Skip to main content

Toxicological Evaluations of Nanocomposites with Special Reference to Cancer Therapy

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

In the last few years, nanoparticles and nanocomposites have emerged as one of the promising candidates to scientists from various fields because of their immense potential to revolutionize science and technology. The nanoscale particles and composites are synthesized with a broad range of metals like gold, silver, iron, metal oxides and semiconductors. They are effective for water filtration, as a therapeutic agent, a very important agent for targeted drug delivery and also of immense importance in biomedical applications like Magnetic Resonance Imaging (MRI). The nanoscale particles have a wide range and have the potential to be used for the betterment of biomedical research, human health, and environment. Though these nanoscale materials are synthesized widely all over the world with various metals, carbon and graphene and other elements for research purposes and to understand their applications, the biological issues of toxicity associated with these materials and its impact on human health and environment are grossly unexplored. Detailed understanding of the factors regulating toxicity is lacking. A complete toxicological profile of these nanocomposites will ensure effective translation for a market available drug through clinical trial and other nano-based products. This chapter deals with the synthesis of nanocomposites, their applications and toxicological evaluation of the same in terms of human application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  Google Scholar 

  2. Northfelt DW, Martin FJ, Working P, Volberding PA, Russell J, Newman M, Amantea MA, Kaplan LD (1996) Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 36:55–63

    Article  CAS  Google Scholar 

  3. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  Google Scholar 

  4. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  Google Scholar 

  5. Morghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    Google Scholar 

  6. Matsuo H, Wakasugi M, Takanaga H, Ohtani H, Naito M, Tsuruo T, Sawada Y (2001) Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. J Control Release 77:77–86

    Article  CAS  Google Scholar 

  7. Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187

    Article  CAS  Google Scholar 

  8. Mohammadreza S, Soehnlen ES, Hao J et al (2010) Dual purpose prussian blue nanoparticles for cellular imaging and drug delivery: a new generation of T1-weighted MRI contrast and small molecule delivery agents. J Mater Chem 20(25):5251–5259

    Article  CAS  Google Scholar 

  9. Liang X, Deng Z, Jing L et al (2013) Prussian blue nanoparticles operate as a contrast agent for enhanced photoacoustic imaging. Chem Commun 49(94):11029–11031

    Article  CAS  Google Scholar 

  10. Fu G, Feng S, Liu W, Yue X (2012) Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem Commun 48(94):11567–11569

    Article  CAS  Google Scholar 

  11. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169

    Article  CAS  Google Scholar 

  12. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  CAS  Google Scholar 

  13. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  14. Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Min Mater Charact Eng 9:275–319

    Google Scholar 

  15. Beck JS, Vartuli JC (1996) Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves. Curr Opin Solid State Mater Sci 1:76–87

    Article  CAS  Google Scholar 

  16. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  CAS  Google Scholar 

  17. Liu AM, Hidajat K, Kawi S, Zhao DY (2000) A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem Commun 1145–1146

    Google Scholar 

  18. Zhuang TY, Shi JY, Ma BC, Wang W (2010) Chiral norbornane-bridged periodic mesoporous organosilicas. J Mater Chem 20:6026–6029

    Article  CAS  Google Scholar 

  19. Tsou CJ, Chu CY, Mou CY (2013) A broad range fluorescent pH sensor based on hollow mesoporous silica nanoparticles, utilising the surface curvature effect. J Mater Chem B 1:5557–5563

    Article  CAS  Google Scholar 

  20. Heidegger S, Gößl D, Schmidt A, Niedermayer S, Argyo C, Endres S, Bein T, Bourquin C (2016) Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8:938–948

    Article  CAS  Google Scholar 

  21. Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605

    Article  CAS  Google Scholar 

  22. Lin YS, Hurley KR, Haynes CL (2012) Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 3:364–374

    Article  CAS  Google Scholar 

  23. Tao X, Liu B, Hou Q, Xu H, Chen JF (2009) Enhanced accumulation and visible light-assisted degradation of azo dyes in poly (allylamine hydrochloride)-modified mesoporous silica spheres. Mater Res Bull 44:306–311

    Article  CAS  Google Scholar 

  24. Yuan Q, Chi Y, Yu N, Zhao N, Yan W, Li X, Dong B (2014) Amino-functionalized magnetic mesoporous microspheres with good adsorption properties. Mater Res Bull 49:279–284

