
On the relevance of preprocessing in predictive
maintenance for dynamic systems

Carlos Cernuda

Abstract The complexity involved in the process of real-time data-driven monitor-
ing dynamic systems for predicted maintenance is usually huge. With more or less
in-depth any data-driven approach is sensitive to data preprocessing, understood as
any data treatment prior to the application of the monitoring model, being some-
times crucial for the final development of the employed monitoring technique. The
aim of this work is to quantify the sensitiveness of data-driven predictive mainte-
nance models in dynamic systems in an exhaustive way.

We consider a couple of predictive maintenance scenarios, each of them defined by
some public available data. For each scenario, we consider its properties and apply
several techniques for each of the successive preprocessing steps, e.g. data cleaning,
missing values treatment, outlier detection, feature selection, or imbalance compen-
sation. The pretreatment configurations, i.e. sequential combinations of techniques
from different preprocessing steps, are considered together with different monitor-
ing approaches, in order to determine the relevance of data preprocessing for pre-
dictive maintenance in dynamical systems.

1 Introduction

Nowadays the volume of data is exploding, and the costs of collecting, storing and
treating them are affordable for many, making big data solutions more science and
less fiction. In this world submerged by a data tsunami, predictive maintenance is
not an exception. In fact the advances in cheaper, smaller and much more accurate
sensors development, together with highly sophisticated communication protocols,
have widely contributed to a continuous rise of data-driven approaches in predictive
maintenance.
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In any data-driven application in general, thus for predictive maintenance in par-
ticular, preprocessing [132] is of uppermost importance in order to make the data
meaningful and usable, driving the path from potential to real information. Depend-
ing on the author, preprocessing can take different meanings. Some separate, for
instance, data compression approaches, such as feature selection, from preprocess-
ing. We will consider any treatment performed to the data before training a model
as preprocessing. Then, data cleaning, noise filtering, normalizing, feature selection
are part of it, among others.

Therefore, we can think of preprocessing as a step formed by several steps, each
or them with a particular purpose, whose order could be sometimes interchanged
but in which the commutative property is in general not fulfilled. Considering the
amount of possible steps, the variety of possible approaches per step, and the non-
commutativity between them, the amount of options explodes existing no guaranty
that a combination of preprocessing actions would behave better than no prepro-
cessing the raw data at all [39].

The data involved in each problem related to predictive maintenance have specific
properties. For instance, data related to fault detection tend to be highly imbalanced
because the information regarding faulty situations is much less frequent than the
one regarding fault-free situations. In general, the properties of the data should be
taken into account when choosing a preprocessing strategy. Unfortunately the task
does not provide enough information, meaning that not all datasets used for a task
have the same properties. For example, not all datasets for remain useful life (RUL)
prediction problems are the same. The properties of each dataset have to be de-
termined. Moreover, sometimes, with the same properties, a preprocessing scheme
works for one problem and not for another. Some general hints are provided in the
definitions of the different strategies.

In predictive maintenance accurate models are necessary, but accurate today could
become inaccurate tomorrow, making robust long-lasting models also a require-
ment, specially in highly dynamic systems. Proper preprocessing strategies are the
foundation of the construction of a robust accurate model.

The rest of the work is as follows. Section 2 establishes a taxonomy, provides brief
but beyond a mere citation descriptions of several techniques for each of the pre-
processing steps following the previously provided taxonomy, and presents several
modeling techniques meant for system monitoring in predictive maintenance. Sec-
tion 3 fully describes the datasets that define the different scenarios, the complete
experimental setup, as well as the evaluation schemata that would allow for a fair
comparison of the proposed pretreatment configurations, and comments about the
results achieved. Finally, Section 4 concludes the study.
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2 Preprocessing

We define preprocessing as the set of actions performed to raw data prior to a subse-
quent modeling performance, with the aim of improving the modeling capabilities.
The improvement could be understood in several ways, such as increasing accuracy,
increasing robustness, shortening computational time, decreasing memory and/or
computational power requirements, or reducing monetary costs.

The perfect result would be a combination of several of those (usually conflicting)
objectives, leading to multi- and many-objective solutions (in which an algorithm is
trained in order to find the best preprocessing strategy) that are far beyond the scope
of this work. Usually, the objectives are dependent on the problem and the final user
requirements. Therefore, we will focus separately on accuracy and robustness, as-
suming that the methods are fast enough for our requirements as well as affordable
in time, technical resources, and money.

2.1 Taxonomy

The taxonomy we are presenting here is an ordered taxonomy, meaning that the
steps, if included in our strategy, should be performed in the given order. Since some
of those procedures deal with some calculations using the data (e.g. averages), then
any transformation made would affect those calculations in the subsequent steps,
which could lead to different resulting actions. We first present the six preprocessing
steps, and then we develop in detail the most relevant approaches in each one of
them.

1. Data cleansing. Most data-driven techniques rely on the supposition of com-
plete, reliable noise-free data. But real-world data are not such ideal clean data,
being necessary to define strategies to deal with outliers and noise. Moreover,
due to the nature of the data or due to a lack of an adequate data acquisition strat-
egy, redundant or irrelevant features could be considered in the dataset, which
could be treated both in the data cleansing step or later in the feature engineering
step1. Despite expert knowledge could be extremely helpful for data cleansing,
we assume a lack of it so that we focus on data-based strategies. Some of the
parts of the taxonomy are interconnected. For instance, noise treatment is usually
attempted through filtering (data transformation) or compression (data engineer-
ing), as well as redundancy and irrelevancy, which are usually overcome through
data engineering. Therefore, those cases will be treated in their corresponding
steps, being the link mentioned.

1 It is not irrelevant when the treatment happens, because there are several steps between data
cleansing and feature engineering that could be very sensitive to redundancies or heavily affected
by features that in the end are irrelevant.
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2. Data normalization. Data coming from diverse heterogeneous origins is col-
lected with ease, which makes actual datasets a compendium of datasets obtained
in different parts of the system in different manners. This datasets fusion, known
as data integration, is not considered by many authors (including us) as part of
preprocessing, but as part of data collection. Some algorithms are highly sensi-
tive to the variety of scales and ranges of the variables, which could lead to a
performance degradation if no homogenization is performed in the data.

3. Data transformation. Despite the previous steps and some of the posterior ones
mean indeed transformations of the data, we reserve this name for transforma-
tions in the data by means of certain functions, motivated by knowledge about
the system. For instance, if we are performing predictive maintenance of cer-
tain industrial machinery by using information about the chemical composition
of residual wastes by spectroscopic data (named chemometric multivariate cali-
bration), we can use Beer-Lambert Law to realize that the relationship between
the chemical composition and the absorbance spectroscopic data (obtained by a
logarithmic transformation) is linear. Therefore, the transformation is beneficial
for the posterior use of a linear monitoring technique.

4. Missing values treatment. Due to several possible causes some values of certain
variables could be missing. A naı̈ve approach is to ignore any sample contain-
ing a missing value, but sometimes the amount of samples is small or, in case of
imbalanced data, the minority class could become more minor even if we adopt
such a destructive approach. The obvious alternative is filling the holes, but how?
Depending on the size and intrinsic characteristics of the data, the filling strategy
could be tricky.

5. Feature engineering. There is not a standard definition of feature engineering.
By it, we mean the employment of one or more of: feature selection (determina-
tion of the most important features according to certain quality criteria), feature
extraction (creation of new features from some or all the original ones) and dis-
cretization (transforming continuous features into discrete ones using bins).

6. Imbalanced data treatment. If our predictive maintenance problem is super-
vised so that certain type of samples are extremely rare compare to the others
(minority class), then we are facing an imbalanced learning problem. There are
two logical ways to proceed: (i) balancing somehow the data, and (ii) compen-
sate giving somehow more importance to the samples from the minority class.
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The former is related to sampling techniques, and the latter to weighting tech-
niques.

2.2 Data cleansing

Data cleansing is a complicated task in which we frequently have to make strong
assumptions. Some of those assumptions, might hold theoretically but not in real
world data. Therefore, sometime we walk on quicksand. An example we will show
right afterwards is the implicit assumption of Gaussian behavior when applying out-
lier detection based on Mahalanobis distance. As aforementioned, data cleansing
deals with several data artifacts, such as outliers, noise, redundancy or irrelevancy.

The detection of outliers, understood as feature values that are too far from the
general acceptable trend, and the posterior action on those identified outliers is a
tricky task. First, how do we identify the general acceptable trend?. Second, how
do we quantify what too far means? Most of the approaches are based on thresholds
from distances in certain representation of the feature space.

We will consider two important approaches, which relevance comes not only be-
cause they are widely used but also because they can be updated incrementally for
data streams. They are based on Mahalanobis distance [77], and on chi-square ap-
proximations of the orthogonal (Q) and score (T 2) distances from principal compo-
nents analysis (PCA) [61]. As it is indeed an orthogonal transformation, PCA will
be briefly described in Section 2.4.

2.2.1 Outlier detection based on Mahalanobis distance

Mahalanobis distance [77] is defined for two vectors xi and x j as

dM(xi,x j) =
√
(xi−x j)T S−1(xi−x j) (1)

It takes into account the covariance matrix S, where Si j is the covariance between xi
and x j and Sii is the variance of xi. Thus we are considering elliptic regions, instead
of circular ones, of equidistant points. Figure 1 shows a 2-D example where the
point marked with the red square would not be considered as an outlier according to
Euclidean distance, but it would be in terms of Mahalanobis distance, which seems
to be more reasonable.

