Skip to main content

Recent Developments in Chitosan-Based Nanocomposites

  • Chapter
  • First Online:
Bio-based Polymers and Nanocomposites

Abstract

Chitosan is the second most abundant natural biopolymer available on the earth. Chitosan possesses its own identity among various other biopolymers due to its remarkable structural, chemical and mechanical properties. Recently, chitosan-based materials have emerged as ideal candidates for a wide range of applications such as biomedical, tissue engineering, filter and composite fields. This is mainly due to their accessibility for surface modification along with their non-toxic, biocompatible and biodegradable properties. Chitosan-incorporated composites appeared as most astonishing in their physical and mechanical properties. This chapter highlights the structural chemistry, extraction process and the different preparation methods of chitosan-based composites, along with most interesting, advanced studies developed from last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdeen ZI, El Farargy AF, Negm NA (2018) Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: preparation, characterization, swelling and antimicrobial evaluation. J Mo Liq 250:335–343. https://doi.org/10.1016/j.molliq.2017.12.032

    Article  Google Scholar 

  • Abdel-Fattah WI, Jiang T, El-Bassyouni GE-T, Laurencin CT (2007) Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering. Acta Biomaterialia 3:503–514

    Article  Google Scholar 

  • Abdou ES, Nagy KS, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Biores Technol 99:1359–1367

    Article  Google Scholar 

  • Ahyat NM, Mohamad F, Ahmad A, Azmi AA (2017) Chitin and chitosan extraction from portunus pelagicus. Malaysian J Anal Sci 21:770–777

    Google Scholar 

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry LWT-food. Sci Technol 43:837–842

    Google Scholar 

  • Ainurofiq A, Nurcahyo I, Yulianto R (2014) Preparation, characterization and formulation of nanocomposite matrix na-montmorillonite intercalated medium molecular weight chitosan for theophylline sustained release tablet. Int J Pharm Pharm Sci 6:131–137

    Google Scholar 

  • Akhtar K, Akhtar MW, Khalid AM (2007) Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Res 41:1366–1378

    Article  Google Scholar 

  • Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45:518–526

    Article  Google Scholar 

  • Amiri A, Ghorbani M, Jahangiri M (2015) A novel chitosan/polyrhodanine nanocomposite: preparation, characterisation and application for Ni(II) ions removal from aqueous solution. J Exp Nanosci 10:1374–1386. https://doi.org/10.1080/17458080.2015.1014871

    Article  Google Scholar 

  • An J, Yang Q, Luo Q, Li X, Yin R, Liu F, Wang D (2017a) Preparation and characterization of silver/g-carbon nitride/chitosan nanocomposite with photocatalytic activity. Integr Ferroelectr 180:52–60. https://doi.org/10.1080/10584587.2017.1337463

    Article  Google Scholar 

  • An ZZ et al (2017b) Preparation of chitosan/N-doped graphene natively grown on hierarchical porous carbon nanocomposite as a sensor platform for determination of tartrazine. Chin Chem Lett 28:1492–1498. https://doi.org/10.1016/j.cclet.2017.02.014

    Article  Google Scholar 

  • Anitha A et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  Google Scholar 

  • Atak BH, Buyuk B, Huysal M, Isik S, Senel M, Metzger W, Cetin G (2017) Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydr Polym 164:200–213. https://doi.org/10.1016/j.carbpol.2017.01.100

    Article  Google Scholar 

  • Athanasiou KA, Shah AR, Hernandez RJ, LeBaron RG (2001) Basic science of articular cartilage repair. Clin Sports Med 20:223–247

    Article  Google Scholar 

  • Azevedo AN, Buarque PR, Cruz EMO, Blank AF, Alves PB, Nunes ML, de Aquino Santana LCL (2014) Response surface methodology for optimisation of edible chitosan coating formulations incorporating essential oil against several foodborne pathogenic bacteria. Food Control 43:1–9

    Article  Google Scholar 

  • Babel S, Kurniawan TA (2004) Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54:951–967

    Article  Google Scholar 

  • Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed 28:2220–2241. https://doi.org/10.1080/09205063.2017.1390383

