic delivery of lipid nanoparticles. Colloids and Surfaces B: Biointerfaces, 141(1), 584–594.

    Article  CAS  PubMed  Google Scholar 

  60. Garcia-Fuentes, M., Prego, C., Torres, D., & Alonso, M. (2005). A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly (ethylene glycol) as carriers for oral calcitonin delivery. European Journal of Pharmaceutical Sciences, 25(1), 133–143.

    Article  CAS  PubMed  Google Scholar 

  61. Durán-Lobato, M., Martín-Banderas, L., Gonçalves, L. M. D., Fernández-Arévalo, M., & Almeida, A. J. (2015). Comparative study of chitosan-and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. Journal of Nanoparticle Research, 17(2), 1–17.

    Article  CAS  Google Scholar 

  62. Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A., & McNeil, S. E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews, 61(6), 428–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Müller, R. H., Maaben, S., Weyhers, H., & Mehnert, W. (1996). Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. Journal of Drug Targeting, 4(3), 161–170.

    Article  PubMed  Google Scholar 

  64. Blasi, P., Giovagnoli, S., Schoubben, A., Ricci, M., & Rossi, C. (2007). Solid lipid nanoparticles for targeted brain drug delivery. Advanced Drug Delivery Reviews, 59(6), 454–477.

    Article  CAS  PubMed  Google Scholar 

  65. Dhawan, S., Kapil, R., & Singh, B. (2011). Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. The Journal of Pharmacy and Pharmacology, 63(3), 342–351.

    Article  CAS  PubMed  Google Scholar 

  66. Martins, S. M., Sarmento, B., Nunes, C., Lúcio, M., Reis, S., & Ferreira, D. C. (2013). Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 488–502.

    Article  CAS  PubMed  Google Scholar 

  67. Blasi, P., Schoubben, A., Traina, G., Manfroni, G., Barberini, L., Alberti, P. F., et al. (2013). Lipid nanoparticles for brain targeting III. Long-term stability and in vivo toxicity. International Journal of Pharmaceutics, 454(1), 316–323.

    Article  CAS  PubMed  Google Scholar 

  68. Göppert, T. M., & Müller, R. H. (2005). Protein adsorption patterns on poloxamer-and poloxamine-stabilized solid lipid nanoparticles (SLN). European Journal of Pharmaceutics and Biopharmaceutics, 60(3), 361–372.

    Article  PubMed  CAS  Google Scholar 

  69. Farace, C., Sánchez-Moreno, P., Orecchioni, M., Manetti, R., Sgarrella, F., Asara, Y., et al. (2016). Immune cell impact of three differently coated lipid nanocapsules: Pluronic, chitosan and polyethylene glycol. Scientific Reports, 6(18423), 1–14.

    Google Scholar 

  70. Esposito, E., Drechsler, M., Mariani, P., Carducci, F., Servadio, M., Melancia, F., et al. (2017). Lipid nanoparticles for administration of poorly water soluble neuroactive drugs. Biomedical Microdevices, 19(3), 44.

    Article  PubMed  CAS  Google Scholar 

  71. Ren, T., Wang, Q., Xu, Y., Cong, L., Gou, J., Tao, X., et al. (2018). Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. Journal of Controlled Release, 269(1), 423–438.

    Article  CAS  PubMed  Google Scholar 

  72. Almeida, A. J., & Souto, E. (2007). Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Advanced Drug Delivery Reviews, 59(6), 478–490.

    Article  CAS  PubMed  Google Scholar 

  73. Buse, J., & El-Aneed, A. (2010). Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine, 5(8), 1237–1260.

    Article  CAS  PubMed  Google Scholar 

  74. van Vlerken, L. E., Vyas, T. K., & Amiji, M. M. (2007). Poly (ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharmaceutical Research, 24(8), 1405–1414.

    Article  PubMed  CAS  Google Scholar 

  75. Olivier, J. C. (2005). Drug transport to brain with targeted nanoparticles. NeuroRx, 2(1), 108–119.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Madan, J., Pandey, R. S., Jain, V., Katare, O. P., Chandra, R., & Katyal, A. (2013). Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 9(4), 492–503.

    Article  CAS  Google Scholar 

  77. Bastiat, G., Hirsjärvi, S., & Benoît, J.-P. (2012). Drug delivery strategies: Lipid nanocapsules. In M. Alonso & N. Csaba (Eds.), Nanostructured biomaterials for overcoming biological barriers (pp. 483–497). Cambridge: RSC Publishing.