The outlier identification procedure consists in calculating the Mahalanobis distance
from each sample to a central point and check whether it exceed certain threshold.
The mean is the classical central measure, but it is not robust against outliers. Also
the covariance matrix is not a robust dispersion measure. The robustness can be
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Fig. 1 Example of outlier
according to Mahalanobis
distance, that would not be
so according to Euclidean.
Considering Euclidean dis-
tance, the lines of points with
a constant distance to a central
point form a circumference.
But considering Mahalanobis
distance, the shape of those
line is elliptical, and adapted
to the overall shape of the
cloud of points.

assumed if the number of samples is quite big, that is usually the case in chemo-
metrics. Robust alternatives to the mean and the covariance matrix are, respectively,
the robust location estimator and the minimum covariance determinant, which are
the mean and covariance matrix of a subset of the original data set. For further in-
formation see [116].

If we denote by xc the chosen center and by Sc the chosen dispersion matrix, then
Mahalanobis distance from a sample xi to the center is given by

dM(xi) =

√
(xi−xc)T S−1

c (xi−xc) (2)

Assuming that the multivariate data follows a multivariate normal distribution, then
the squared Mahalanobis distance follows a χ2

N distribution, with N the number of
variables. Then a sample would be considered as an outlier if its distance to the
mean is higher than the threshold given by a α quantile, χ2

N,α .

For the incremental case, we just need to be able to incrementally update the in-
verse of the covariance matrix, which is defined as

ΣN =
1
N

N

∑
i=1

(xi−XN) · (xi−XN)
T (3)

Then, for the extended data stream considering an extension with one single sample,

ΣN+1 =
1

N +1

N+1

∑
i=1

(xi−XN+1) · (xi−XN+1)
T

If we split the sum in two parts, from 1 to N and N +1, we get
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ΣN+1 =
1

N +M

N

∑
i=1

(xi−XN+1) · (xi−XN+1)
T +

1
N +1

(xi−XN+1) · (xi−XN+1)
T

We denote both addends as A1 and A2 respectively, and expand them separately.

Firstly,

A1 =
1

N +1

N

∑
i=1

(xi−XN+1) · (xi−XN+1)
T

Taking into account that the incremental update of the mean is given by

XN+1 =
NXN + xN+1

N +1
(4)

Then,

−XN+1 =−XN−
1

N +1
(xN+1−XN)

Denoting C := xN+1−XN , and substituting,

A1 =
1

N +1

N

∑
i=1

(
xi−XN−

1
N +1

C
)
·
(

xi−XN−
1

N +1
C
)T

As (A−B) · (A−B)T = A ·AT −A ·BT −B ·AT +B ·BT , and C is constant, then

A1 =
1

N +1

N

∑
i=1

(
xi−XN

)
·
(
xi−XN

)T −

− 1
(N +1)2

N

∑
i=1

(
xi−XN

)
·CT−

− 1
(N +1)2

N

∑
i=1

C ·
(
xi−XN

)T
+

+
1

(N +1)3

N

∑
i=1

C ·CT
=

=
N

N +1
ΣN +

N
(N +1)3 C ·CT

Secondly,

A2 =
1

N +1
(xN+1−XN+1) · (xN+1−XN+1)

T

From Equation (4), we know that

−XN+1 =−xN+1 +
N

N +1
(xN+1−XN)
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Therefore,

A2 =
N2

(N +1)3 C ·CT

Then, since C := xN+1−XN ,

ΣN+1 =
N

N +1
ΣN +

N
(N +1)2 (xN+1−XN) · (xN+1−XN)

T (5)

In order to obtain the inverse of the covariance matrix, one option is to update the co-
variance matrix and calculate the inverse. This requires a huge computational effort
unless the number of variables is very low, which is not usually the case. Therefore,
a direct update of the inverse covariance matrix is preferable.

The properties of the matrices involved in Equation (5) allow us to compute the
new inverse as a perturbation of the old one by using the following Lemma [1].

Lemma 1 (General Sherman-Morrison formula). Suppose A ∈Mn is an invert-
ible matrix, and v and w are vectors of length n so that 1+wT A−1v 6= 0. Then,

(
A+ v ·wT )−1

= A−1− A−1v ·wT A−1

1+wT A−1v
(6)

where v ·wT is the outer product of v and w.

If we identify A := N
N+1 ΣN , v := N

(N+1)2 (xN+1−XN), and w := xN+1−XN , then we
have

1+wT A−1v = 1+
1

N +1
(xN+1−XN)

T
Σ
−1
N (xN+1−XN)

that is never null because ΣN is positive semi-definite, then so its inverse.

In Equation (5), inverting both sides

Σ
−1
N+M =

(
N

N +1
ΣN +

N
(N +1)2 (xN+1−XN) · (xN+1−XN)

T
)−1

(7)

that corresponds to the left part of (6) in the Lemma, with the previous identifica-
tions of A, v, and w.

By Sherman-Morrison formula,

Σ
−1
N+1 =

N +1
N

Σ
−1
N −

N+1
N Σ

−1
N ·

N
(N+1)2 (xN+1−XN) · (xN+1−XN)

T · N+1
N Σ

−1
N

1+(xN+1−XN)T · N+1
N Σ

−1
N ·

N
(N+1)2 (xN+1−XN)

(8)
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Therefore, taking common factor N+1
N , we get

Σ
−1
N+1 =

N +1
N
·

(
Σ
−1
N −

Σ
−1
N (xN+1−XN) · (xN+1−XN)

T Σ
−1
N

(N +1)+(xN+1−XN)T Σ
−1
N (xN+1−XN)

)
(9)

Now, taking the square in equation 2, the square Mahalanobis distance from a sam-
ple xi to the center xc is

d2
M(xi) = (xi− xc)

T S−1
c (xi− xc)

Supposed we have prefixed a confidence level α , the threshold for the outlier de-
tection is χ2

m,α , where m is the number of variables. Thus it is independent of the
number of samples and, then, fixed during the whole on-line process.

Let us suppose that we have the updated center and inverse dispersion matrix at
a time t. Once the next sample, xt+1, from the data stream arrives, its d2

M(xt+1)
value is calculated in order to decide whether it is an outlier or not, according to
the current center and inverse dispersion matrix. If it is not an outlier, the previous
center (obtained by averaging) and inverse dispersion matrix can be incrementally
updated as shown.

2.2.2 Outlier detection based on χ2 approximations of Q and T 2 statistics

Suppose that we have a centered data matrix X ∈MM,N where the columns corre-
spond the predictor variables. Therefore we can consider that we are working in a
N-dimensional space E. Once selected a number a of principal components, princi-
pal components analysis algorithm projects the data onto an a-dimensional subspace
V , defined by the a first principal components. Then we can consider the orthogonal
supplementary subspace of V , U =V⊥, that is a (N−a)-dimensional, meaning that
V ⊕U = E. Consequently, any element x in E has unique projections in both V and
U so that their sum equals x. The selection of a is crucial for the final result. Nev-
ertheless, the way to determine it is out of the scope of this section, and has been
widely treated in the literature.

We are interested in two distance measures: (i) the Mahalanobis distance from the
projection of x onto V to the center of the cloud of projections of all the data onto
V , called score distance, and (ii) the Euclidean distance from x to V , called orthog-
onal distance, which is related with the Euclidean distance to U . Figure 2 provides
the geometric interpretation of both statistics for an original three-dimensional data
example projected onto a two-dimensional subspace.

The former distance indicates the variation of each sample within the model. It is
also known as Hotelling’s T 2 statistic, and can be calculated as [76]
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Fig. 2 Geometric interpre-
tation of the score distance
SD and orthogonal distance
OD for a three-dimensional
example projected onto a
two-dimensional subspace V .
For visual purposes, we have
shown an original 3D point
with a huge OD. Due to the
way the PCs are selected, this
is not usually the case, and,
unless the point is an outlier,
the OD is commonly small.

T 2
i = xiPaΛ

−1PT
a xT

i =
a

∑
j=1

t2
i j

λ j
(10)

where Λ = {λ j}a
j=1 is a diagonal matrix containing the biggest a eigenvalues and

Pa is the loadings matrix.

For a fixed number a of principal components, on the basis of the fact that the data
are centered, we can model the score distance, since all random variables tia have
null expectation and variance λa/M, as [7]

DoF · T 2

T 2
∼ χ

2(DoF) (11)

where DoF and T 2 are the degrees of freedom and the average Hotelling’s statistic
respectively. DoF could be estimated by

D̂oF =
2T 22

ST 2
(12)

where ST 2 is an estimation of the standard deviation of T 2. A robust option, based
on the interquartile range (IQR) is obtained by solving wrt D̂oF the equation

1

D̂oF

[
χ
−2(D̂oF ,0.75)−χ

−2(D̂oF ,0.25)
]
=

1

T 2
IQR(T 2

1 , . . . ,T
2

M) (13)

The latter distance, also known as Q statistic, indicates how well each sample con-
forms to the model, and it can be defined for a given sample xi as

Qi =
k

∑
j=a+1

t2
i j (14)
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where (ti1, . . . , tiN) is the i-th row of T , and k is the rank of X .

A similar formula to Equation (11) can be proposed

C · Q
Q
∼ χ

2(C) (15)

It depends only in one parameter C, that can be estimated in an analogous way as in
Equation (12).