    Article  Google Scholar 

  • Bajpai SK, Ahuja S, Chand N, Bajpai M (2017) Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: an in vivo study on Albino Rats for wound dressing. Int J Biol Macromol 104:1012–1019. https://doi.org/10.1016/j.ijbiomac.2017.06.096

    Article  Google Scholar 

  • Bibi S, Yasin T, Hassan S, Riaz M, Nawaz M (2015) Chitosan/CNTs green nanocomposite membrane: synthesis, swelling and polyaromatic hydrocarbons removal. Mater Sci Eng C 46:359–365

    Article  Google Scholar 

  • Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids 68:136–148

    Article  Google Scholar 

  • Chaleshtori RS, Taghizadeh M, Khanalizadeh A, Hesami S, Heidaryan Z, Sahebjami P, Khatami M (2016) The effects of chitosan incorporated with eucalyptus and cuminum essential oils on storage time of oncorhynchus mykiss. J Mazandaran Univ Med Sci 25:150–161

    Google Scholar 

  • Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym 91:7–13

    Article  Google Scholar 

  • Chávez‐Delgado M et al (2003) Facial nerve regeneration through progesterone‐loaded chitosan prosthesis. A preliminary report. J Biomed Mater Res Part B Appl Biomater 67:702–711

    Article  Google Scholar 

  • Cheaburu-Yilmaz CN, Yilmaz O, Vasile C (2015) Eco-friendly chitosan-based nanocomposites: chemistry and applications. In: Eco-friendly polymer nanocomposites. Springer, Berlin, pp 341–386

    Google Scholar 

  • Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6:13–26

    Article  Google Scholar 

  • Crisafully R, Milhome MAL, Cavalcante RM, Silveira ER, De Keukeleire D, Nascimento RF (2008) Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Biores Technol 99:4515–4519

    Article  Google Scholar 

  • Cui YL, Di Qi A, Liu WG, Wang XH, Wang H, Ma DM, De Yao K (2003) Biomimetic surface modification of poly(l-lactic acid) with chitosan and its effects on articular chondrocytes in vitro. Biomaterials 24:3859–3868

    Article  Google Scholar 

  • Dambies L, Guibal E, Roze A (2000) Arsenic (V) sorption on molybdate-impregnated chitosan beads. Colloids Surf A Physicochem Eng Aspects 170:19–31

    Article  Google Scholar 

  • Dananjaya SHS, Kulatunga DCM, Godahewa GI, Lee J, De Zoysa M (2016) Comparative study of preparation, characterization and anticandidal activities of a chitosan silver nanocomposite (CAgNC) compared with low molecular weight chitosan (LMW-chitosan). RSC Adv 6:33455–33461. https://doi.org/10.1039/c6ra03917k

    Article  Google Scholar 

  • Daraei P, Madaeni SS, Salehi E, Ghaemi N, Ghari HS, Khadivi MA, Rostami E (2013) Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: preparation, characterization and performance in dye removal. J Membr Sci 436:97–108. https://doi.org/10.1016/j.memsci.2013.02.031

    Article  Google Scholar 

  • Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

    Article  Google Scholar 

  • De Aquino AB, Blank AF, De Aquino Santana LCL (2015) Impact of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem 171:108–116. https://doi.org/10.1016/j.foodchem.2014.08.077

    Article  Google Scholar 

  • Dev A, Binulal N, Anitha A, Nair S, Furuike T, Tamura H, Jayakumar R (2010) Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym 80:833–838

    Article  Google Scholar 

  • Devi N, Dutta J (2017) Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application. Int J Biol Macromol 104:1897–1904. https://doi.org/10.1016/j.ijbiomac.2017.02.080

    Article  Google Scholar 

  • Devi NB, Mishra S (2010) Solvent extraction equilibrium study of manganese (II) with Cyanex 302 in kerosene. Hydrometallurgy 103:118–123

    Article  Google Scholar 

  • Dutta P, Tripathi S, Mehrotra G, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  Google Scholar 

  • Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841

    Article  Google Scholar 

  • Espitia PJP, Du WX, de Jesús Avena-Bustillos R, Soares NDFF, McHugh TH (2014) Edible films from pectin: physical-mechanical and antimicrobial properties—a review. Food Hydrocolloids 35:287–296

    Article  Google Scholar 

  • Franco LDO, Maia RDCC, Porto ALF, Messias AS, Fukushima K, Campos-Takaki GMD (2004) Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109). Braz J Microbiol 35:243–247