    Chapter  Google Scholar 

  78. Xu, H., Deng, Y., Chen, D., Hong, W., Lu, Y., & Dong, X. (2008). Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. Journal of Controlled Release, 130(3), 238–245.

    Article  CAS  PubMed  Google Scholar 

  79. Khalid, M. N., Simard, P., Hoarau, D., Dragomir, A., & Leroux, J.-C. (2006). Long circulating poly (ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors. Pharmaceutical Research, 23(4), 752–758.

    Article  CAS  PubMed  Google Scholar 

  80. Hoarau, D., Delmas, P., Roux, E., & Leroux, J.-C. (2004). Novel long-circulating lipid nanocapsules. Pharmaceutical Research, 21(10), 1783–1789.

    Article  CAS  PubMed  Google Scholar 

  81. Morille, M., Montier, T., Legras, P., Carmoy, N., Brodin, P., Pitard, B., et al. (2010). Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials, 31(2), 321–329.

    Article  CAS  PubMed  Google Scholar 

  82. Morille, M., Passirani, C., Dufort, S., Bastiat, G., Pitard, B., Coll, J.-L., et al. (2011). Tumor transfection after systemic injection of DNA lipid nanocapsules. Biomaterials, 32(9), 2327–2333.

    Article  CAS  PubMed  Google Scholar 

  83. Vonarbourg, A., Passirani, C., Desigaux, L., Allard, E., Saulnier, P., Lambert, O., et al. (2009). The encapsulation of DNA molecules within biomimetic lipid nanocapsules. Biomaterials, 30(18), 3197–3204.

    Article  CAS  PubMed  Google Scholar 

  84. Zheng, J., Wan, Y., Elhissi, A., Zhang, Z., & Sun, X. (2014). Targeted paclitaxel delivery to tumors using cleavable PEG-conjugated solid lipid nanoparticles. Pharmaceutical Research, 31(8), 2220–2233.

    Article  CAS  PubMed  Google Scholar 

  85. Yuan, H., Chen, C.-Y., Chai, G.-h., Du, Y.-Z., & Hu, F.-Q. (2013). Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Molecular Pharmaceutics, 10(5), 1865–1873.

    Article  CAS  PubMed  Google Scholar 

  86. Kang, X., Chen, H., Li, S., Jie, L., Hu, J., Wang, X., et al. (2018). Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids and Surfaces B: Biointerfaces, 161(1), 597–605.

    Article  CAS  PubMed  Google Scholar 

  87. Hashiba, K., Sato, Y., & Harashima, H. (2017). pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes. Journal of Controlled Release, 262(1), 239–246.

    Article  CAS  PubMed  Google Scholar 

  88. Chuang, C.-H., Wu, P.-C., Tsai, T.-H., Fang, Y.-P., Tsai, Y.-H., Cheng, T.-C., et al. (2017). Development of pH-sensitive cationic PEGylated solid lipid nanoparticles for selective cancer-targeted therapy. Journal of Biomedical Nanotechnology, 13(2), 192–203.

    Article  CAS  PubMed  Google Scholar 

  89. Albanese, A., Tang, P. S., & Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14(1), 1–16.

    Article  CAS  PubMed  Google Scholar 

  90. Kraft, J. C., Freeling, J. P., Wang, Z., & Ho, R. J. (2014). Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. Journal of Pharmaceutical Sciences, 103(1), 29–52.

    Article  CAS  PubMed  Google Scholar 

  91. Yu, W., Zhang, N., & Li, C. (2009). Saccharide modified pharmaceutical nanocarriers for targeted drug and gene delivery. Current Pharmaceutical Design, 15(32), 3826–3836.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, N., Ping, Q., Huang, G., Xu, W., Cheng, Y., & Han, X. (2006). Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. International Journal of Pharmaceutics, 327(1–2), 153–159.

    CAS  PubMed  Google Scholar 

  93. Zhang, N., Ping, Q., Huang, G., Han, X., Cheng, Y., & Xu, W. (2006). Transport characteristics of wheat germ agglutinin-modified insulin-liposomes and solid lipid nanoparticles in a perfused rat intestinal model. Journal of Nanoscience and Nanotechnology, 6(9–10), 2959–2966.

    Article  CAS  PubMed  Google Scholar 

  94. Garcìa-Fuentes, M., Torres, D., & Alonso, M. J. (2005). New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. International Journal of Pharmaceutics, 296(1), 122–132.

    Article  PubMed  CAS  Google Scholar 

  95. Gupta, Y., Jain, A., & Jain, S. K. (2007). Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. The Journal of Pharmacy and Pharmacology, 59(7), 935–940.