Now that we have totally determined the distributions of both distances in terms
of χ2 distributions, p-values can be calculated, for a certain chosen critical level α ,
which are the probability of occurrence of each T 2 and Q. Considering ci as any of
T 2

i or Qi, the corresponding p-value is

P(ci) = 1− [1−CDF(ci)]
M (16)

where CDF is the cumulative distribution function of the corresponding distribu-
tion. If any of the p-values is below the fixed critical level, then the corresponding
input is considered as an outlier.

Assuming we keep the principal components fixed, at a time t we can suppose that
we have the updated estimated distributions for Q and T 2. Once the next sample,
xt+1, from the data stream arrives, its Qt+1 and T 2

t+1 values are calculated in order
to decide whether it is an outlier or not, according to the current estimations of the
distributions of Q and T 2. If it is not an outlier, the mean values for Q and T 2 can
be incrementally updated.

Besides, the new estimations of C and DoF can be done just by incrementally esti-
mate the updated IQR. The calculation of the real IQR requires to store all data in
memory. Nevertheless, the estimation could be done based on a window [38, 89, 82]
(requiring memory for the samples in the window only), or based on quantile ap-
proximations [114]. All this allows us to incrementally extend the outlier detection
based on Q and T 2 to data streams.

2.3 Data normalization

Assuming that preprocessing is a preliminary task prior to a subsequent modeling
phase using certain method, it is important to understand the characteristics of that
method in order to perform a proper data preprocessing.

The most used technique is mean centering, consisting on subtract the mean value
of every feature (thus column-wise). Some methods, like principal components re-
gression (PCR) or partial least squares (PLS) have connections to distances to a



12 Carlos Cernuda

central location of the distribution of the data. Therefore, if the data is not centered
they suffer from certain bias due to the distance to the origin of the raw data points.

Another fundamental normalization technique is standardization. Standardization
comes from the transformation of a general Gaussian distribution into a standard
Gaussian distribution (with null expectation and unitary variance), obtained by mean
centering plus dividing column-wise by the standard deviation of every feature. By
standardizing we make our data centered and unitary spread, thus correcting dif-
ferences in the scales and ranges of the features. When employing any monitoring
algorithm in which distance calculations are somehow involved, standardization is
recommended unless the nature of the features is similar. In such cases, the differ-
ences in the ranges of the features is relevant for the process we are monitoring. An
example of an algorithm involving distances is support vector machines, in which
the widths (distances) between the data groups determined by the support vectors is
maximized.

The third normalization approach we will consider is scaling. The motivation be-
hind is gaining robustness to tiny feature variances, as well as to avoid zero entries
in case of sparse data. In scaling we choose an interval and our data will be scaled
so that it fits into that interval. The usual intervals are [0,1], obtained by subtract-
ing the minimum value and dividing by the range, and [−1,1], obtained by dividing
mean centered data by the value with largest absolute value in each of the features.
The latter is the preferred one for sparse data. Both approaches are highly sensitive
in presence of outliers, thus either a proper outlier detection strategy or the use of
robust alternatives to the range and standard deviation are recommended.

2.4 Data transformation

The versatility of the data employed in predictive maintenance opens plenty of pos-
sibilities when it comes to transformations. There are two main branches in data
transformation for predictive maintenance, which we identify as statistical transfor-
mations, and signal processing.

2.4.1 Statistical transformations

The statistical transformations are inspired in those transformations historically
used in statistical inference. The use of one or another type depends on the ap-
plication and the type of data.

In Statistics, data transformations are applied when some prior information motivat-
ing them is available. Some of the most famous ones are logit transformation, from
logistic regression and being related to neural networks and deep learning methods,
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square root transformation, from quadratic regression, and reciprocal transforma-
tion, obtaining similar scaling transformations as logit but also applicable to neg-
ative values. In general, all those transformations can be generalized by means of
the power transformation [49], that depends on a parameter λ , being all the afore-
mentioned particular cases for certain λ s. As the identity is also a particular case,
it is possible to infer the most adequate transformation for some given data (by op-
timizing λ ) including not transforming at all (identity). This technique is known as
Box-Cox [5, 95]. Box-Cox has been successfully employed in fault detection [100].

Another family of transformations with statistical background are the projection
on latent subspaces, like PCA and partial least squares (PLS). PCA is easily under-
standable if we approach it as an iterative procedure. Assuming we have centered
data, the first PC will be the single direction on which the variance of the projection
of the data is maximum. This direction is always obtainable as a linear combination
of all the original features. Once fixed the first principal component PC1, we con-
sider the orthogonal supplementary subspace of the subspace defined by PC1 that is
a line. As an example, in 3D the orthogonal supplementary subspace of a line is the
plane that is orthogonal to it. In Figure 2 the plane V is the orthogonal supplemen-
tary subspace of the line U . In this supplementary subspace we can also look for
the single direction on which the variance of the projection of the data is maximum,
getting PC2. Notice that, as any direction in the subspace, PC2 is orthogonal to PC1.
As each supplementary subspace we obtain has one dimension less than the previ-
ous one, we can continue with the same process until we end up with one last single
line, that is the last principal component (PCN if we had originally N features). Also
in Figure 2, V would be the plane defined by PC1 and PC2 (where PC1 and PC2 have
respectively the direction of the large and small axes of the ellipse formed by the
green points), and U would be the line defined by the last component PC3 = PCN .

PLS could be seen as a supervised equivalent to PCA. It becomes clear when we
point out that the procedure for the calculation of the components in PLS (called
latent variables) is similar to the case of PCA, but the objective is to maximize vari-
ance of the projection plus correlation with the target simultaneously. There is also
a relevant difference from the algebraic point of view. In PCA, the supplementary
space considered is the orthogonal one. Nevertheless, aiming for some flexibility re-
quired by the double objective of maximizing not only the variance of the projection
but also the correlation with the target, PLS considers a supplementary subspace not
necessarily orthogonal. The need of the target makes PLS unfeasible for online out-
lier detection. The application of a PCA variant is usually referred as performing an
orthogonal transformation [101].

Both PCA and PLS are linear transformations, unless we opt for one of their mul-
tiple non-linear extensions. There are several recent non-linear transformations that
are meant for exploiting the relations among the features. By relevance and usage,
the most important ones are locally linear embedding (LLE) [91], isomap [110] and
derivatives. They rely on the transformation of the original set of features into a
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smaller amount of projections taking into consideration the geometrical properties
of clusters formed by instances, or patches of the underlying manifolds. Therefore,
this methods could also fit into Section 2.6, because they could be understood as
dimensionality reduction approaches.

2.4.2 Signal processing

The heterogeneity in the properties of the data samples, also called signals, leaves
margin for transformations coming from many sources. We have seen statistical
transformations, but they also could arise from Mathematics, Physics or Computer
Science. It is a matter of semantics, but usually the word signal is reserved for cer-
tain type of data that can be ordered in time. Concretely we will focus on waveform
data, because most of the predictive maintenance data are based upon this type.
Waveform data can be observed from two related domains: time domain and fre-
quency domain, being possible to move from one to the other and back. Depending
on the domain we will distinguish three types of techniques in signal processing
[109], which are (i) time domain, (ii) frequency domain, and (iii) time-frequency do-
main.

The analysis of the time domain is the analysis of the original waveform data, which
is, from a mathematical point of view, a chronological sequence of the value of cer-
tain random variable, having certain expectation, variance, skewness and kurtosis
which calculation could be part of the analysis, helping to characterize the signals.
An example of time domain analysis is time series analysis [23], being autoregres-
sive models one of the most employed ones. By autorregressive we understand that
the feature values depend linearly of the previous ones[94, 99], so we would be
assuming independence between features. If we think that it is not the case, then
fractal time series take into account dependencies between two waveforms in dif-
ferent ways, such as local or global self-similarity, or short-range or long-range
dependency [70].

The consideration of the frequency domain has several motivations. One of them
is the fact that noise is usually affecting our signals, being recommended to use
denoiser filters. This filters, when applied in the time domain have huge computa-
tional costs, as they imply the application of convolution operations. Meanwhile,
in the frequency domain they are just multiplications, as they transform differential
equations into algebraic ones. Therefore, it is computationally cheaper to transform
the data into the frequency domain, apply a filter there, and transform the filtered
data back to the time domain in order to perform any posterior analysis there. There
are many possible filters to be applied, even designed, depending on the components
of the data we need to filter out [109]. Just as an example, a famous digital filter for
smoothing the data is Savitzky-Golay filter [96, 81, 84], which is based on a local
low-order polynomial interpolation using for each point a window containing some
of its neighbor points. Some filters are also suitable for incremental on-line applica-
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tion on a streaming context [102].

The use of signals for modeling the state of a real dynamic systems needs indeed
information available in both the time and the frequency domain. For this reason, it
is common to use both domains at the same time, moving from one to the other on
demand. This use is called time-frequency domain analysis.

There are several ways to transform time domain signals into frequency domain
signals [8]. We highlight (i) the Fourier transform [120], (ii) The Laplace transform,
and (iii) the Z transform [109] (known as the discrete version of the Laplace trans-
form), since they are the most relevant ones. There are efficient algorithms to cal-
culate them as well as their inverses. For instance the fast Fourier transform (FFT)
[122, 29, 35] is an efficient algorithm for calculating the Fourier transform. It suffers
from a problem because it considers the whole signal. If we are facing, for instance,
a fault detection problem trying to identify faults by changes in the signal, we could
miss true faults (camouflaged as noise) unless the changes are significantly big wrt
the whole signal. A way to overcome this effect is considering the short-time Fourier
transform (STFT), that considers a fixed-width time window [109, 25].