    Article  CAS  Google Scholar 

  25. Huang CH, Chang KP, Oua HD, Chiang YC, Wanga CF (2011) Adsorption of cationic dyes onto mesoporous silica. Microporous Mesoporous Mater 141:102–109

    Article  CAS  Google Scholar 

  26. Li Y, Zhaou Y, Nie W, Song L, Chen P (2015) Highly efficient methylene blue dyes removal from aqueous systems by chitosan coated magnetic mesoporous silica nanoparticles. J Porous Mater 22:1383–1392

    Article  CAS  Google Scholar 

  27. Huang RS, Hou BF, Li HT, Fu XC, Xie CG (2015) Preparation of silver nanoparticles supported mesoporous silica microspheres with perpendicularly aligned mesopore channels and their antibacterial activities. RSC Adv 5:61184–61190

    Article  CAS  Google Scholar 

  28. Tian Y, Qi J, Zhang W, Cai Q, Jiang X (2014) Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces 6:12038–12045

    Article  CAS  Google Scholar 

  29. Liong M, France B, Bradley KA, Zink JI (2009) Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater 21:1684–1689

    Article  CAS  Google Scholar 

  30. Song J, Kim H, Jang Y, Jang J (2013) Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles. ACS Appl Mater Interfaces 5:11563–11568

    Article  CAS  Google Scholar 

  31. Chen CC, Wu HH, Huang HY, Liu CW, Chen YN (2016) Synthesis of high valence silver-loaded mesoporous silica with strong antibacterial properties. Int J Environ Res Pub Health 13:99–112

    Article  CAS  Google Scholar 

  32. Park JH, Gu L, Maltzahn GV, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  CAS  Google Scholar 

  33. Tian Y, Qi J, Zhang W, Cai W, Jiang X (2014) Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces 6:12038–12045

    Article  CAS  Google Scholar 

  34. Soto RJ, Yang L, Schoenfisch MH (2016) Functionalized mesoporous silica via an aminosilane surfactant ion exchange reaction: controlled scaffold design and nitric oxide release. ACS Appl Mater Interfaces 8:2220–2231

    Article  CAS  Google Scholar 

  35. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Adv 4:3974–3983

    Article  CAS  Google Scholar 

  36. Sadeghi B, Garmaroudi FS, Hashemi M, Nezhad HR, Nasrollahi A, Ardalan S, Ardalan S (2012) Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol 23:22–26

    Article  CAS  Google Scholar 

  37. Ghosh S, Vandana V (2016) Nano-structured mesoporous silica/silver composite: synthesis, characterization and targeted application towards water purification. Mater Res Bull 88:291–300

    Article  CAS  Google Scholar 

  38. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129:4538–4539

    Article  CAS  Google Scholar 

  39. Bhattacharyya S, Gedanken A (2008) Microwave-assisted insertion of silver nanoparticles into 3-D Mesoporous zinc oxide nanocomposites and nanorods. J Phys Chem C 112:659–665

    Article  CAS  Google Scholar 

  40. Hazra Chowdhury I, Ghosh S, Naskar MK (2016) Aqueous-based synthesis of mesoporous TiO2 and Ag–TiO2 nanopowders for efficient photodegradation of methylene blue. Ceram Int 42:2488–2496

    Article  CAS  Google Scholar 

  41. Sinha AK, Suzuki K, Takahara M, Azuma H, Nonaka T, Fukumoto K (2007) Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification. Angew Chem 119:2949–2952

    Article  Google Scholar 

  42. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  CAS  Google Scholar 

  43. Rao CNR, Sood AK, Subarhmanyam KS, Govindraj A (2009) Graphene: the new two- dimensional nanomaterial. Angew Chem 48:7752–7777

    Article  CAS  Google Scholar 

  44. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  45. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson ML, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  46. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  47. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad AH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196

    Article  CAS  Google Scholar 

  48. Wu J, Pisula W, Mullen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747

    Article  CAS  Google Scholar 

  49. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  CAS  Google Scholar 

  50. Acik M, Chabal YJ (2013) A review on thermal exfoliation of graphene oxide. J Mater Sci Res 2:101–112

    CAS  Google Scholar 

  51. Pei S, Zhao J, Du J, Ren W, Cheng HM (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474

    Article  CAS  Google Scholar 

  52. Wadhwa H, Kumar D, Mahendia S, Kumar S (2017) Microwave assisted facile synthesis of reduced graphene oxide-silver (RGO-Ag) nanocomposite and their application as active SERS substrate. Mater Chem Phys 194:274–282