    Article  Google Scholar 

  • Freier T, Montenegro R, Koh HS, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26:4624–4632

    Article  Google Scholar 

  • Gaf R (1992) Chitin chemistry. Macmillan, London

    Google Scholar 

  • Gerente C, Andres Y, Mckay G, Le Cloirec P (2010) Removal of arsenic (V) onto chitosan: from sorption mechanism explanation to dynamic water treatment process. Chem Eng J 158:593–598

    Article  Google Scholar 

  • Ghaee A, Shariaty-Niassar M, Barzin J, Zarghan A (2012) Adsorption of copper and nickel ions on macroporous chitosan membrane: equilibrium study. Appl Surf Sci 258:7732–7743

    Article  Google Scholar 

  • Ghani M, Gharehaghaji AA, Arami M, Takhtkuse N, Rezaei B (2014) Fabrication of electrospun polyamide-6/chitosan nanofibrous membrane toward anionic dyes removal. J Nanotechnol. https://doi.org/10.1155/2014/278418

    Article  Google Scholar 

  • Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev Mineral Geochem 64:223–282

    Article  Google Scholar 

  • Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL (2006) Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2:313–320

    Article  Google Scholar 

  • Guieysse B, Norvill ZN (2014) Sequential chemical–biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment. J Hazard Mater 267:142–152

    Article  Google Scholar 

  • Habiba U, Afifi AM, Salleh A, Ang BC (2017a) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322:182–194

    Google Scholar 

  • Habiba U, Siddique TA, Talebian S, Lee JJL, Salleh A, Ang BC, Afifi AM (2017b) Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions. Carbohydr Polym 177:32–39. https://doi.org/10.1016/j.carbpol.2017.08.115

    Article  Google Scholar 

  • Hadi AG (2013) Synthesis of chitosan and its use in metal removal. Chem Mater Res 3(3)

    Google Scholar 

  • Hadian M, Rajaei A, Mohsenifar A, Tabatabaei M (2017) Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT-Food Sci Technol 84:394–401

    Article  Google Scholar 

  • Haipeng G, Yinghui Z, Jianchun L, Yandao G, Nanming Z, Xiufang Z (2000) Studies on nerve cell affinity of chitosan-derived materials. J Biomed Mater Res 52:285–295

    Article  Google Scholar 

  • Hao T et al (2010) The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis and Cartilage 18:257–265

    Article  Google Scholar 

  • He Z-Y, Nie H-L, Branford-White C, Zhu L-M, Zhou Y-T, Zheng Y (2008) Removal of Cu2+ from aqueous solution by adsorption onto a novel activated nylon-based membrane. Bioresour Technol 99:7954–7958

    Article  Google Scholar 

  • He K, Lou T, Wang X, Zhao W (2015) Preparation of lignosulfonate–acrylamide–chitosan ternary graft copolymer and its flocculation performance. Int J Biol Macromol 81:1053–1058

    Article  Google Scholar 

  • He X, Du M, Li H, Zhou T (2016) Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. Int J Biol Macromol 82:174–181. https://doi.org/10.1016/j.ijbiomac.2015.11.005

    Article  Google Scholar 

  • Hebeish AA, Ramadan MA, Montaser AS, Farag AM (2014) Preparation, characterization and antibacterial activity of chitosan-g-poly acrylonitrile/silver nanocomposite. Int J Biol Macromol 68:178–184. https://doi.org/10.1016/j.ijbiomac.2014.04.028

    Article  Google Scholar 

  • Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Bio-based composite edible films containing Origanumvulgare L. essential oil. Ind Crops Prod 67:403–413

    Article  Google Scholar 

  • Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem 194:1266–1274

    Article  Google Scholar 

  • Hu Q, Li B, Wang M, Shen J (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25:779–785

    Article  Google Scholar 

  • Huang C-Y, Kuo C-H, Wu C-H, Ku M-W, Chen P-W (2018) Extraction of crude chitosans from squid (Illex argentinus) pen by a compressional puffing-pretreatment process and evaluation of their antibacterial activity. Food Chem 254:217–223

    Article  Google Scholar 

  • Hui K, Chao CYH, Kot S (2005) Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater 127:89–101