Nevertheless there is another issue with STFT, coming from the fact that a good res-
olution in one domain implies a bad resolution in the other. This force us to choose
the width of the window so that there is a fine trade-off between the resolution in
both domains. Another solution consists in employing a wavelet transformation,
which provides us with the same effect as having dynamic resolutions in time and
frequency. There are continuous and discrete wavelet transformations [26, 78], be-
ing the latter more computationally efficient.

Some more sophisticated newer approaches were developed afterwards. The Hilbert
Huang transformation [56], a two-steps method consisting on (i) empirical mode
decomposition, i.e. the decomposition of the signal into a finite number of intrinsic
mode functions, and (ii) Hilbert transform of the intrinsic mode functions. The fact
that those functions are orthogonal [104], implies that they can be understood as
having physical meaning, thus being applicable in predictive maintenance[126].

Finally, the Wigner Ville distribution [24] was adapted by Ville [118] from Wigner’s
work in the field of quantum mechanics. It is a quadratic integral transformation in
the form of a two-dimensional Fourier transform of a time-frequency autocorrela-
tion function related to both time and frequency. It is not a window-based method,
and it provides with the best resolution. Nevertheless, when a signal is a composi-
tion of two signals, there appear cross terms that could interfere (by distortion) the
result of the analysis[63]. Otherwise, the study of the differencies in the cross terms
could be used in predictive maintenance problems [119].
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2.5 Missing values treatment

The appearance of missing values is common in real world data collected remotely
and sent synchronously to a central database. In the same way as in the case of
outliers, an obvious approach is to ignore samples in which one of more features
present a hole. As discussed in that case, sometimes we cannot afford ignoring data.
Then there is an obvious alternative, missing value imputation. The what is obvious,
but the how is really hard.

Naı̈ve logical options, such as imputing the mean, or median as robust alternative,
in numerical features, or the mode, in categorical ones, could be very risky. For in-
stance, in imbalanced data situations the minority class gets great importance in the
modeling, thus erroneous imputation could significantly influence model behavior.

In case we have a methodology to compare different samples and check whether
they are similar or not just by looking at a subset of the features that defines them,
then we could compare a sample with a hole with the samples without holes, and
choose for the imputation the value of the hole-free sample. There are alternatives in
which the sample to be used as imputer, such as systematically use one sample (cold
deck) or randomly select from a pool of candidates (hot deck). As an example, if the
methodology is based on distances using all features and the most similar one (i.e.
the closest), then the approach is the same as K-nearest neighbors with K = 1. The
main drawback of this approach is the difficulty of finding a proper way to compare
samples. For instance, if we employ distances and the amount of features is big we
would suffer from the curse of dimensionality effect [85], being all distances huge
and comparable in terms of magnitude.

As an alternative, an option could be a double-model strategy, in which a model
is created using the fully available hole-free data in order to be used for imputa-
tion only. The estimated value could be directly used (regression imputation), or it
could be slightly modified by adding a random residual (stochastic regression im-
putation). Once the missing values have been imputed, the main model is trained.
There are several options depending on how to consider the imputed samples. Some
approaches consider them as regular legitimate data samples, and some others un-
derweight them, making them less influential in the main model. In case of com-
putational and/or time expensive models, the imputing model employed is different
from the main one, such that it is cheaper and/or faster. For instance, common al-
gorithms used for this purpose are K-nearest neighbors [113], fuzzy K-means [69],
Bayesian PCA [83], and multiple imputations by chained equations (MICE) [92].

In special cases in which the features are related, we could use extrapolation or
interpolation methods for imputation. For instance, in data coming from a spec-
trometer, the different features consist of measurements made at different but close
sequence of wavelengths, thus features in close wavelengths should present similar
values.
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2.6 Data engineering

In data engineering we include three approaches (feature selection, feature extrac-
tion, and discretization) that could be performed alone or combined. Nevertheless it
is not usual to combine them because they actually result in severely modified data
as they are deeply invasive procedures.

2.6.1 Feature selection

By feature selection we mean feature subset selection. Some authors consider both
concepts as different because there are approaches in which the output is a ranking
of all features instead of a subset of them. Nevertheless, we will say just feature
selection since the common action is to use rankings to get a subset by truncation.

Feature selection can be understood as an optimization process in which the aim
is to find a collection of features that makes certain quality criteria optimum. The
simplest approaches, in which one single criterion is optimized, e.g. minimizing the
root mean squared error (RMSE) of prediction in a regression problem, can be con-
sidered as single-objective optimization problems in which the objective function to
be optimized is the quality criterion.

There are two types of feature selection (FS) approaches [44]:

• Filters [93]. They ignore the posterior task and focus only on the characteristics
of the data to perform the selection i.e. the criteria to be optimized is intrinsic
to the data (e.g. mutual information between the features and the target). They
could be understood as some kind of preprocessing selection. They are fast, but
they usually ignore the possible redundancy in the data because most of the ap-
proaches evaluate the features independently from each others.

• Wrappers [65]. The modeling task (e.g. classification or regression) is under-
stood as a black-box, whose performance using the subset of selected features
is the goodness of the selection (performance optimization). They can deal with
the redundancy, but they are usually computationally expensive, and they tend to
overfit if the amount of available data is not enough.

Some taxonomies include a third type, embedded methods, that are those methods
in which the selection is internal to the model. As then the feature selection cannot
be decoupled from the training, we cannot consider them as preprocessing, thus we
keep the 2-types taxonomy.

As filter methods rely on the characteristics of the data, the most renowned meth-
ods are based on statistical measures suitable for establishing dependencies and/or
relationships between inputs and outputs, e.g. sensors information and machinery
condition. Perhaps the most important filter method is correlation-based feature se-
lection [46], in which the correlation between the features and the target is used.
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There are plenty of ways, some employing problem-specific information, for defin-
ing what we understand by correlation, leading to different versions of the algorithm.
Any way, specific to the predictive maintenance task, to establish a quantifiable rela-
tion between a feature (or a subset of them) and the output of the task that is capable
of comparing/ordering different features (resp. subsets) could be used as a measure
of correlation.

Recently, Brown [11] has found a generalization framework of some of the most
extended families of filter methods that facilitates their understanding, given by

JBrown = I (Xn;Y )−β

n−1

∑
k=1

I (Xn;Xk)+ γ

n−1

∑
k=1

I (Xn;Xk|Y ) (17)

where n is the number of features, Xi the i-th feature, Y the output, and I(X ;Y ) is
the mutual information shared by X and Y [103].

The approaches subsumed in the framework, just by playing with β and γ are mutual
information-based feature selection [3], maximum-relevance minimum-redundancy
criterion [86], joint mutual information [128], mutual information uniformly dis-
tributed [67], conditional info-max [71], conditional mutual information maximiza-
tion [32] and informative fragments [117]. Moreover, it becomes easier to compare
the sensitivity of such families of methods with respect to redundancy and noise.

2.6.2 Feature extraction

We define feature extraction [45] as the generation of new features by combining all
or some of the existing ones. A common way to extract features is based on expert
knowledge, but we will not consider it as it is subjective to the problem and is not
fully data-driven.

The most relevant feature extraction approaches are based on the already mentioned
projections on latent subspaces. The core methods are PCA and its many variants.
In the original PCA the number of extracted features is the same as in the original
data, since each principal component is just a linear combination of all the origi-
nal features and there are as many linear combinations as the original number of
features, thus PCA is a linear method. Assuming mean centered data, from a linear
algebra viewpoint it consists just on a rotation of the coordinate axes.

The gain when applying PCA is that the new features (principal components) are
ordered from higher to lower amount of captured variance in the set of features
in the original data (ignoring the target, i.e. unsupervised). The cumulative vari-
ance captured by nested subsets of PCs can be easily computed, allowing to set a
cut threshold in the number of PCs, leading to a reduction in the number of fea-
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tures (data compression) in such a way that the variance that is left out is small and
controlled, possible colinearities between features are overcome, and, theoretically,
noise is filtered.

Even when it contradicts intuition, compression is not always a goal in prepro-
cessing when applying PCA. A situation in which it is not worthy, even counter-
productive, to compress is noise-filtered data to be used afterwards by an algorithm
that internally includes an embedded feature selection, such as random forests [10].
It is not a rare situation in predictive maintenance applications because noise filter-
ing through transformations is well-established.

Many variants are motivated by a non-linear nature of the data. For instance, if there
are certain known/intuited non-linear relations between samples somehow having
similar consequences as colinearity, we could model them by means of a specific
kernel function and apply KernelPCA [97]. In this way, by using the kernel trick,
we transform our feature space into a space where those relations look linear, ap-
plying there PCA.

As an alternative to the philosophy behind PCA-based approaches, we can con-
sider neighborhood embedding approaches that try to preserve local neighborhood
structures in the data on lower dimensionality spaces. A well-known algorithm for
neighborhood embedding is Stochastic Neighborhood Embedding [53] (SNE) in
which a Gaussian probability distribution describes the potential neighborhood of
each original sample in the high-dimensional space. A variation of SNE, with a sim-
pler optimization process and comparable performance, is t-distributed SNE [75] (t-
SNE). Despite it was originally developed for visualization purposes, it is perfectly
applicable for data compression.

Both SNE and tSNE are non-linear algorithms. A linear method also meant for
neighborhood preservation is Locality Preserving Projections [52] (LPP). In the
same paper, the authors propose a non-linear extension, named Kernel LPP, just by
applying the kernel trick before LPP.