    Article  CAS  Google Scholar 

  53. Saleh TA, Al-Shalalfeh MM, Al-Saadi AA (2018) Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering. Sens Actuators B 254:1110–1117

    Article  CAS  Google Scholar 

  54. Dar RA, Khare NG, Cole DP, Karna SP, Srivastava AK (2014) Green synthesis of a silver nanoparticle–graphene oxide composite and its application for As(III) detection. RSC Adv 4:14432–14440

    Article  CAS  Google Scholar 

  55. Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910

    Article  CAS  Google Scholar 

  56. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan MJ, Marder SR, Li J, Calame JP, Perry JW (2009) High energy density nanocomposites based on surface modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592

    Article  CAS  Google Scholar 

  57. Ehrhardt C, Fettkenhauer C, Glenneberg J, Münchgesang W, Pientschke C, Großmann T, Zenkner M, Wagner G, Leipner HS, Buchsteiner AS, Diestelhorst M, Lemm S, Beige H, Ebbinghaus SG (2013) BaTiO3–P(VDF-HFP) nanocomposite dielectrics – influence of surface modification and dispersion additives. Mater Sci Eng, B 178:881–888

    Article  CAS  Google Scholar 

  58. Wagener P, Brandes G, Schwenke A, Barcikowski S (2011) Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites. Phys Chem Chem Phys 13:5120–5126

    Article  CAS  Google Scholar 

  59. Toor A, Pisano AP (2015) Gold nanoparticle/PVDF polymer composite with improved particle dispersion. In: Proceedings of the 15th IEEE international conference on nanotechnology, Rome, Italy

    Google Scholar 

  60. Kanahara M, Shimomuraa M, Yabu H (2014) Fabrication of gold nanoparticle–polymer composite particles with raspberry, core–shell and amorphous morphologies at room temperature via electrostatic interactions and diffusion. Soft Matter 10:275–280

    Article  CAS  Google Scholar 

  61. Coulston RJ, Jones ST, Lee TC, Appel EA, Scherman EA (2011) Supramolecular gold nanoparticle–polymer composites formed in water with cucurbit[8]uril. Chem Commun 47:164–166

    Article  CAS  Google Scholar 

  62. Jin X, Zhou L, Zhu B, Jiang X, Zhu N (2018) Silver-dendrimer nanocomposites as oligonucleotide labels for electrochemical stripping detection of DNA hybridization. Biosens Bioelectron 107:237–243

    Article  CAS  Google Scholar 

  63. Zhang S, Qiu G, Ting YP, Chung TS (2013) Silver–PEGylated dendrimer nanocomposite coating for anti-foulingthin film composite membranes for water treatment. Colloids Surf, A 436:207–214

    Article  CAS  Google Scholar 

  64. Ruiz-Sanchez AJ, Parolo C, Miller BS, Gray ER, Schlegel K, McKendry RA (2017) Tuneable plasmonic gold dendrimer nanochains for sensitive disease detection. J Mater Chem B 5:7262–7266

    Article  CAS  Google Scholar 

  65. Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B. 109(29):13857–13870

    Article  CAS  Google Scholar 

  66. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  67. Shaw CP, Fernig DG, Lévy R (2011) Gold nanoparticles as advanced building blocks for nanoscale self-assembled systems. J Mater Chem 21(33):12181–12187

    Article  CAS  Google Scholar 

  68. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118

    Article  CAS  Google Scholar 

  69. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photother-mal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228

    Article  Google Scholar 

  70. Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. PhotochemPhotobiol 85(1):21–32

    CAS  Google Scholar 

  71. Liang S, Zhao Y, Xu S, Wu X, Chen J, Wu M, Zhao X (2015) A silica-gold-silica nanocomposite for photothermal therapy in near-infrared region 7(1):85-93

    Google Scholar 

  72. Mishra YK, Mohapatra S, Avasthi DK, Kabiraj D, Lalla NP, Pivin JC, Sharma H, Kar R, Singh N (2007) Gold–silica nanocomposites for the detection of human ovarian cancer cells: a preliminary study. Nanotechnology 18(34):345606