    Article  CAS  PubMed  Google Scholar 

  96. Yu, W., Liu, C., Liu, Y., Zhang, N., & Xu, W. (2010). Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharmaceutical Research, 27(8), 1584–1596.

    Article  CAS  PubMed  Google Scholar 

  97. Venishetty, V. K., Chede, R., Komuravelli, R., Adepu, L., Sistla, R., & Diwan, P. V. (2012). Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: A novel strategy to avoid intraduodenal administration. Colloids and Surfaces B: Biointerfaces, 95(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  98. Varshosaz, J., Hassanzadeh, F., Sadeghi, H., & Khadem, M. (2012). Galactosylated nanostructured lipid carriers for delivery of 5-FU to hepatocellular carcinoma. Journal of Liposome Research, 22(3), 224–236.

    Article  CAS  PubMed  Google Scholar 

  99. Venishetty, V. K., Komuravelli, R., Kuncha, M., Sistla, R., & Diwan, P. V. (2013). Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 9(1), 111–121.

    Article  CAS  Google Scholar 

  100. Resnier, P., LeQuinio, P., Lautram, N., André, E., Gaillard, C., Bastiat, G., et al. (2014). Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma. Biotechnology Journal, 9(11), 1389–1401.

    Article  CAS  PubMed  Google Scholar 

  101. Fan, T., Chen, C., Guo, H., Xu, J., Zhang, J., Zhu, X., et al. (2014). Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. European Journal of Pharmaceutics and Biopharmaceutics, 88(2), 518–528.

    Article  CAS  PubMed  Google Scholar 

  102. Wang, W., Zhou, F., Ge, L., Liu, X., & Kong, F. (2014). A promising targeted gene delivery system: Folate-modified dexamethasone-conjugated solid lipid nanoparticles. Pharmaceutical Biology, 52(8), 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  103. Ramalingam, P., & Ko, Y. T. (2015). Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: Pharmacokinetic and brain distribution evaluations. Pharmaceutical Research, 32(2), 389–402.

    Article  CAS  PubMed  Google Scholar 

  104. Chapman, A. P. (2002). PEGylated antibodies and antibody fragments for improved therapy: A review. Advanced Drug Delivery Reviews, 54(4), 531–545.

    Article  CAS  PubMed  Google Scholar 

  105. Kim, C. H., Lee, S. G., Kang, M. J., Lee, S., & Choi, Y. W. (2017). Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. Journal of Pharmaceutical Investigation, 47(3), 203–227.

    Article  CAS  Google Scholar 

  106. Kuo, Y.-C., & Ko, H.-F. (2013). Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials, 34(20), 4818–4830.

    Article  CAS  PubMed  Google Scholar 

  107. Lu, Y.-m., Huang, J.-y., Wang, H., Lou, X.-f., Liao, M.-h., Hong, L.-j., et al. (2014). Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials, 35(1), 530–537.

    Article  CAS  PubMed  Google Scholar 

  108. Gandomi, N., Varshochian, R., Atyabi, F., Ghahremani, M. H., Sharifzadeh, M., Amini, M., et al. (2017). Solid lipid nanoparticles surface modified with anti-Contactin-2 or anti-Neurofascin for brain-targeted delivery of medicines. Pharmaceutical Development and Technology, 22(3), 426–435.

    Article  CAS  PubMed  Google Scholar 

  109. Ramishetti, S., Kedmi, R., Goldsmith, M., Leonard, F., Sprague, A. G., Godin, B., et al. (2015). Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano, 9(7), 6706–6716.

    Article  CAS  PubMed  Google Scholar 

  110. Katakowski, J. A., Mukherjee, G., Wilner, S. E., Maier, K. E., Harrison, M. T., DiLorenzo, T. P., et al. (2016). Delivery of siRNAs to dendritic cells using DEC205-targeted lipid nanoparticles to inhibit immune responses. Molecular Therapy, 24(1), 146–155.

    Article  CAS  PubMed  Google Scholar 

  111. Wong, P., Li, L., Chea, J., Delgado, M. K., Crow, D., Poku, E., et al. (2017). PET imaging of 64Cu-DOTA-scFv-anti-PSMA lipid nanoparticles (LNPs): Enhanced tumor targeting over anti-PSMA scFv or untargeted LNPs. Nuclear Medicine and Biology, 47(1), 62–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Abdolahpour, S., Toliyat, T., Omidfar, K., Modjtahedi, H., Wong, A. J., Rasaee, M. J., et al. (2018). Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody. Artificial Cells, Nanomedicine, and Biotechnology, 46(1), 89–94.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, H., Ma, Y., & Sun, X. L. (2010). Recent developments in carbohydrate-decorated targeted drug/gene delivery. Medicinal Research Reviews, 30(2), 270–289.