In highly dynamical systems, as is the case here, it is an adequate strategy to perform
several local linear models covering the zones of influence of the data as a way to
obtain the behavior of a non-linear global model by aggregation/ensemble [130] of
the local linear ones. A use of this technique, in which the aggregation of the local
linear models is achieved by means of a fuzzy inference system [74] can be found in
[13]. The authors aplied the strategy for regression purposes, but it could be adapted
for feature extraction using local information. In case of favorable properties in the
aggregation algorithm, this strategy is also suitable for on-line monitoring[14, 16].
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2.6.3 Feature discretization

Some of the most famous algorithms employed in machine learning in general, thus
also in monitoring in predictive maintenance, are meant for categorical values (e.g.
decision trees). Moreover, sometimes they can only handle such type of data. Be-
sides, the type of data in predictive maintenance applications consist of numerical
continuous features with an order relationship, e.g. sensor data. Therefore, it makes
sense to think of ways to transform such features into categorical ones, so that those
algorithms could be used. This procedure is called discretization, and it is performed
feature by feature independently.

Assuming we have a feature Xi whose values are numerical values with an order
relationship. If we denote the minimum value by m, and the maximum value by M,
then a discretization process consists in the definition of K intervals

I1 = [a0,a1), I2 = [a1,a2), . . . , IK−1 = [aK−2,aK−1), IK = [aK−1,aK ]

where a0 = m and aK = M. Notice that the cutpoints for the intervals define the
partition of the range unambiguously.

A naı̈ve approach would be to prefix K and split the range [m,M] into K equal-
length intervals. There are several drawbacks with this method. First of all, which is
the right value for K? If the data is sparse or some extreme values (outliers or not)
are present, then the range is huge. In such situation it could happen that certain in-
tervals are empty and some crowded. Therefore, unless our data is uniformly spread
and we have a proper way to choose K, it is not a good option. Nevertheless, there
are plenty of estimators for the width (W ) of the bins, thus for K. One robust option
is the Freedman-Diaconis rule [33], given by

W = 2 · IQR(X)
3
√

N
(18)

where X is the feature under consideration and N the number of samples.

Hence, it is preferable to have a clever way to proceed that, if possible, does not
force us to prefix K. The widest used method is a supervised top-down algorithm
called minimum description length principle (MDLP) [30]. By top-down we mean
that it begins with an empty partition and the cutpoints are added on the fly, thus no
need to prefix K. It decides whether a new cutpoint is needed and where to locate
it by means of information theory, concretly the mutual information with the target
[103].

There are many other ways to define discretizations. An exhaustive survey including
several taxonomies according to the properties of the methods and the data is avail-
able in [36]. The authors present 87 methods, tested on many datasets with different
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properties, so by comparison of types of data we can have a guess of which methods
could fit better to our data.

2.7 Imbalanced data treatment

In such cases when the data show a lack of balance between the classes of the sam-
ples, it is usually the case that the class we are more interested in is the minority
class, e.g. faulty and fault-free samples. Despite we have commented in Section
2.1 on two ways to deal with imbalanced data, named as sampling- and weighting-
based; the latter is more related to the modeling phase instead of the preprocessing
phase because the weights are actually introduced in the model creation or the model
validation steps, depending on the characteristics of the algorithm that is being em-
ployed.

It is also of uppermost importance the metrics employed in the validation. For in-
stance, accuracy is not a valid choice because if the imbalance is 99%-1%, then
predicting the majority class always leads to a 99% accuracy. Thinking on the ex-
ample of faulty and fault-free samples, we would predict that faults never happen,
being almost always right. But it is obvious that not all errors in our prediction have
the same cost. In order to mitigate this without a need to assign a cost per error it is
common to use ROC curves [31]. Nevertheless, this is out of the scope of this chap-
ter, as it does not correspond to preprocessing. Therefore, we focus on imbalance
treatment approaches based on sampling techniques.

There are two obvious ways of compensating the imbalance, which are adding sam-
ples from the minority class (oversampling), and removing samples from the ma-
jority class (undersampling) [108, 121, 59, 87]. Because both have pros and cons
[19, 27, 79], it is also common to opt for a hybrid approach (mixed sampling) [66, 2]
combining them.

Recently, the importance of ensemble methods has been shown in many applica-
tions including imbalance treatment [20]. Both ensembles of repetitions of stochas-
tic techniques or ensembles of diverse deterministic techniques usually overcome
the application of single techniques, ensuring robustness by reducing the variance.

2.7.1 Oversampling

If we think on how to perform oversampling, the first intuitive approach is random
oversampling (with or without replacement). In [58] the authors consider two ran-
dom oversampling possibilities: a pure random one and a focused one in which only
samples close to the boundary between classes are considered as selectable; both
used until parity in the classes is reached. As not all the samples from one class
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influence the monitoring algorithm in the same way, the samples we replicate could
be so influential that we suffer from an overfitting effect. More sophisticated ap-
proaches opt for creating new samples by interpolation of some of the existing ones.

There are two main methods, existing several variants for each of them. Those rel-
evant methods are synthetic minority oversampling technique (SMOTE) [18], and
adaptive synthetic sampling method (ADASYN) [51]. In both methods the algorithm
to generate new samples is the same. A sample xi from the minority class is con-
sidered. Then the K-nearest neighbors from the minority class are located. One of
them x j is randomly chosen, and the new synthetic sample is a convex combination
of them

xnew = λxi +(1−λ )x j

where λ ∈ [0,1] is randomly selected. Graphically, the convex combination of two
points is a point located in the segment that joins them. Figure 3 shows the genera-
tion of a new minority class sample xnew (marked as a green cross). The difference
between SMOTE and ADASYN is only in the way the neighbor points are taken.
The latter uses a prefixed K, and the former chooses it depending on the density of
the minority class inside a neighborhood obtained by K′-nearest neighbors.

The influence of extreme values (or outliers, if not detected) is really high in both
SMOTE and ADASYN, being higher in ADASYN. Then SMOTE is usually em-
ployed in some of its variants. The most famous ones are borderline-1 SMOTE,
borderline-2 SMOTE and SVM SMOTE. In borderline versions also an auxiliary K′

neighborhood is used, where the samples xi from the minority class are labeled as
noisy (all nearest neighbors are not from the minority class), in danger (at least half
of the neighbors are from minority class), or safe (all are from the same class as xi).
Then the only samples chosen as initial samples are in danger samples.

The difference between borderline-1 and borderline-2 happens when selecting x j.
Borderline-2 allows to select a sample from any class, not necessary majority class
(as borderline-1 does). In SVM SMOTE the support vectors are used to generate the
new sample xnew.

2.7.2 Undersampling

The major risk when ignoring majority class samples is to potentially ignore re-
ally relevant informative samples, leading to a degradation of the general quality
of the model. As in oversampling, there are methods that select (sample selection)
prototypes in the majority class (most of the approaches) and methods that gen-
erate (sample extraction) a smaller set of prototypes from the original bigger set
of samples. The only relevant approach in prototype generation methods is called
cluster centroids undersampling, which is based on clustering using representatives
(CURE) [42], a famous clustering algorithm in which relevant points of the identi-
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(a) Synthetic sample generation. (b) Noisy, borderline, and safe points.

Fig. 3 Examples of (a) the generation of a new minority class sample xnew from an existing sample
xi and one of its 3-NN x j (the 3-NN neighborhood of xi appears as a pale blue circle), and (b) the
determination of noisy (purple), borderline (orange) and safe (green) minority class samples in
borderline extensions of SMOTE (the 3-NN are inside colored rounded squares). Plus and minus
symbols represent majority and minority class samples respectively.

fied clusters (e.g. the centers) substitute the points inside those clusters, reducing the
amount of points but keeping the underlying cluster structure. When it comes to pro-
totype selection methods, we can identify two subgroup of methods depending on
the possibility by the user of controlling the number of samples after undersampling
(controlled undersampling techniques) or not (cleaning undersampling techniques).

The simplest controlled undersampling technique is random undersampling, which
is the riskiest one as all samples are equiprobably deleted ignoring their potential
informativeness/relevance. The most representative approach is called NearMiss
[131], which includes some heuristic rules in order to select the samples. The au-
thors presented three NearMiss versions, differing in the way the heuristics are de-
fined. NearMiss-1 selects the majority class samples with minimum average dis-
tance to the N closest minority class samples. NearMiss-2 selects the majority class
samples with minimum average distance to the N farthest minority class samples.
Finally, NearMiss-3 has two steps: first, the M nearest neighbors for each minority
class sample are kept, then the majority class samples with maximum average dis-
tance to the N closest minority class samples are selected.

Also in [131], the authors define another approach, named MostDistant, in which
the selected majority class samples are those presenting largest average distances to
the N closest minority class samples. In the original paper the authors select N = 3.
Figure 4 shows examples of the three versions of NearMiss in a two-dimensional
space with N = 3 and M = 5.

The family of cleaning undersampling techniques is bigger. The name comes from
the fact that the part of the dataset corresponding to the majority class is cleaned
by deleting certain samples considered as dispensable according to certain heuristic
algorithm. We describe them in no particular order.
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(a) NearMiss-1 (b) NearMiss-2 (c) NearMiss-3

Fig. 4 Examples of the selections performed by all three NearMiss versions. Plus and minus sym-
bols represent majority and minority class samples respectively. Distances to the 3-NN of some
majority class samples are depicted using colored dashed lines. In green we can see the distances
corresponding to the selected majority class sample, as well as the sample itself in each version. In
(c), the samples out of the 5-NN neighborhood are represented.