    Article  CAS  Google Scholar 

  73. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. ChemSoc Rev 38(6):1759–1782

    CAS  Google Scholar 

  74. Rasch MR, Rossinyol E, Hueso JL, Goodfellow BW, Arbiol J, Korgel BA (2010) Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. Nano Lett 10(9):3733–3739

    Article  CAS  Google Scholar 

  75. Chen Y, Bose A, Bothun GD (2010) Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating. ACS Nano 4(6):3215–3221

    Article  CAS  Google Scholar 

  76. Ahmed S, Madathingal RR, Wunder SL, Chen Y, Bothun G (2011) Hydration repulsion effects on the formation of supported lipid bilayers. Soft Matter 7(5):1936–1947

    Article  CAS  Google Scholar 

  77. Von White G,, Chen Y, Roder-Hanna J, Bothun GD, Kitchens CL (2012) Structural and thermal analysis of lipid vesicles encapsulating hydrophobic gold nanoparticles. ACS Nano 6(6):4678–4685

    Google Scholar 

  78. Wijaya A, Hamad-Schifferli K (2007) High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir 23(19):9546–9550

    Article  CAS  Google Scholar 

  79. Xia T, Rome L, Nel A (2008) Nanobiology: particles slip cell security. Nat Mater 7(7):519–520

    Article  CAS  Google Scholar 

  80. Kang JH, Ko YT (2015) Lipid-coated gold nanocomposites for enhanced cancer therapy. Int J Nanomedicine 10(Spec Iss):33–45

    Google Scholar 

  81. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancer 6(3):1670–1690

    Article  CAS  Google Scholar 

  82. Lou JJ, Chua YL, Chew EH, Gao J, Bushell M, Hagen T (2010) Inhibition of hypoxiainducible factor-1alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PLoS One 5(5):e10522

    Article  CAS  Google Scholar 

  83. Nath A, Pal R, Singh LM, Saikia H, Rahaman H, Ghosh SK, Mazumder R, Sengupta M (2018) Gold-manganese oxide nanocomposite suppresses hypoxia and augments pro-inflamatory cytokines in tumor associated macrophages. Int Immunopharmacol 57:157–164

    Article  CAS  Google Scholar 

  84. Liu Y, Lv X, Liu H, Zhou Z, Huang J, Lei S, Cai S, Chen Z, Guo Y, Chen Z, Zhou X, Nie L (2018) Porous gold nanocluster-decorated manganese monoxide nanocomposites for microenvironment-activatable MR/photoacoustic? CT Tumor Imag 10(8):3631–3638

    Google Scholar 

  85. Suresh L, Brahman PK, Reddy KR, Bondili JS (2018) Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker 112:43–51

    Google Scholar 

  86. Rizwan M, Elma S, Lim SA, Ahmed MU (2018) AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for label-free detection of carcinoembryonic antigen 107:211–217

    Google Scholar 

  87. Christou A, Stec AA, Ahmed W, Aschberger K, Amentia V (2016) A review of exposure and toxicological aspects of carbon nanotubes, and as additives to fire retardants in polymers 46(1):74–95

    Google Scholar 

  88. Contreras-Caceres R, Sanchez-Iglesias A, Karg M, Pastoriza-Santos I, Perez-Juste J, Pacifico J, Hellweg T, Fernández-Barbero A, Liz-Marzan LM (2008) Encapsulation and growth of gold nanoparticles in thermoresponsive microgel. Adv Mater 20:1666–1670

    Article  CAS  Google Scholar 

  89. Contreras-Caceres R, Pastoriza-Santos I, Alvarez-Puebla RA, Perez-Juste J, FernandezBarbero A, Liz-Marzan LM (2010) Growing Au/Ag nanoparticles within microgel colloids for improved SERS detection. Chem Eur J 16:9462–9467

    Article  CAS  Google Scholar 

  90. Sari TK, Takahashi F, Jin J, Zein R, Munat E (2018) Electrochemical determination of Chromium(VI) in river water with Gold nanoparticles-Graaphene nanocomposites modified electrodes 34(2):155–160

    Google Scholar 

  91. Yin PT, Kim TH, Choi JW, Lee KB (2013) Prospects for graphene–nanoparticle-based hybrid sensors. Phys Chem Chem Phys 15:12785–12799