    CAS  PubMed  Google Scholar 

  114. Nimje, N., Agarwal, A., Saraogi, G. K., Lariya, N., Rai, G., Agrawal, H., et al. (2009). Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. Journal of Drug Targeting, 17(10), 777–787.

    Article  CAS  PubMed  Google Scholar 

  115. Sahu, P. K., Mishra, D. K., Jain, N., Rajoriya, V., & Jain, A. K. (2015). Mannosylated solid lipid nanoparticles for lung-targeted delivery of Paclitaxel. Drug Development and Industrial Pharmacy, 41(4), 640–649.

    Article  CAS  PubMed  Google Scholar 

  116. Pinheiro, M., Ribeiro, R., Vieira, A., Andrade, F., & Reis, S. (2016). Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Design, Development and Therapy, 10(1), 2467–2475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Song, X., Lin, Q., Guo, L., Fu, Y., Han, J., Ke, H., et al. (2015). Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Pharmaceutical Research, 32(5), 1741–1751.

    Article  CAS  PubMed  Google Scholar 

  118. Costa, A., Sarmento, B., & Seabra, V. (2018). Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. European Journal of Pharmaceutical Sciences, 114(1), 103–113.

    Article  CAS  PubMed  Google Scholar 

  119. Yang, X.-y., Li, Y.-x., Li, M., Zhang, L., Feng, L.-x., & Zhang, N. (2013). Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Letters, 334(2), 338–345.

    Article  CAS  PubMed  Google Scholar 

  120. Tran, T. H., Choi, J. Y., Ramasamy, T., Truong, D. H., Nguyen, C. N., Choi, H.-G., et al. (2014). Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydrate Polymers, 114(1), 407–415.

    Article  CAS  PubMed  Google Scholar 

  121. Shen, H., Shi, S., Zhang, Z., Gong, T., & Sun, X. (2015). Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics, 5(7), 755–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mulik, R. S., Mönkkönen, J., Juvonen, R. O., Mahadik, K. R., & Paradkar, A. R. (2010). Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. International Journal of Pharmaceutics, 398(1), 190–203.

    Article  CAS  PubMed  Google Scholar 

  123. Shao, Z., Shao, J., Tan, B., Guan, S., Liu, Z., Zhao, Z., et al. (2015). Targeted lung cancer therapy: Preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. International Journal of Nanomedicine, 10(1), 1223–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang, Z., Yu, B., Zhu, J., Huang, X., Xie, J., Xu, S., et al. (2014). A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia. Nanoscale, 6(16), 9742–9751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Singh, I., Swami, R., Pooja, D., Jeengar, M. K., Khan, W., & Sistla, R. (2016). Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting. Journal of Drug Targeting, 24(3), 212–223.

    Article  CAS  PubMed  Google Scholar 

  126. Kuo, Y.-C., & Cheng, S.-J. (2016). Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. International Journal of Pharmaceutics, 499(1–2), 10–19.

    Article  CAS  PubMed  Google Scholar 

  127. Kuo, Y.-C., & Wang, I.-H. (2017). Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme. Journal of the Taiwan Institute of Chemical Engineers, 77(1), 73–82.

    Article  CAS  Google Scholar 

  128. Chen, Y., Yuan, L., Zhou, L., Zhang, Z.-h., Cao, W., & Wu, Q. (2012). Effect of cell-penetrating peptide-coated nanostructured lipid carriers on the oral absorption of tripterine. International Journal of Nanomedicine, 7(1), 4581–4591.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Skotland, T., Iversen, T. G., Torgersen, M. L., & Sandvig, K. (2015). Cell-penetrating peptides: Possibilities and challenges for drug delivery in vitro and in vivo. Molecules, 20(7), 13313–13323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., et al. (2017). Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 190(1), 64–83.

    Article  CAS  PubMed  Google Scholar 

  131. Deshayes, S., Morris, M., Divita, G., & Heitz, F. (2005). Cell-penetrating peptides: Tools for intracellular delivery of therapeutics. Cellular and Molecular Life Sciences, 62(16), 1839–1849.

    Article  CAS  PubMed  Google Scholar 

  132. Madani, F., Lindberg, S., Langel, Ü., Futaki, S., & Gräslund, A. (2011). Mechanisms of cellular uptake of cell-penetrating peptides. Journal of Biophotonics, 2011(1), 1–10.