    Article  Google Scholar 

  • Iwasaki N et al (2004) Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules 5:828–833

    Article  Google Scholar 

  • Jaworska M, Kula K, Chassary P, Guibal E (2003a) Influence of chitosan characteristics on polymer properties: II. Platinum sorption properties. Polym Int 52:206–212

    Article  Google Scholar 

  • Jaworska M, Sakurai K, Gaudon P, Guibal E (2003b) Influence of chitosan characteristics on polymer properties. I: Crystallographic properties. Polym Int 52:198–205

    Google Scholar 

  • Jayakumar R, Prabaharan M, Nair S, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150

    Article  Google Scholar 

  • Jia J, Du P (2015) Preparation of TiO2Fe2O3 chitosan nanocomposite films and its photocatalytic degradation of Rhodamine B. Asian J Chem 27:1889–1893. https://doi.org/10.14233/ajchem.2015.18382

    Article  Google Scholar 

  • Jiang T, Abdel-Fattah WI, Laurencin CT (2006) In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27:4894–4903

    Article  Google Scholar 

  • Jiang T et al (2010) Chitosan–poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomater 6:3457–3470

    Article  Google Scholar 

  • Jin R, Teixeira LM, Dijkstra PJ, Karperien M, Van Blitterswijk C, Zhong Z, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551

    Article  Google Scholar 

  • Jirimali HD, Saravanakumar D, Shin W (2015) Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications. Bull Korean Chem Soc 36:1289–1291. https://doi.org/10.1002/bkcs.10232

    Article  Google Scholar 

  • Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676. https://doi.org/10.1016/j.carbpol.2014.06.048

    Article  Google Scholar 

  • Kim KW, Thomas R, Lee C, Park HJ (2003) Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan. J Food Prot 66:1495–1498

    Article  Google Scholar 

  • Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-C, Cho C-S (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    Article  Google Scholar 

  • Kosher RA, Lash JW, Minor RR (1973) Environmental enhancement of in vitro chondrogenesis: IV. Stimulation of somite chondrogenesis by exogenous chondromucoprotein. Dev Biol 35:210–220

    Article  Google Scholar 

  • Kurita K (1998) Chemistry and application of chitin and chitosan. Polym Degradation Stab 59:117–120

    Article  Google Scholar 

  • Kwok KC, Lee VK, Gerente C, McKay G (2009) Novel model development for sorption of arsenate on chitosan. Chem Eng J 151:122–133

    Article  Google Scholar 

  • Lee JE et al (2004) Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 25:4163–4173

    Article  Google Scholar 

  • Li J, Pan J, Zhang L, Guo X, Yu Y (2003a) Culture of primary rat hepatocytes within porous chitosan scaffolds. J Biomed Mater Res Part A 67:938–943

    Article  Google Scholar 

  • Li J, Pan J, Zhang L, Yu Y (2003b) Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials 24:2317–2322

    Article  Google Scholar 

  • Li K, Jin S, Liu X, Chen H, He J, Li J (2017) Preparation and characterization of chitosan/soy protein isolate nanocomposite film reinforced by Cu nanoclusters. Polymers 9. https://doi.org/10.3390/polym9070247

    Article  Google Scholar 

  • Li C, Lou T, Yan X, Long Y-Z, Cui G, Wang X (2018) Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. Int J Biol Macromol 106:768–774. https://doi.org/10.1016/j.ijbiomac.2017.08.072

    Article  Google Scholar 

  • Lindahl U, Hook M (1978) Glycosaminoglycans and their binding to biological macromolecules. Annu Rev Biochem 47:385–417

    Article  Google Scholar 

  • Liu H, Du Y, Wang X, Sun L (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155

    Article  Google Scholar 

  • Llanos JHR, Tadini CC (2018) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromolecules 107:371–382. https://doi.org/10.1016/j.ijbiomac.2017.09.001

    Article  Google Scholar 

  • Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G (1999) Effects of chitosan on rat knee cartilages. Biomaterials 20:1937–1944

    Article  Google Scholar 

  • Ma Q, Zhang Y, Critzer F, Davidson PM, Zhong Q (2016) Quality attributes and microbial survival on whole cantaloupes with antimicrobial coatings containing chitosan, lauric arginate, cinnamon oil and ethylenediaminetetraacetic acid. Int J Food Microbiol 235:103–108

