Skip to main content

Nano-bio Interactions and Ecotoxicity in Aquatic Environment: Plenty of Room at the Bottom but Tyranny at the Top!

  • Chapter
  • First Online:
Nanomaterials: Ecotoxicity, Safety, and Public Perception

Abstract

Nanotechnology has evolved as an outstanding versatile technology expected to become ubiquitous and to revolutionize the functionality of products in various sectors. The hallmarks of nanomaterials are higher surface area to volume ratio and greater interfacial nature that pave way to their unique fascinating features and functionalities. The environmental fate and behaviour of nanoparticles entail bioavailability , uptake, internalization , and toxicity , which are conditioned by and interactions of the chemistry of both the nanomaterial and the ambient aquatic environment , and the biology of the organisms. Oxidative stress is a predictive paradigm for ambient nanomaterials’ toxicity. Nanoparticles can cross trophic boundaries via bioconcentration and biomagnifications through food chain . Majority of the nanotoxicological studies undertaken so far are descriptive or ‘‘proof-of-principle’’ experiments, which have tried to document toxic effects on individual organisms, bearing hardly any concrete ecological implications. To bridge the knowledge gap an urgent need is to undertake comprehensive studies for unveiling interactions and effects of NPs on different species belonging to different trophic levels of the aquatic ecosystem, and their toxicological responses from genetic to systemic levels. The life cycle assessment and ecological risk assessment of engineered nanomaterials are imperatives for the establishment and implementation of effective and protective regulatory policy. This chapter provides an illustrated account of promises and pitfalls of nanomaterials on an ecotoxicological canvas, with a focus on their toxic effects on life at hierarchical levels of both biological and ecological organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  • Beddow J, Stolpe B, Cole P, Lead JR, Sapp M, Lyons BP, Colbeck I, Whitby C (2014) Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes. Environ Microbiol Rep 6(5):448–458

    Article  CAS  Google Scholar 

  • Bhattacharya K, Davoren M, Boertz J, Schins R, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fiber Toxicol 6:17

    Article  Google Scholar 

  • Biswas JK, Sarkar D (2018) Nanopollution in the aquatic environment and ecotoxicity: no nano issue! Curr Poll Rep (in press)

    Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang JW (1998) A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ Sci Technol 32:2887–2899

    Article  CAS  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44. https://doi.org/10.1038/nature01451

    Article  CAS  PubMed  Google Scholar 

  • Contado C (2015) Nanomaterials in consumer products: a challenging analytical problem. Front Chem 3:48. https://doi.org/10.3389/fchem.2015.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. https://doi.org/10.1016/j.tifs.2011.09.004

    Article  CAS  Google Scholar 

  • Cheng LC, Jiang X, Wang J, Chen C, Liu RS (2013) Nano-bio effects: interaction of nanomaterials with cells. Nanoscale 7:3547–3569

    Article  Google Scholar 

  • Colman BP, Wang S-Y, Auffan M, Wiesner MR, Bernhardt ES (2012) Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment. Ecotoxicol Lond Engl 21:1867–1877

    Article  CAS  Google Scholar 

  • Dayem AA, Hossain MK, Lee SB, Kim K, Saha SK, Yang G-M, Choi HY, Cho S-G (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18:120. https://doi.org/10.3390/ijms18010120

    Article  CAS  Google Scholar 

  • Doiron K, Pelletier E, Lemarchand K (2012) Impact of polymer-coated silver nanoparticles on marine microbial communities: a microcosm study. Aquat Toxicol Amst Neth 124–125:22–27

    Article  Google Scholar 

  • Drobne D (2007) Nanotoxicology for safe and sustainable nanotechnology. Arh Hig Rada Toksikol 58:471–478

    Article  CAS  Google Scholar 

  • Du J, Cai J, Wang S, You H (2017) Oxidative stress and apotosis to zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate (PFOS) and ZnO nanoparticles. Int J Occup Med Environ Health 30(2):213–229

    PubMed  Google Scholar 

  • Dunphy Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693

    Article  CAS  Google Scholar 

  • Elimelech M, Omelia CR (1990) Effect of particle-size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir 6:1153–1163

    Article  CAS  Google Scholar 

  • Fard JK, Jafari S, Eghbal MA (2015) A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 5:447–454