A popular method is based on the so-called Tomek’s links [112]. We say that two
samples from different classes form a Tomek’s link if they are nearest neighbors to
each other. Mathematically,

d(x,z)≥ d(x,y) and d(y,z)≥ d(x,y),∀z (19)

The undersampling procedure associated to them has two variants. We can remove
(i) only the sample in the Tomek’s link corresponding to the majority class, or (ii)
both samples. It is clear that such pairs of samples are some sort of contradiction.
The safest choice would be to remove both, but this could be sometime not an op-
tion as it would decrease the size of the minority class. An example of a Tomek’s
link can be seen in Figure 3(b), formed by the purple minority class sample and its
nearest neighbor.

Inspired by Wilson’s studies on the nearest neighbors rules [123], edited nearest
neighbors edits the dataset by removing those samples which do not agree enough
with their neighborhood. Different agreement criteria provide different versions.
Given one sample, the most restrictive version demands all the samples in the neigh-
borhood to be from the same class of the sample under study. A more relaxed ver-
sion, demands only a majority of samples from the same class. There is also the
possibility to run the edition procedure several times iteratively (with the same or
different K), so that more samples are removed.

We can define instance hardness [106] as the level of difficulty to predict the class
of a sample due to the sample characteristics. The usual way to calculate it is by
means of an algorithm that assign to each sample, using cross-validation, a proba-
bility of being well classified, thus the lower the probability the harder the instance.
The instance hardness undersampling technique consists in establishing a threshold
for the probability of the majority class samples, removing those that are below the
threshold.
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Last but not least, we have the family of condensed nearest neighbors, based on
the homonymous rule [47]. The undersampling methods that are inspired on it con-
dense the space by removing samples that are far from the decision boundaries. The
original method is based on an iterative process with the following steps

1. Construct a condensed set C containing the minority class samples.
2. Add one majority class sample to C, and create a potential set P with the rest.
3. Classify each sample in P using 1-NN. If misclassified, move it to C. Otherwise,

do nothing.
4. Reiterate until no samples can be added to C.

As this original approach is very sensitive to noisy samples, keeping them in C,
some variants were proposed. The variant named one-sided selection [66] removes
noise by applying Tomek’s links first, and then the steps 1. to 3. of the original ap-
proach, thus no iteration over P.

In [68], the authors propose neighborhood cleaning rule, that proceeds as follows

1. Get one sample xi and classify it using 3-NN.
2. If xi is misclassified, go to next step. If classified go to the first step.
3. If xi is a majority class sample, then remove xi. If xi is a minority class sample,

then remove the 3-NN corresponding to the majority class. Go to the first step.

This approach is computationally expensive, and could suffer in case of very large
heavily imbalanced datasets. Even when its philosophy is based on cleaning, the
result is usually a condensed subset of the original one.

All these condensed family techniques depend on some randomness, when taking
samples to begin. Moreover, the order of the samples is relevant for the final un-
dersampled set. Therefore, we cannot expect the same result when repeating them
over the same dataset. It is recommended to perform the methods several times and
ensemble the results by certain aggregation procedure.

2.7.3 Mixed sampling

The naı̈ve approach, consisting on combining both random oversampling and ran-
dom undersampling was proposed in [72]. The authors used lift analysis instead of
accuracy as performance score measurement in their experiments, without obtaining
relevant improvements.

A deep study on the mixture of oversampling and undersampling techniques can
be found in [2]. The authors point out the good results of mixing SMOTE both with
Tomek’s links and edited nearest neighbors.
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2.8 Models

Our aim is not checking which modeling technique behaves better, but comparing
different preprocessing schemata by mean of the posterior performance in a regres-
sion or classification task. Therefore, we present only a few techniques just to check
whether using different algorithms is also relevant in the selection of the right pre-
processing scheme apart from the data.

Here we briefly describe some state of the art algorithms suitable for confronting
predictive maintenance problems. We distinguish to types of algorithms for two
classical problems. Classification algorithms for fault detection problems, and re-
gression algorithms for remaining useful life prediction problems.

2.8.1 Classification

A regular fault detection problem is a binary classification problem in which the aim
is to predict whether a concrete system state (sample) corresponds to a faulty or to
a fault-free situation. The simplest but still widely used classification methods are
naı̈ve Bayes and K-nearest neighbors. Naı̈ve Bayes (NB) algorithm [34] is a proba-
bilistic method based on the application of Bayes theorem under strong feature inde-
pendence assumptions. K-nearest neighbors algorithm [105], as all methods based
on distance calculations, can suffer from huge distances of some of the neighbors
due to the sparseness enforced by a habitual high dimensionality. The attempts to
mitigate such problem is the motivation behind distance weighted K-nearest neigh-
bor algorithm [28], that is the variation of K-NN we will consider, consisting in
regulating the importance of the votes of the neighbors by means of weights that
depend on the distance, so that the closer the more important. Since it is the only
variant we will consider, we denote it by K-NN.

Support vector machines (SVM) [115, 98] is a well-known nonlinear classification
method, based on separating the classes employing hyper-planes is such way that
the separation is maximized. This separation is not performed in the original input
space but in a kernel-transformed space, i.e. the kernel trick [55]. The samples that
are closest to the decision boundary, thus defining the hyper-planes, are called sup-
port vectors. In [62] the authors compare several classifiers for fault detection, in-
cluding distance-weighted K-nearest neighbors and support vector machines among
others.

The random forests (RF) algorithm [10] is a stochastic ensemble method that per-
forms a bagging strategy (a combination of bootstrapping and aggregation [9]) of
weak learners, concretely decision trees. The procedure is simple. Given a prefixed
a number of trees, for each tree a subset of the original features is randomly se-
lected (weakness). Then the tree is trained using those features and a set of samples
obtained by random selection with replacement (bootstrapping). The decision is ob-
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tained by combining all individual tree decisions (aggregation). The magic behind
RF is that the bias of the full ensemble is equivalent to the bias of each single tree,
whereas the variance is much smaller. This robustness, together with its low com-
putational cost and high parallelization and distribution capabilities makes RF an
algorithm to be taken into consideration in predictive maintenance [43, 127, 12].

2.8.2 Regression

Despite the original purpose of RF and SVM is classification, there are versions
of both of them for regression purposes. In the case of random forests, it is quite
straightforward to substitute decision trees by regression trees, and the voting ag-
gregation by an average prediction [10]. The insights in the case of support vector
regression (SVR) are a bit more complex and too long to be commented here [107].
Some applications to RUL prediction can be seen in [125, 90, 4, 73].

Basic linear regression approaches, such as multiple linear regression, suffer from
the arising of singularities because of the effect of colinearities between features
when calculating the inverse of XT X , required by the least squares solution, being
X the input data matrix. In such situations, shrinkage (regularization) methods avoid
singularity by perturbing the matrix before it is inverted. The two main approaches
in the family of shrinkage methods are Lasso [111] and ridge regression [49], ob-
tained by introducing `1 and `2 penalties respectively. The elastic net [133] includes
a penalty based on a combination of both `1 and `2 penalties, looking for some elas-
ticity in the regularization, being Lasso and ridge regression particular cases of the
elastic net.

Generalized linear models [49] is a generalization of ordinary linear regression that
provides flexibility in the sense that the distribution of the errors is not necessarily
supposed to be normal, as happens in ordinary linear regression. The combination
of the elastic net with generalized linear models (GLMnet) is a regression algorithm
based on generalized least squares that uses cyclical coordinate descent [50] in a
path-wise fashion [48] in order to select the optimum elasticity in the regulariza-
tion via the elastic net. The elasticity provided by the possibility of controlling how
close we are to Lasso or ridge regression by means of a single parameter allows an
efficient exploitation of the regularization benefits.

Up to our knowledge, this approach has not been used in predictive maintenance yet.
Nevertheless it has been considered here because of its outstanding results in mon-
itoring dynamic chemical systems in process analytic technology (PAT) [17, 15],
that behave quite similarly to regression problems in predictive maintenance with
dynamic systems.

Deep Learning (DL) is the way to call the use of a complex artificial neural net-
work. A neuron is a single computation unit that receives an input value (from a
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data source or another neuron), performs a simple operation consisting on applying
certain simple function (activation function) over the product of the input by a nu-
merical parameter (weight), and outputs the result (towards an output interface or a
neuron).

Different types of neurons connected in different ways lead to different network
architectures. These neural networks are designed by means of layers of neurons
conceived for specific subtasks.

For stream-like data, such as the data usually involved in monitoring tasks in predic-
tive maintenance, the most used networks are recurrent networks (RNN), in which
the neurons are also connected to themselves. This provides the network with some
memory in the form of persistence of the information. In general, they suffer when
the ideal persistence time grows.

There is a family of RNNs meant for handling long term information dependencies
called long short term memory networks (LSTM) [54] that contain an internal mech-
anism (cell state) to filter/retain part of the information as long as necessary. There
are several ways of handling the remembering/forgetting part of the learning pro-
cess, leading to different variants of LSTMs. The most relevant ones are, amongst
others, Vanilla LSTM [40], Gated Recurrent Unit (GRU) [21], Depth Gated LSTM
(DG) [129] or Grid LSTM [64]. In principle, LSTM networks are the most adequate
network architectures in predictive maintenance.

Even when the natural output of the network is a number, they could be adapted
for classification purposes by linking the classes to certain numerical output ranges.