    Article  Google Scholar 

  • Madaeni S, Zinadini S, Vatanpour V (2011) Convective flow adsorption of nickel ions in PVDF membrane embedded with multi-walled carbon nanotubes and PAA coating. Sep Purif Technol 80:155–162

    Article  Google Scholar 

  • Mallakpour S, Nezamzadeh Ezhieh A (2017) Preparation and characterization of chitosan-poly(vinyl alcohol) nanocomposite films embedded with functionalized multi-walled carbon nanotube. Carbohydr Polym 166:377–386. https://doi.org/10.1016/j.carbpol.2017.02.086

    Article  Google Scholar 

  • Miller SM, Spaulding ML, Zimmerman JB (2011) Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Res 45:5745–5754

    Article  Google Scholar 

  • Mohammad-Rezaei R, Razmi H (2016) Preparation and characterization of hemoglobin immobilized on graphene quantum dots-chitosan nanocomposite as a sensitive and stable hydrogen peroxide biosensor. Sens Lett 14:685–691. https://doi.org/10.1166/sl.2016.3691

    Article  Google Scholar 

  • Mohammed MO, Hussain KS, Haj NQ (2017) Preparation and bioactivity assessment of chitosan-1-acetic acid-5-flurouracil conjugates as cancer prodrugs. Molecules 22:1629

    Article  Google Scholar 

  • Mohanasrinivasan V, Mishra M, Paliwal JS, Singh SK, Selvarajan E, Suganthi V, Devi CS (2014) Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech 4:167–175

    Article  Google Scholar 

  • Mourya V, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051

    Article  Google Scholar 

  • Moussout H, Ahlafi H, Aazza M, Amechrouq A (2018) Bentonite/chitosan nanocomposite: preparation, characterization and kinetic study of its thermal degradation. Thermochim Acta 659:191–202. https://doi.org/10.1016/j.tca.2017.11.015

    Article  Google Scholar 

  • Nesic AR, Velickovic SJ, Antonovic DG (2012) Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye. J Hazard Mater 209–210:256–263. https://doi.org/10.1016/j.jhazmat.2012.01.020

    Article  Google Scholar 

  • Nettles DL, Elder SH, Gilbert JA (2002) Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 8:1009–1016

    Article  Google Scholar 

  • Ngah WW, Fatinathan S (2008) Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem Eng J 143:62–72

    Article  Google Scholar 

  • Nitayaphat W, Jintakosol T (2017) Preparation of chitosan/organoclay nanocomposite as silver(I) ion adsorbent. Asian J Chem 29:683–690. https://doi.org/10.14233/ajchem.2017.20313

    Article  Google Scholar 

  • Oh YA, Oh YJ, Song AY, Won JS, Song KB, Min SC (2017) Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT Food Sci Technol 75:742–750. https://doi.org/10.1016/j.lwt.2016.10.033

    Article  Google Scholar 

  • Osugi ME, Rajeshwar K, Ferraz ER, de Oliveira DP, Araújo ÂR, Zanoni MVB (2009) Comparison of oxidation efficiency of disperse dyes by chemical and photoelectrocatalytic chlorination and removal of mutagenic activity. Electrochim Acta 54:2086–2093

    Article  Google Scholar 

  • Park H, Choi B, Hu J, Lee M (2013) Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 9:4779–4786

    Article  Google Scholar 

  • Pathania D, Gupta D, Kothiyal NC, Sharma G, Eldesoky GE, Naushad M (2016) Preparation of a novel chitosan-g-poly(acrylamide)/Zn nanocomposite hydrogel and its applications for controlled drug delivery of ofloxacin. Int J Biol Macromol 84:340–348. https://doi.org/10.1016/j.ijbiomac.2015.12.041

    Article  Google Scholar 

  • Pelissari FM, Grossmann MVE, Yamashita F, Pined EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499–7504. https://doi.org/10.1021/jf9002363

    Article  Google Scholar 

  • Pelissari FM, Yamashita F, Grossmann MVE (2011) Extrusion parameters related to starch/chitosan active films properties. Int J Food Sci Technol 46:702–710