    Article  CAS  Google Scholar 

  • Fabrega J, Samuel Luoma R, Tyler Charles, Tamava R, Galloway J (2011) Silver nanoparticles behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE 8:e84441. https://doi.org/10.1371/journal.pone.0084441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64–75

    Article  CAS  Google Scholar 

  • Gao Y, Yang T, Jin J (2015) Nanoparticle pollution and associated increasing potential risks on environment and human health: a case study of China. Environ Sci Pollut Res 22:19297–19306

    Article  Google Scholar 

  • Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, von Gleich A, Gottschalk F (2018) Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep 8:1565. https://doi.org/10.1038/s41598-018-19275-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffitt RJ, Luo J, Gao J et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978. https://doi.org/10.1897/08-002.1

    Article  CAS  PubMed  Google Scholar 

  • Hao L Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk. Ecotoxicol Environ Saf 91:52–60

    Google Scholar 

  • He X, Aker WG, Fub PP, Hwang H-M (2015) Toxicity of engineered metal oxide nanomaterials mediated by nano–bio–eco–interactions: a review and perspective. Environ Sci Nano. https://doi.org/10.1039/c5en00094g

    CAS  Google Scholar 

  • Hou J, Wang X, Hayat T, Wang X (2016) Ecotoxicological effects and mechanism of CuO nanoparticles to individual organism. Environ Pollut. http://dx.doi.org/10.1016/j.envpol.2016.11.066

  • Holbrook RD, Murphy KE, Morrow JB, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3:352–355

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  Google Scholar 

  • Karthikeyeni S, Siva Vijayakumar T, Vasanth S, Ganesh A, Manimegalai M, Subramanian P (2013) Biosynthesis of iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. J Acad Indus Res 1(10):645–649

    Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1:65–70

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  Google Scholar 

  • Khanna P, Ong C, Bay BH, Baeg GH (2015) Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5:1163–1180

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TE, Handy RD, Lyon DY, Mahendra S, McLaughlinand MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Lee JC, Son YO, Pratheeshkumar P, Shi X (2012) Oxidative stress and metal carcinogenesis. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2012.06.002

    Article  CAS  Google Scholar 

  • Lin W, Huang YW, Zhou XD, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217(3):252–259

    Article  CAS  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol 41:4465–4470

    Article  CAS  Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    Article  CAS  Google Scholar 

  • Martin AL, Bernas LM, Rutt BK, Foster PJ, Gillies ER (2008) Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjug Chem 19:2375–2384. https://doi.org/10.1021/bc800209u

    Article  CAS  PubMed  Google Scholar 

  • Meesters JAJ, Veltman K, Hendriks AJ, van de Meent D (2013) Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. Integr Environ Assess Manag 9(3):15–26

    Article  Google Scholar 

  • Metcalfe AM, Stoll S, Burd A (2006) The effect of inhomogeneous stickiness on polymer aggregation. J Colloid Interface Sci 298:629–638

    Article  CAS  Google Scholar 

  • Miao AJ, Quigg A, Schwehr K, Xu C, Santschi P (2007) Engineered silver nanoparticles (ESNs) in coastal marine environments: bioavailability and toxic effects to the phytoplankton Thalassiosira weissflogii. In: 2nd international conference on the environmental effects of nanoparticles and nanomaterials, 24th–25th September, London, UK

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Kaegi R, Odzak N, Sigg L, BehraR (2007) Toxicity mechanisms of silver nanoparticles to Chlamydomonas reinhardtii. In: 2nd international conference on the environmental effects of nanoparticles and nanomaterials (oral presentation), London, UK

    Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  • OECD (2012) Important issues on risk assessment of manufactured nanomaterials, Series on the safety of manufactured nanomaterials No. 33 E. OECD Environment Directorate, Health and Safety Division, Ed. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Ojamae L, Aulin C, Pedersen H, Kall PO (2006) IR and quantum-chemical studies of carboxylic acid and glycine adsorption on utile TiO2 nanoparticles. J Colloid Interface Sci 296:71–78

    Article  Google Scholar 

  • Panzarini E, Mariano S, Carata E, Mura F, Rossi M, Dini L (2018) Intracellular transport of silver and gold nanoparticles and biological responses: an update. Int J Mol Sci 19(5):1305. https://doi.org/10.3390/ijms19051305

    Article  Google Scholar 

  • Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180(3):222–229

    Article  CAS  Google Scholar 

  • Part F, Zecha G, Causon T, Sinner E-K, Huber-Humer M (2015) Current limitations and challenges in nanowaste detection, characterisation and monitoring. Waste Manage 43:407–420