3 Experimentation

The philosophy derived from non-free-lunch theorem [124], which states that the
average performance of all algorithms over all possible problems is asymptotically
the same, is that there is not a single universal algorithm that is the best. Therefore,
there is always margin for improvement and every particular problem (correspond-
ingly dataset) is better suit for a different method. This applies also to the prepro-
cessing schemata, in the sense that there is not an universal preprocessing schema
that is always the best, being the goodness problem/data dependent.

Consequently, providing successful stories for concrete scenarios is perhaps not the
best option. It would be more relevant to provide the reader with direct or litera-
ture referenced details of the available choices in the market, as well as hints about
possible decisions depending on the characteristics of the problems or the data. For
such reason we will just employ the already presented classification and regression
techniques on some of public available real-world datasets from competitions in the
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Annual Conference of the Prognostics and Health Management (PHM) Society. We
will use them (both the original data and some modified subsets, e.g. for missing
values treatment or outlier detection) to compare several preprocessing schemata on
different algorithms. Furthermore, we will provide some clues about which prepro-
cessing methods might be more reasonable depending on the particularities of data
and problems based on successful applications.

It is obvious that the combination of all possible methods in all steps in different
orders would end up in thousands of preprocessing schemata. Moreover, if a schema
consisting on seven steps works very well, we would not be able to decide which
of them contributed more to that behavior. Therefore, just some schemata involving
only a few steps will be tested, and compared also with, we should not forget that it
is always a possibility, not preprocessing at all.

3.1 Datasets

In order to have a classification and a regression problem, we have considered the
data corresponding to the PHM Data Challenge 2014 and the PHM Data Challenge
2016. The former is transformed into a fault detection problem (classification), and
the latter is a RUL estimation problem (regression) in which the average removal
rate of material in a polishing process. The lack of exact environmental information
about the origin of the datasets impedes us to infer cause-effect reasons for the
results. Hence, we focus on the goodness of the application of the preprocessing
schemata instead of the underlying reasons.

3.1.1 PHM challenge 2014

The information about the domain and the data of the PHM challenge 2014 is not
provided due to proprietary concerns. We know that it consists of 6 datasets, half
for training and half for testing with information about (i) part consumption (i.e. the
replacement of some parts), (ii) usage (similar to the lines of an odometer), and (iii)
failures (time of failure). The target information for the test files in unknown, so
we focus only on training data. By crossing the failure information with the rest we
could build by merging a dataset in which the target is binary: faulty or non-faulty,
thus it consists on a binary classification problem. For further information on the
data, check the call for participation in [37].

In this dataset there is almost no information about the nature of the features. The
original aim in the challenge was to predict the health level of the components in a
certain time by classifying them into low risk and high risk of failure, equivalent to
fault save and faulty in a short future. The variables are numerical and discrete. Nev-
ertheless, the amount of different values is so big that we can employ any method
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suitable for continuous variables.

The data is heavily imbalanced, belonging to the high risk class (faulty) only 4%
of the samples. The modeling algorithms does not take into account the level of
imbalance during training. Only some of them, based on iterative optimization pro-
cesses, are capable of weighting the errors according to the class densities so that
they favor avoiding mistakes in the minority class. The main problem of such ap-
proaches is the price to pay in the prediction of the majority class. Therefore it is
recommended to treat imbalanced in advance as part of the preprocessing.

3.1.2 PHM challenge 2016

The system under investigation is a wafer Chemical-Mechanical Planarization (CMP)
tool that removes material from the surface of the wafer through a polishing process.
Figure 5 depicts the CMP process components and operation. The CMP tool is com-
posed of the following components: (i) a rotating table used to hold a polishing pad,
(ii) a replaceable polishing pad which is attached to the table, (iii) a translating and
rotating wafer carrier used to hold the wafer, (iv) a slurry dispenser, and(v) a trans-
lating and rotating dresser used to condition a polishing pad.

Fig. 5 Chemical Mechanical
Planarization (Polishing) of
wafer.

This process removes material
from wafer surface.

This image is property of
the Prognostics and Health
Management Society and was
taken from the online infor-
mation about the challenge.

During the polishing process, the polishing pads ability to remove material is dimin-
ished. Over time, the polishing pad has to be replaced with a new pad. Similarly, the
dressers capability to roughen the polishing pads is also reduced after successive
conditioning operations and after a while the dresser must be replaced. The objec-
tive is to predict polishing removal rate of material from a wafer, thus it is a regres-
sion problem. For further details, check the call for participation in [88].

A deeper look at the data allows as to infer some characteristics of the data. All
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variables are numeric (float), with different ranges and dynamics. Some fluctuate up
and down approximately in a cyclic way while some others show a continuous in-
crease or decrease that is apparently linear. These differences force us to be careful
when selecting the way to apply the preprocessing techniques.

For instance, if we apply a technique that involves mixing the features, such as PCA,
then standardization is recommended. On the contrary, in approaches acting on the
features individually, such as discretization, it could be counterproductive. Due to
the size of the data we are limited to visualization techniques based on certain infor-
mation summary/compression such as tSNE plots, and scores and loadings plots in
PCA. Nevertheless there is not an obvious relationship between the visualizations
and the adequate preprocessing techniques.

3.2 Experimental schema

Since our algorithms are favored by centered data or translation invariant, then we
mean centered all the data in advance. All the experiments were made using 10-fold
cross validation because it is known to be a good approximation of the expected
prediction error on separate future test samples. We evaluate the performance in
classification by means of the area under the ROC curve [6], and in regression with
the root mean square error.

Since our intention is not to beat the winners of the competitions, but check whether
preprocessing is beneficial or not (and how much), then our comparisons are against
not preprocessing. The reason for including several modeling algorithms is not to
determine which one is better, but to try to check if that diversity of models is rele-
vant or not for the benefit of preprocessing.

In case we suspect that the best preprocessing strategy is independent of the pos-
terior modeling technique, then we could try the simplest ones in order to guess the
right preprocessing scheme. For statistical significance of the differences, we have
employed the Mann-Whitney-Wilcoxon test [80].

In this study both the outliers and missing values have been artificially introduced,
thus we have the chance to check the performance of the methods, as we know
the truth. This is not the case in real-world applications. With respect to the rest of
preprocessing steps, we have performed the test with the full dataset. The realist
approach in an application would be to extract a representative subset of the data in
order to perform some preliminary tests and determine a full preprocessing strategy.

When it comes to the study of the approaches for missing values, we have modi-
fied the PHM2016 dataset by randomly erasing 1% of the values in 10% variables.
Taking into account that there are 21 variables and 346015 samples, we have in-
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troduced in 2 variables 3460 holes per variable. The approaches employed were
imputation with the mean value, imputation by averaging using 5-NN, as well as
removing the samples (deletion strategy).

For outlier detection, also using PHM2016, we have modified 1% of the total
amount of single numerical values by distancing them from the mean of the fea-
ture they correspond to. The amount of variation is proportional to their distance to
the mean, with factors corresponding to 20%, 50%, 100% and 200%, meaning 865
variations per level. Each of them has been applied to the one fourth of the modified
values, i.e. 0.25% of the total amount of values. In this way we can evaluate the sen-
sitivity to the amount of variation. The approaches employed were the Mahalanobis
distance and the Q and T 2 approximations in their off-line versions.

As some potential detected outliers could be out of the list of the artificial modi-
fications (false positives), it makes sense also to check the posterior performance,
after cleaning, in modeling. For this comparison, we have also included the original
modified data, i.e. without looking for oultiers.

When it comes to feature engineering, we have designed experiments separately
for feature selection (on PHM2016), feature extraction (on both datasets), and dis-
cretization (on PHM2016). The algorithms we have employed are:

• Feature selection. We have chosen two filter methods (correlation-based feature
selection, and conditional info-max), and a wrapper approach (using K-NN).

• Feature extraction. We have selected PCA, PLS, Kernel-PCA, t-SNE and
Kernel-LPP, so we have two linear and three non-linear methods. Notice that
most of the features in PHM2014 are numerical discrete variables containing
natural numbers. Nevertheless, the amount of different values is so big that we
can consider them as continuous numerical variables, suitable for feature extrac-
tion by PCA or PLS. The adequate number of PCs and LV s have been selected
by grid search.

• Discretization. We have opted for two approaches, in order to consider one that
prefix the number of bins (equal-width intervals using Freedman-Diaconis rule),
and another one that does not prefix it (MDLP).

For imbalanced data treatment we need a classification problem, thus we use our
PHM2014 version, which has a minority class (faulty) represented approximately
by a 4% of the data samples. We have not applied all the methods in Section 2.7,
but some of the most popular ones. Classified according to the provided taxonomy,
they are

• Oversampling. Random oversampling, SMOTE borderline-2, and ADASYN.
• Undersampling. Random undersampling, cluster centroids, NearMiss-2, and

Tomek’s links.
• Mixed sampling. Random oversampling and undersampling combination, and

SMOTE with Tomek’s links.
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3.3 Results

The results are presented by means of tables, which formats depend on the experi-
ments. As general facts,

• we consider not preprocessing as baseline, and we present the percentage of im-
provement (positive number) or deterioration (negative number). An exception
occurs in the case of missing values, because the usual baseline does not ex-
ist. In that case we consider the deletion strategy as the baseline approach. If the
shown variation from the baseline is significant, according to the Mann-Whitney-
Wilcoxon test, it will be indicated with a ‡ mark. The best results are highlighted
in bold font. There is also another exception when studying the detection of out-
liers. In that situation there is not any baseline because there is not any modeling
step, but just checking the performance in the detection of the outliers for differ-
ent perturbation levels. In this case we just show the detection rates per method
and per level, and the † mark means significantly better than the other method;

• in all nearest neighbor related approaches in which we have the chance of choos-
ing K, our choice will be K = 5;

• the kernel function used in both SVM and Kernel-PCA is radial basis function
(RBF);

• the network architecture used for DL is GRU because it has a simple effective
joined input/forgetting mechanism by using the so-called update gates, proved
to behave similarly to much more complex arquitectures [41];

• unless explicitly indicated otherwise, the learning parameters of the algorithms
are set by default as in the literature. For GRU, the default arguments in Keras
[22] have been used.