    Google Scholar 

  133. Gao, W., Meng, T., Shi, N., Zhuang, H., Yang, Z., & Qi, X. (2015). Targeting and microenvironment-responsive lipid nanocarrier for the enhancement of tumor cell recognition and therapeutic efficiency. Advanced Healthcare Materials, 4(5), 748–759.

    Article  CAS  PubMed  Google Scholar 

  134. Asai, T., Tsuzuku, T., Takahashi, S., Okamoto, A., Dewa, T., Nango, M., et al. (2014). Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochemical and Biophysical Research Communications, 444(4), 599–604.

    Article  CAS  PubMed  Google Scholar 

  135. Mansour, A. M., Drevs, J., Esser, N., Hamada, F. M., Badary, O. A., Unger, C., et al. (2003). A new approach for the treatment of malignant melanoma: Enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Research, 63(14), 4062–4066.

    CAS  PubMed  Google Scholar 

  136. Carradori, D., Saulnier, P., Préat, V., Des Rieux, A., & Eyer, J. (2016). NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo. Journal of Controlled Release, 238(1), 253–262.

    Article  CAS  PubMed  Google Scholar 

  137. Liu, B., Han, L., Liu, J., Han, S., Chen, Z., & Jiang, L. (2017). Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. International Journal of Nanomedicine, 12(1), 955–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gartziandia, O., Egusquiaguirre, S. P., Bianco, J., Pedraz, J. L., Igartua, M., Hernandez, R. M., et al. (2016). Nanoparticle transport across in vitro olfactory cell monolayers. International Journal of Pharmaceutics, 499(1), 81–89.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, Z., Lv, H., & Zhou, J. (2009). Novel solid lipid nanoparticles as carriers for oral administration of insulin. International Journal of Pharmaceutics, 64(9), 574–578.

    CAS  Google Scholar 

  140. Sperling, R. A., & Parak, W. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 368(1915), 1333–1383.

    Article  CAS  Google Scholar 

  141. Jain, A., & Cheng, K. (2017). The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release, 245(1), 27–40.

    Article  CAS  PubMed  Google Scholar 

  142. Neves, A. R., Queiroz, J. F., Weksler, B., Romero, I. A., Couraud, P.-O., & Reis, S. (2015). Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: Two new strategies of functionalization with apolipoprotein E. Nanotechnology, 26(49), 495103.

    Article  PubMed  CAS  Google Scholar 

  143. Neves, A. R., Queiroz, J. F., & Reis, S. (2016). Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. Journal of Nanbiotechnology, 14(1), 27–38.

    Article  CAS  Google Scholar 

  144. Zhang, J., Liu, M.-Q., Zhang, J.-L., Li, B.-A., Wang, X.-Y., & Han, P. (2015). Biotinylated epidermal growth factor surface modified lipid nanoparticles to enhance the targeting efficiency in liver cancer therapy. Journal of Biomaterials and Tissue Engineering, 5(2), 135–141.

    Article  Google Scholar 

  145. Li, L., Wartchow, C. A., Danthi, S. N., Shen, Z., Dechene, N., Pease, J., et al. (2004). A novel antiangiogenesis therapy using an integrin antagonist or anti–Flk-1 antibody coated 90 Y-labeled nanoparticles. International Journal of Radiation Oncology, 58(4), 1215–1227.

    Article  CAS  Google Scholar 

  146. Shuhendler, A. J., Prasad, P., Leung, M., Rauth, A. M., DaCosta, R. S., & Wu, X. Y. (2012). A novel solid lipid nanoparticle formulation for active targeting to tumor αvβ3 integrin receptors reveals cyclic RGD as a double-edged sword. Advanced Healthcare Materials, 1(5), 600–608.

    Article  CAS  PubMed  Google Scholar 

  147. Banerjee, I., De, K., Mukherjee, D., Dey, G., Chattopadhyay, S., Mukherjee, M., et al. (2016). Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomaterialia, 38(1), 69–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge FEDER and Fundação para a Ciência e Tecnologia, Portugal, for financial support (UID/DTP/04138/2013, SFRH/BD/89520/2012 and SFRH/BSAB/1210/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António J. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaspar, D.P., Almeida, A.J. (2019). Surface-Functionalized Lipid Nanoparticles for Site-Specific Drug Delivery. In: Pathak, Y. (eds) Surface Modification of Nanoparticles for Targeted Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-030-06115-9_4

Download citation

Publish with us

Policies and ethics