    Article  Google Scholar 

  • Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  Google Scholar 

  • Piron E, Accominotti M, Domard A (1997) Interaction between chitosan and uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption. Langmuir 13:1653–1658

    Article  Google Scholar 

  • Qin C, Li H, Xiao Q, Liu Y, Zhu J, Du Y (2006) Water-solubility of chitosan and its antimicrobial activity. Carbohydr Polym 63:367–374

    Article  Google Scholar 

  • Rajaei A, Hadian M, Mohsenifar A, Rahmani-Cherati T, Tabatabaei M (2017) A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packag Shelf Life 14:137–145

    Article  Google Scholar 

  • Rajesh M, Harish Prashanth KV (2017) Preparation & characterization of chitosan-poly-ε-caprolactone based nanocomposite blend films. J Polym Mater 34:235–248

    Google Scholar 

  • Rasti H, Parivar K, Baharara J, Iranshahi M, Namvar F (2017) Chitin from the mollusc chiton: extraction, characterization and chitosan preparation. Iran J Pharm Res IJPR 16:366

    Google Scholar 

  • Roul J, Mohapatra R, Sahoo SK (2016) Antimicrobial activity of novel chitosan/cloisite 10A nanocomposite: preparation, optimization, characterization and drug delivery behavior. Pak J Pharm Sci 29:1145–1150

    Google Scholar 

  • Roushani M, Saedi Z, Hamdi F, Dizajdizi BZ (2017) Preparation an electrochemical sensor for detection of manganese (II) ions using glassy carbon electrode modified with multi walled carbon nanotube-chitosan-ionic liquid nanocomposite decorated with ion imprinted polymer. J Electroanal Chem 804:1–6. https://doi.org/10.1016/j.jelechem.2017.09.038

    Article  Google Scholar 

  • Salehi E, Daraei P, Shamsabadi AA (2016) A review on chitosan-based adsorptive membranes. Carbohydr Polym 152:419–432

    Article  Google Scholar 

  • Samicho Z, Ramli A (2011) Extraction of chitosan & its film-forming properties: a review. In: 2011 IEEE symposium on business, engineering and industrial applications (ISBEIA), pp 576–580

    Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  Google Scholar 

  • Santos VP, Pereira MF, Faria P, Órfão JJ (2009) Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. J Hazard Mater 162:736–742

    Google Scholar 

  • Sareban Z, Javanbakht V (2017) Preparation and characterization of a novel nanocomposite of clinoptilolite/maghemite/chitosan/urea for manganese removal from aqueous solution. Korean J Chem Eng 34:2886–2900. https://doi.org/10.1007/s11814-017-0216-9

    Article  Google Scholar 

  • Sarkar B, Chakrabarti P, Vijaykumar A, Kale V (2006) Wastewater treatment in dairy industries—possibility of reuse. Desalination 195:141–152

    Article  Google Scholar 

  • Seghir BB, Benhamza M (2017) Preparation, optimization and characterization of chitosan polymer from shrimp shells. J Food Meas Charact 11:1137–1147

    Google Scholar 

  • Seol Y-J et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotech Lett 26:1037–1041

    Article  Google Scholar 

  • Severino R, Ferrari G, Vu KD, Donsì F, Salmieri S, Lacroix M (2015) Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans. Food Control 50:215–222. https://doi.org/10.1016/j.foodcont.2014.08.029

    Article  Google Scholar 

  • Shahbazi Y (2017) The properties of chitosan and gelatin films incorporated with ethanolic red grape seed extract and Ziziphora clinopodioides essential oil as biodegradable materials for active food packaging. Int J Biol Macromol 99:746–753. https://doi.org/10.1016/j.ijbiomac.2017.03.065

    Article  Google Scholar 

  • Sharafati Chaleshtori F, Taghizadeh M, Rafieian-kopaei M, Sharafati-chaleshtori R (2016) Effect of chitosan incorporated with cumin and eucalyptus essential oils as antimicrobial agents on fresh chicken meat. J Food Process Preserv 40:396–404

    Article  Google Scholar 

  • Sheshmani S, Akhundi Nematzadeh M, Shokrollahzadeh S, Ashori A (2015) Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution. Int J Biol Macromol 80:475–480. https://doi.org/10.1016/j.ijbiomac.2015.07.009