Table 1 shows the results for missing values. Notice that in this situation all columns
are independent because we are comparing, for each modeling technique, the per-
formance of imputation versus deletion for that concrete technique. For instance,
the values +1.35 and +2.57 corresponding to RF algorithm mean that imputation is
preferred (both are positive values) and the performance when using K-NN method
is almost doubly beneficial than Mean.

We can see that it is slightly beneficial to use imputation, being a bit better the
imputation by means of K-NN. Nevertheless, none of the imputations are statisti-
cally significantly better than deletion, for any algorithm except for RF and GRU.
This, together with the fact that K-NN requires huge computational and memory
resources, shows doubts about its suitability.

The reason for using several models is to check whether the model to be applied
after preprocessing has an impact in the right preprocessing scheme. Hopefully we
can see that the results are similar for all modeling algorithms, thus it seems that
the data is more relevant than the algorithm. Nevertheless, we should notice that
there are big differences in performance between deletion, Mean and K-NN for the
various modeling techniques even when the general trend remains stable.
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Table 1 Missing values.

Method a RF SVR GLMnet GRU

Mean +1.35 +0.15 +1.20 +1.57 ‡
K-NN +2.57 ‡ +0.33 +1.28 +2.04 ‡

a Deletion strategy is considered as the baseline.

Table 2 shows the results for the detection of outliers for different deviations. The
percentage of outliers is constantly 1%, but the amount of deviation from the origi-
nal values, artificially introduced, varies from low intensity (20%) to high intensity
(200%). The higher the intensity the simpler the detection because the values are
much more different from the real ones. In the case of the Q and T 2 approximations
method, the number of principal components has been determined by establishing a
threshold of the total amount of variance captured, set in 90%.

In general, the approximation approach behaves better than Mahalanobis, being that
difference higher in the intermediate levels. For the biggest distortions (easier to
detect) both methods perform very well.

Table 2 Outlier detection accuracy.

Method 20% 50% 100% 200%

Mahalanobis 1.04 13.87 53.29 92.37
Q and T 2 a 1.62 26.82 † 69.71 91.91

a The number of PCs is 4.

Table 3 shows the results for outlier detection effect in modeling. Looking at RF
column we can see that the advantage is much lower than for the other two algo-
rithms. A possible reason is the fact that RF uses for each tree a reduced dataset, both
in the features and in the samples part. Theoretically the expected percentage of the
samples from the original set considered for training each tree is indeed 63.2%, thus
errors in the detection could be somehow partially neglected.

Besides, we could suspect the difference between SVM (non-linear) and GLMnet
(linear) to be due to the fact that the transformation used for generating the outliers
is a linear mapping. Nevertheless, the suspicion is not right because GRU is also
non-linear and behaves almost the same as GLMnet. In the end, GLMnet and GRU
have suffered less than SVM from the not detected outliers or the false positives.
The latter are very few, almost zero compared to the true outliers.

Table 4 shows the results for feature selection. The most plausible reason for the
total lack of advantage in this feature selection process is that the variables are quite



On the relevance of preprocessing in predictive maintenance for dynamic systems 35

Table 3 Outlier detection effect on modeling.

Method RF SVR GLMnet GRU

Mahalanobis +0.66 +2.09 +4.10 ‡ +3.96
Q and T 2 a +0.92 +2.33 +5.01 ‡ +5.14 ‡

a The number of PCs is 4.

independent, containing a similar amount of complementary information. There-
fore, selecting features in any way enforces certain information loss. The effect is
magnified in RF, as it has an internal tree-wise feature selection step.

Table 4 Feature selection.

Method RF SVR GLMnet GRU

CFS -0.77 +0.03 +0.38 +0.20
Conditional info-max -0.07 +0.05 +0.25 +0.16
K-NN a +0.02 +0.03 +0.41 +0.22
a Only wrapper method. The rest are filters.

Tables 5 and 6 show the results for feature extraction in the classification and re-
gression tasks respectively. We can say that (i) the data seem to be quite non-linear,
as the non-linear methods are the best in all algorithms except SVM in classification
(probably due to the fact that in that case we are applying twice an equivalent kernel
trick), (ii) PLS (supervised) behaves better than PCA (unsupervised) because of the
possibility of using the target information, and (iii) it makes sense to use these fea-
ture extraction methods, even when the improvement is not statistically significantly
better (with one single exception), because they are not much computationally ex-
pensive.

Table 5 Feature extraction in fault detection (classification).

Method NB K-NN SVM RF

PCA a +1.03 -1.11 +1.48 +1.27
PLS b +1.24 -0.22 +2.17 ‡ +1.33
Kernel-PCA a +1.36 +1.04 +2.04 ‡ +2.16 ‡
t-SNE +1.25 +1.53 ‡ +2.11 ‡ +2.35 ‡
Kernel-LPP +1.21 +1.15 +2.16 ‡ +2.08 ‡

a The number of PCs is 3.
b The number of LV s is 2.

Table 7 shows the results for discretization. In this case the comparison between
equal-width and MDLP is not totally fair, as the former is unsupervised and the lat-
ter supervised. Also, in general, methods that do not need to prefix the number of
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Table 6 Feature extraction in RUL estimation (regression).

Method RF SVR GLMnet GRU

PCA a +2.20 ‡ +1.26 +1. 52 +2.15 ‡
PLS a +2.31 ‡ +1.53 +1.59 +3.02 ‡
Kernel-PCA a +3.33 ‡ +1.54 +2.60 ‡ +3.48 ‡
t-SNE +4.22 ‡ +1.78 ‡ +2.85 ‡ +4.39 ‡
Kernel-LPP +3.97 ‡ +1.60 +2.71 ‡ +4.81 ‡

a The number of PCs and LV s is 4.

bins achieve results at least as good as the restrictive ones. In this case, according to
the significance tests, it is clearly not an exception, especially in RF, GLMnet and
GRU. Equal-Width only makes sense if the density of the features is homogeneous
in their ranges, which is rare and not happening here.

In general, RF use to behave better when discretizing. Besides, some algorithms in-
volving complex/computationally expensive optimization processes (like SVR and
GRU) could suffer from numerical instabilities that are less likely with discrete fea-
tures. Nevertheless, discretization is not necessary beneficial always. Also notice
that the process affects the features independently, which makes possible to dis-
cretize only a subset of the continuous features.

Table 7 Discretization.

Method RF SVR GLMnet GRU

Equal-Width a -1.61 ‡ -0.32 -0.95 -2.33 ‡
MDLP +2.66 ‡ +0.98 +2.76 ‡ +4.19 ‡

a Using Freedman-Diaconis rule.

Table 8 shows the results for imbalance data treatment. First, we can compare
this results with the ones in Table 5, and point out that imbalanced data treatment
schema seems to be a better choice than feature extraction schema, hence, as we
have mentioned before that it was worthy to use feature extraction, it is even wor-
thier to use imbalanced data treatment.

Looking only at these imbalanced methods, it is clear that all three random ap-
proaches are a bad choice, independently of the algorithm employed. Maybe the
flexibility provided by its non-linear nature makes SVM be the least bad. It seems
logical that SMOTE+Tomek is the best when SMOTE was the best among the over-
sampling methods and Tomek’s links among the undersampling methods. In this
case it has occurred, but it is not always necessary the case.
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Table 8 Imbalanced data treatment.

Method NB K-NN SVM RF

RandOver -1.83 ‡ -2.01 ‡ -0.92 -1.24
SMOTE a +1.39 +1.06 +2.43 ‡ +1.40
ADASYN +0.23 -0.82 +1.49 +0.48
RandUnder -1.71 -1.69 -1.03 -1.43
ClustCentr -0.02 -0.85 +1.04 +0.62
NearMiss a +1.22 +1.03 +1.15 +1.55
Tomek +1.42 +0.99 +1.24 +2.51 ‡
RandOverUnder -1.75 -2.25 ‡ -1.20 -1.37
SMOTE+Tomek +1.81 +1.13 +4.61 ‡ +3.49 ‡

a The version is SMOTE borderline-2.
b The version is NearMiss-2.

4 Conclusions

We have presented in detail methods covering all steps involved in preprocessing
in predictive maintenance, both for offline and online learning scenarios when the
latter was feasible, as well as provided the reader with exhaustive bibliographic ref-
erences.

We have performed several experiments on public available real-world data from
the PHM Data Challenges 2014 and 2016, so that we could empirically test some of
the presented approaches.

We have seen that the data seem to have higher relevance than the posterior model-
ing technique in order to determine the preprocessing schema, both for regression
and classification problems.

As possible extensions, some online tests could be performed, in order to check
the online versions of the methods. Besides, more preprocessing strategies, model-
ing algorithms and datasets could be considered in order to extend the study and
check with higher certainty whether the modeling algorithm is much less relevant
than the data for the adequate preprocessing scheme.
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