    Article  CAS  Google Scholar 

  92. Benvidi A, Firouzabadi AD, Moshtaghiun SM, Mazloum-Ardakani M, Tezerjani MD (2015) Ultrasensitive DNA sensor based on gold nanoparticles/reduced graphene oxide/glassy carbon electrode. Anal Biochem 484:24–30

    Article  CAS  Google Scholar 

  93. Yang G, Li L, Rana RK, Zhu JJ (2013) Assembled gold nanoparticles on nitrogen-doped graphene for ultrasensitive electrochemical detection of matrix metalloproteinase-2. Carbon 61:357–366

    Article  CAS  Google Scholar 

  94. Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910

    Article  CAS  Google Scholar 

  95. Wang C, Li J, Amatore C, Chen Y, Jiang H, Wang XM (2011) Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew Chem Int Ed 50:11644–11648

    Article  CAS  Google Scholar 

  96. Zhang G, Chang H, Amatore C, Chen Y, Jiang H, Wang X (2013) Apoptosis induction and inhibition of drug resistant tumor growth in vivo involving daunorubicin-loaded graphene–gold composites. J Mater Chem B 1:493–499

    Article  CAS  Google Scholar 

  97. Pinto AM, Gonçalves IC, Magalhães FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf, B 111:188–202

    Article  CAS  Google Scholar 

  98. Seabra AB, Paula AJ, de Lima R, Alves OL, Duran N (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27:159–168

    Article  CAS  Google Scholar 

  99. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–210

    Article  CAS  Google Scholar 

  100. Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22:105–115

    Article  CAS  Google Scholar 

  101. Shi X, Wang SH, Van Antwerp ME, Chen X, Baker JR Jr (2009) Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer stabilized gold nanoparticles 134(7):1373–1379

    CAS  Google Scholar 

  102. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK (2009) Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 38:185–196

    Article  CAS  Google Scholar 

  103. Cheng Y, Wang J, Rao T, He X, Xu T (2008) Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 13:1447–1471

    Article  CAS  Google Scholar 

  104. Khan MK, Nigavekar SS, Minc LD, Kariapper MS, Nair BM, Lesniak WG, Balogh LP (2005) In vivo biodistribution of dendrimers and dendrimer nanocomposites—implications for cancer imaging and therapy. Technol Cancer Res Treat 4:603–613

    Article  CAS  Google Scholar 

  105. Leung KC, Xuan S, Zhu X, Wang D, Chak CP, Lee SF, Ho WK, Chung BC (2012) Gold and iron oxide hybrid nanocomposite materials 41(5):1911–1928

    CAS  Google Scholar 

  106. Rai M, Yadav A, Gade A (2001) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  Google Scholar 

  107. Grishchenko L, Medvedeva S, Aleksandrova G, Feoktistova L, Sapozhnikov A, Sukhov B, Trofimov B (2006) Redox reactions of arabinogalactan with silver ions and formation of nanocomposites. Russian J General Chem 76(7):1111–1116

    Google Scholar 

  108. Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S (2009) Non-cytotoxic silver nanoparticle—polysaccharide nanocomposites with antimicrobial activity. Biomacromol 10(6):1429

    Article  CAS  Google Scholar 

  109. Chen JP (2007) Late angiographic stent thrombosis (LAST): the cloud behind the drug—eluting stent silver lining? J Invasive Cardiol 19(9):395–400

    Google Scholar 

  110. Kuo PL, Chen WF (2003) Formation of silver nanoparticles under structured amino groups in pseudo—dendritic poly(allylamine) derivatives. J Phys Chem B 107(41):11267–11272

    Article  CAS  Google Scholar 

  111. Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal—chitosan nanocomposites. Colloids Surf, B 39(1–2):31–37

    Article  CAS  Google Scholar 

  112. Fu J, Ji J, Fan D, Shen J (2006) Construction of antibacterial multilayer films containing nanosilver via layer—by—layer assembly of heparin and chitosan—silver ions complex. J Biomed Mater Res, Part A 79(3):665–674

    Article  CAS  Google Scholar 

  113. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer—silver complexes and nanocomposites as antimicrobial agents 1(1):18–21

    CAS  Google Scholar 

  114. Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan—Ag—nanoparticle composite. Int J Food Microbiol 124(2):142–146