    Article  Google Scholar 

  • Shete PB, Patil RM, Thorat ND, Prasad A, Ningthoujam RS, Ghosh SJ, Pawar SH (2014) Magnetic chitosan nanocomposite for hyperthermia therapy application: preparation, characterization and in vitro experiments. Appl Surf Sci 288:149–157. https://doi.org/10.1016/j.apsusc.2013.09.169

    Article  Google Scholar 

  • Shi C, Lv C, Wu L, Hou X (2017) Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution. J Hazard Mater 338:241–249. https://doi.org/10.1016/j.jhazmat.2017.05.022

    Article  Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  Google Scholar 

  • Soltani RDC, Khataee AR, Safari M, Joo SW (2013) Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int Biodeterior Biodegradation 85:383–391. https://doi.org/10.1016/j.ibiod.2013.09.004

    Article  Google Scholar 

  • Su CX-H, Low LW, Teng TT, Wong YS (2016) Combination and hybridisation of treatments in dye wastewater treatment: a review. J Environ Chem Eng 4:3618–3631

    Article  Google Scholar 

  • Sudheesh Kumar PT et al (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629. https://doi.org/10.1021/am300292v

    Article  Google Scholar 

  • Sun X et al (2014) Antimicrobial and mechanical properties of β-cyclodextrin inclusion with essential oils in chitosan films. J Agric Food Chem 62:8914–8918

    Article  Google Scholar 

  • Sundar K, Harikarthick V, Swarna Karthika V, Ravindran A (2014) Preparation of chitosan-graphene oxide nanocomposite and evaluation of its antimicrobial activity. J Bionanosci 8:207–212. https://doi.org/10.1166/jbns.2014.1223

    Article  Google Scholar 

  • Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  Google Scholar 

  • Tan KB, Vakili M, Horri BA, Poh PE, Abdullah AZ, Salamatinia B (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229–242

    Article  Google Scholar 

  • Tang X, Gan L, Duan Y, Sun Y, Zhang Y, Zhang Z (2017) A novel Cd2+-imprinted chitosan-based composite membrane for Cd2+ removal from aqueous solution. Mater Lett 198:121–123

    Google Scholar 

  • Thangvaravut H, Chiewchan N, Devahastin S (2012) Inhibitory effect of chitosan films incorporated with 1,8-cineole on SALMONELLA attached on model food surface, vol 506. https://doi.org/10.4028/www.scientific.net/AMR.506.599

  • Tian X, Yan D, Lu Q, Jiang X (2017) Cationic surface modification of nanocrystalline cellulose as reinforcements for preparation of the chitosan-based nanocomposite films. Cellulose 24:163–174. https://doi.org/10.1007/s10570-016-1119-3

    Article  Google Scholar 

  • Tokatlı K, Demirdöven A (2017) Optimization of chitin and chitosan production from shrimp wastes and characterization. J Food Process Preserv 42(2):e13494

    Article  Google Scholar 

  • Trivedi TJ, Rao KS, Kumar A (2014) Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition. Green Chem 16:320–330. https://doi.org/10.1039/c3gc41317a

    Article  Google Scholar 

  • Tsai GJ, Su WH, Chen HC, Pan CL (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fish Sci 68:170–177

    Article  Google Scholar 

  • Tuli R, Li W-J, Tuan RS (2003) Current state of cartilage tissue engineering. Arthritis Res Ther 5:235

    Article  Google Scholar 

  • van den Broek LA, Knoop RJ, Kappen FH, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242

    Article  Google Scholar 

  • Vatanpour V, Madaeni SS, Zinadini S, Rajabi HR (2011) Development of ion imprinted technique for designing nickel ion selective membrane. J Membr Sci 373:36–42

    Article  Google Scholar 

  • Vieira R, Guibal E, Silva E, Beppu M (2007) Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes. Adsorption 13:603–611

    Article  Google Scholar 

  • Wahid F, Wang HS, Lu YS, Zhong C, Chu LQ (2017) Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol 101:690–695. https://doi.org/10.1016/j.ijbiomac.2017.03.132

    Article  Google Scholar 

  • Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156:11–24

    Article  Google Scholar 

  • Wang X et al (2003) Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 24:3213–3220