    Article  CAS  Google Scholar 

  • Peijnenburg WJGM, Baalousha M, Chen J, Chaudry Q, Von der kammer F, Kuhlbusch TAJ, Lead J, Nickel C, Quik JTK, Renker M, Wang Z, Koelmans AA (2015) A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Crit Rev Environ Sci Technol 45(19):2084–2134

    Article  CAS  Google Scholar 

  • Pu Y, Tang F, Adam P-M, Iaratte B, Ionescu RE (2016) Fate and characterization factors of nanoparticles in seventeen sub-continental freshwaters: a case study on copper nanoparticles. Environ Sci Technol. https://doi.org/10.1021/acs.est.5b06300

    Article  CAS  Google Scholar 

  • Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, Janes SM, Bakr OM, Cingolani R, Stellacci F, Pompa PP (2014) A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6:7052–7061

    Article  CAS  Google Scholar 

  • SCENHIR (2007) Opinion on: the scientific aspects of the existing and proposed definition relating to products of nanoscience and nanotechnologies. In: Brussels: European commission health and consumer protection directorate general

    Google Scholar 

  • Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ (2016) Nanomaterials in the aquatic environment: a European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ Toxicol Chem 35(5):1055–1067

    Article  CAS  Google Scholar 

  • Sheng Z, Liu Y (2017) Potential impacts of silver nanoparticles on bacteria in the aquatic environment. J Environ Manage 191:290–296

    Article  CAS  Google Scholar 

  • Shi X, Thomas TP, Myc L, Kotlyar A, Baker JR (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly (amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9:5712–5720. https://doi.org/10.1039/b709147h

    Article  CAS  PubMed  Google Scholar 

  • Shi X, von dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6:714–719

    Article  CAS  Google Scholar 

  • Sinha R, Karan R, Sinha A, Khare SK (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102(2):1516–1520

    Article  CAS  Google Scholar 

  • Skjolding LM, Sørensen SN, Hartmann NB, Hjorth R, Hansen SF, Baun A (2016) A critical review of aquatic ecotoxicity testing of nanoparticles—The quest for disclosing nanoparticle effects. Angew Chem Int Ed. https://doi.org/10.1002/anie.201604964

    Article  CAS  Google Scholar 

  • Tsuzuki T (2009) Commercial production of inorganic nanoparticles. Int J Nanotechnol 6:567–578

    Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21. https://doi.org/10.1002/smll.200901158

    Article  CAS  PubMed  Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807. https://doi.org/10.1021/la0497200

    Article  PubMed  Google Scholar 

  • Wang D, Sun L, Liu W, Chang W, Gao X, Wang Z (2009) Photoinduced DNA cleavage by alpha-, beta-, and gamma-cyclodextrin-bicapped C60 supramolecular complexes. Environ Sci Technol 43:5825–5829

    Article  CAS  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    Article  CAS  Google Scholar 

  • Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016) Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater. http://dx.doi.org/10.1016/j.jhazmat.2016.01.066

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ SciTechnol 40:4336–4345

    Article  CAS  Google Scholar 

  • Yoo-iam M, Chaichana R, Satapanajaru T (2014) Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus). Chem Spec Bioavail 26(4):257–265

    Article  Google Scholar 

  • Zhao C-M, Wang W-X (2010) Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ Sci Technol 44:7699–7704

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, Liu X, Xie X, Zhang K, Xing B (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Haz Mater 197:304–310

    Article  CAS  Google Scholar 

  • Zhu M-T, Wang B, Wang Y, Yuan L, Wang H-J, Wang M, Ouyang H, Chai Z-F, Feng W-Y, Zhao Y-L (2011) Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: risk factors for early atherosclerosis. Toxicol Lett 203:162–171. https://doi.org/10.1016/j.toxlet.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78:209–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, J.K., Rai, M., Ingle, A.P., Mondal, M., Biswas, S. (2018). Nano-bio Interactions and Ecotoxicity in Aquatic Environment: Plenty of Room at the Bottom but Tyranny at the Top!. In: Rai, M., Biswas, J. (eds) Nanomaterials: Ecotoxicity, Safety, and Public Perception. Springer, Cham. https://doi.org/10.1007/978-3-030-05144-0_2

Download citation

Publish with us

Policies and ethics