    Article  CAS  Google Scholar 

  115. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22(2):235–242

    Article  CAS  Google Scholar 

  116. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharroman C, Moya JS (2009) The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 20(8):85103

    Article  CAS  Google Scholar 

  117. Gajbhiye MB, Kesharwani JG, Ingle AP, Gade AK, Rai MK (2009) Fungus—mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fl uconazole. Nanomedicine 5:382–386

    Article  CAS  Google Scholar 

  118. Shaheen F, Hammad Aziz M, Fakhar-E-Alam M, Atif M et al (2017) An in vitro study of the photodynamic effectiveness of GO-Ag Nanocomposites against human breast cancer cells 7(11) Pii:E401

    Google Scholar 

  119. Gurunathan S, Han JW, Par JH (2015) Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257–6276

    Article  CAS  Google Scholar 

  120. Ghaseminezhad SM, Shojaosadati SA (2016) Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch 144:454–463

    Google Scholar 

  121. Fakhri A, Tahami S, Nejad PA (2017) Preparation and characterization of Fe3O4-Ag2O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer 175:83–88

    Google Scholar 

  122. Ponnaiah SK, Periakaruppan P, Vellaichamy B (2018) New electrochemical sensor based on a silver-doped iron oxide nanocomposite coupled with polyaniline and its sensing application for picomolar level detection of uric acid in human blood and urine samples

    Google Scholar 

  123. Jin X, Zhou L, Zhu B, Jiang X, Zhu N (2018) Silver-dendrimer nanocomposites as oligonucleotide labels for electrochemical stripping detection of DNA hybridization 107:237–243

    CAS  Google Scholar 

  124. Wang YZ, Hao N, Feng QM, Shi HW, Xu JJ, Che HY (2016) A ratiometric electrochemiluminiscence detection for cancer cells using g-C3N4 nanosheet and Ag-PANAM-luminol nanocomposites 77:76–82

    Google Scholar 

  125. Matai I, Sachdev A, Gopinath P (2015) Multicomponent 5-fluorouracil loaded PANAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells 3(3):457–68

    Google Scholar 

  126. Naha PC, Byrne HJ (2013) Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro. Aquat Toxicol 132–133:61–72

    Article  CAS  Google Scholar 

  127. Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, Mulcock C, Weyrich AS, Brooks BD, Ghandehari H et al (2012) Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 6:9900–9910

    Google Scholar 

  128. Sun Y, Guo F, Zou Z, Li C, Hong X, Zhao Y, Wang C, Wang H, Liu H, Yang P et al (2015) Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Part Fibre Toxicol 12:4

    Article  CAS  Google Scholar 

  129. Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Benter IF (2016) Impact of PANAM delivery systems on signal transduction pathways in vivo: modulation of ERK1/2 and p 38 MAP kinase signaling in the normal and diabetic kidney 514(2):353–363

    Google Scholar 

  130. Heiden TC, Dengler E, Kao WJ, Heideman W, Peterson RE (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79

    Article  CAS  Google Scholar 

  131. Naha PC, Mukherjee SP, Byrne HJ (2018) Toxicology of engineered nanoparticles: Focus on poly (amidoamine) dendriers 15(2) pii:E338

    Google Scholar 

  132. Wang X, Wang Y, Jiang M, Shan Y, Jin X, Gong M, Wang X (2018) Functional electrospun nanofibers-based electrochemiluminiscence immunosensor for detection of the TSP53 using RuAg/SiO2NPs as signal enhancers 548:15–22

    Google Scholar 

  133. Song Y, Jiang H, Wang B, Kong Y, Chen J (2018) Silver-incorporated mussel-inspired polydopamine coatings on mesoporous silica as an efficient nanocatalyst and antimicrobial agent 10(2):1792–1801

    CAS  Google Scholar 

  134. Cao T, Li Z, Xiong Y, Yang Y, Xu S, Bisson T, Gupta R, Xu Z (2017) Silica-silver nanocomposites as regenerable sorbents for Hg0 removal of flue gases 51(20):11909–11917

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arunima Biswas or Sk. Manirul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazra Chowdhury, A., Bagchi, A., Biswas, A., Manirul Islam, S. (2019). Toxicological Evaluations of Nanocomposites with Special Reference to Cancer Therapy. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_38

Download citation

Publish with us

Policies and ethics