    Article  Google Scholar 

  • Wang X, Yan Y, Lin F, Xiong Z, Wu R, Zhang R, Lu Q (2005) Preparation and characterization of a collagen/chitosan/heparin matrix for an implantable bioartificial liver. J Biomater Sci Polym Ed 16:1063–1080

    Article  Google Scholar 

  • Wang X-J, Xia S-Q, Ling C, Zhao J-F, Chovelon J-M, Nicole J-R (2006) Biosorption of cadmium (II) and lead (II) ions from aqueous solutions onto dried activated sludge. J Environ Sci 18:840–844

    Article  Google Scholar 

  • Wang J, Xu W, Chen L, Huang X, Liu J (2014) Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem Eng J 251:25–34

    Article  Google Scholar 

  • Wen Y, Liang Y, Shen C, Wang H, Fu D, Wang H (2015) Synergistic removal of dyes by Myrothecium verrucaria immobilization on a chitosan-Fe membrane. RSC Adv 5:68200–68208. https://doi.org/10.1039/c5ra11320b

    Article  Google Scholar 

  • Ye BL, Zheng R, Ruan XJ, Zheng ZH, Cai HJ (2018) Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p 53/PRC1 pathway. Biochem Biophys Res Commun 495:414–420. https://doi.org/10.1016/j.bbrc.2017.10.156

    Article  Google Scholar 

  • Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21

    Article  Google Scholar 

  • Yin Y, Ye F, Cui J, Zhang F, Li X, Yao K (2003) Preparation and characterization of macroporous chitosan–gelatin/β‐tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res Part A 67:844–855

    Article  Google Scholar 

  • Yuan Y, Zhang P, Yang Y, Wang X, Gu X (2004) The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25:4273–4278

    Article  Google Scholar 

  • Yui T, Kobayashi H, Kitamura S, Imada K (1994) Conformational analysis of chitobiose and chitosan. Biopolymers 34:203–208

    Article  Google Scholar 

  • Yun YH, Youn HG, Shin JY, Yoon SD (2017) Preparation of functional chitosan-based nanocomposite films containing ZnS nanoparticles. Int J Biol Macromol 104:1150–1157. https://doi.org/10.1016/j.ijbiomac.2017.07.016

    Article  Google Scholar 

  • Zad ZR, Davarani SSH, Taheri A, Bide Y (2018) A yolk shell Fe3O4@PA-Ni@Pd/Chitosan nanocomposite-modified carbon ionic liquid electrode as a new sensor for the sensitive determination of fluconazole in pharmaceutical preparations and biological fluids. J Mol Liq 253:233–240. https://doi.org/10.1016/j.molliq.2018.01.019

    Article  Google Scholar 

  • Zahedi S, Ghomi JS, Shahbazi-Alavi H (2018) Preparation of chitosan nanoparticles from shrimp shells and investigation of its catalytic effect in diastereoselective synthesis of dihydropyrroles. Ultrason Sonochem 40:260–264

    Article  Google Scholar 

  • Zhang F-S, Itoh H (2003) Adsorbents made from waste ashes and post-consumer PET and their potential utilization in wastewater treatment. J Hazard Mater 101:323–337

    Article  Google Scholar 

  • Zhong Q, Tian J, Liu T, Guo Z, Ding S, Li H (2018) Preparation and antibacterial properties of carboxymethyl chitosan/ZnO nanocomposite microspheres with enhanced biocompatibility. Mater Lett 212:58–61. https://doi.org/10.1016/j.matlet.2017.10.062

    Article  Google Scholar 

  • Zong W et al (2018) Preparation of chitosan/amino multiwalled carbon nanotubes nanocomposite beads for bilirubin adsorption in hemoperfusion. J Biomed Mater Res Part B Appl Biomater 106:96–103. https://doi.org/10.1002/jbm.b.33806

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malladi Nagalakshmaiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramachandran, S., Rajinipriya, M., Soulestin, J., Nagalakshmaiah, M. (2019). Recent Developments in Chitosan-Based Nanocomposites. In: Sanyang, M., Jawaid, M. (eds) Bio-based Polymers and Nanocomposites . Springer, Cham. https://doi.org/10.1007/978-3-030-05825-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05825-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05824-1

  • Online ISBN: 978-3-030-05825-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics