Skip to main content

Amorphous and Semicrystalline Thermoplastic Polymer Nanocomposites Applied in Biomedical Engineering

  • Chapter
  • First Online:
Polymer Nanocomposites in Biomedical Engineering

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

Abstract

This chapter is intended to provide an insight into the biomedically engineered polymer nanocomposites (PNCs). It provides an introductory review about the amorphous, semicrystalline thermoplastic PNCs. The processing techniques pertaining to the amorphous, semicrystalline thermoplastic PNCs along with their consequences on the nanocomposite formation are mentioned. The impact on the addition of various fillers such as carbon nanotubes (CNTs) and graphene on the overall characteristics of the PNCs is elaborated. The examples of different amorphous and semicrystalline PNCs and their applications in biomedical engineering are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi F, Mirzadeh H, Katbab AA (2002) Surface modification of silicone rubber for biomedical applications. Polym Int 51:882–888

    Google Scholar 

  • Abdullah N, Yusof N, Ismail AF, Othman FE, Jaafar J, Jye LW, Salleh WN, Aziz F, Misdan N (2018) Effects of manganese (VI) oxide on polyacrylonitrile-based activated carbon nanofibers (ACNFs) and its preliminary study for adsorption of lead (II) ions. Emergent Mater 1(1–2):1–6

    Google Scholar 

  • Abraham TN, Siengchin S, Ratna D, Karger-Kocsis J (2010) Effect of modified layered silicates on the confined crystalline morphology and thermomechanical properties of poly(ethylene oxide) nanocomposites. J Appl Polym Sci 118:1297–1305

    Google Scholar 

  • Agarwal V, Harutoshi O, Kentarou N, Bhattacharya B (2011) Inspection of pipe inner surface using advanced pipe crawler robot with PVDF sensor based rotating probe. Sens Transducers 127:45

    Google Scholar 

  • Ahmad J, Deshmukh K, Hägg MB (2013) Influence of TiO2 on the chemical, mechanical and gas separation properties of polyvinyl alcohol-titanium dioxide (PVA-TiO2) nanocomposite membrane. Inter J Polym Anal Character 18(4):287–296

    Google Scholar 

  • Ahmed AR, Bodmeier R (2009) Preparation of preformed porous PLGA microparticles and antisense oligonucleotides loading. Eur J Pharm Biopharm 71:264–270

    Google Scholar 

  • Ai H, Jones SA, Lvov YM (2003) Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem Biophys 39:23

    Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng: R: Rep 28:1–63

    Google Scholar 

  • AL‐Rabab’ah M, Hamadneh W, Alsalem I, Khraisat A, Abu Karaky A (2017) Use of high performance polymers as dental implant abutments and frameworks: a case series report. J. Prosthodontics 1–11

    Google Scholar 

  • Aronov AM, Bol’basov EN, Guzeev VV, Dvornichenkov MV, Tverdokhlebov SI, Khlusov IA (2010) Biological composites based on fluoropolymers with hydroxyapatite for intramedullary implants. Biomed Eng 44:108–113

    Google Scholar 

  • Avella M, Errico ME, Martelli S, Martuscelli E (2001) Preparation methodologies of polymer matrix nanocomposites. Appl Organomet Chem 15:435–439

    Google Scholar 

  • Beyer G (2002) Nanocomposites: a new class of flame retardants for polymers. Plast Addit Compound 4:22–28

    Google Scholar 

  • Bidra AS, Rungruanganunt P (2013) Clinical outcomes of implant abutments in the anterior region: a systematic review. J Esthetic Restorative Dent 25:159–176

    Google Scholar 

  • Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776

    Google Scholar 

  • Borole DD, Kapadi UR, Mahulikar PP, Hundiwale DG (2006) Conducting polymers: an emerging field of biosensors. Des Monomers Polym 9:1–1

    Google Scholar 

  • Braga FJ, Rogero SO, Couto AA, Marques RF, Ribeiro AA, Campos JS (2007) Characterization of PVDF/HAP composites for medical applications. Mater Res 10:247–251

    Google Scholar 

  • Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD (2002) Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos Sci Technol 62:1105–1112

    Google Scholar 

  • Cypes SH, Saltzman WM, Giannelis EP (2003) Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties. J Controlled Release 90:163–169

    Google Scholar 

  • Dembereldorj U, Kim M, Kim S, Ganbold EO, Lee SY, Joo SW (2012) A spatiotemporal anticancer drug release platform of PEGylated graphene oxide triggered by glutathione in vitro and in vivo. J Mater Chem 22:23845–23851

    Google Scholar 

  • Depan D, Girase B, Shah JS, Misra RDK (2011) Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater 7:3432–3445

    Google Scholar 

  • Deshmukh K, Ahamed MB, Pasha SKK, Deshmukh RR, Bhagat PR (2015) Highly dispersible graphene oxide reinforced polypyrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Adv 5(76):61933–61945

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Chidambaram K, Sadasivuni KK, Ponnamma D, AlMaadeed MAA (2016a) Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methyl cellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polym Plast Tech Eng 55(12):1240–1253

    Google Scholar 

  • Deshmukh K, Ahamed MB, Deshmukh RR, Pasha SKK, Sadasivuni KK, Ponnamma D, Chidambaram K (2016b) Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage applications. Euro Polym J 76:14–27

    Google Scholar 

  • Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Deshmukh RR, Pasha SKK, Polu AR, Chidambaram K (2017a) Fumed SiO2 nanoparticle reinforced biopolymer blend nanocomposites with high dielectric constant and low dielectric loss for flexible organic electronics. J Appl Polym Sci 134(5):44427

    Google Scholar 

  • Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MAA, Pasha SKK, Deshmukh RR, Chidambaram K (2017b) Graphene oxide reinforced poly(4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater Chem Phys 186:188–201

    Google Scholar 

  • Dhand C, Singh SP, Arya SK, Datta M, Malhotra BD (2007) Cholesterol biosensor based on electrophoretically deposited conducting polymer film derived from nano-structured polyaniline colloidal suspension. Anal Chim Acta 602:244–251

    Google Scholar 

  • Esfahani SR, Tavangarian F, Emadi R (2008) Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement. Mater Lett 62:3428–3430

    Google Scholar 

  • Fadiran OO, Girouard N, Meredith JC (2018) Pollen fillers for reinforcing and strengthening of epoxy composites. Emergent Mater 1(1–2):95–103

    Google Scholar 

  • Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties and biocompatibility of graphene-reinforced chitosan composites. Biomacromol 11:2345–2351

    Google Scholar 

  • Fang Q, Chetwynd DG, Gardner JW, Toh C, Bartlett PN (2003) A preliminary study of conducting polymers as microvalve seals. Mater Sci Eng, A 355:62–67

    Google Scholar 

  • Fathi MH, Doostmohammadi A (2009) Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J Mater Process Technol 209:1385–1391

    Google Scholar 

  • Fayyad EM, Sadasivuni KK, Ponnamma D, Al-Maadeed MAA (2016) Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel. carbohyd Polym 151:871–878

    Google Scholar 

  • Frazer RQ, Byron RT, Osborne, PB, West KP (2005) PMMA: an essential material in medicine and dentistry. J Long-Term Eff Med Implants 15

    Google Scholar 

  • Gaharwar AK, Schexnailder P, Kaul V, Akkus O, Zakharov D, Seifert S, Schmidt G (2010) Highly extensible bio-nanocomposite films with direction-dependent properties. Adv Func Mater 20:429–436

    Google Scholar 

  • Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu CJ, Akkus O, Schmidt G (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12:779–793

    Google Scholar 

  • Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Khademhosseini A (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25:3329–3336

    Google Scholar 

  • Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Google Scholar 

  • Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Controlled Release 173:75–88

    Google Scholar 

  • Grant S, Davis F, Law KA, Barton AC, Collyer SD, Higson SP, Gibson TD (2005) Label-free and reversible immunosensor based upon an ac impedance interrogation protocol. Anal Chim Acta 537:163–168

    Google Scholar 

  • Harris GR (2009) Piezoelectric poly(Vinylidene) fluoride (PVDF) in biomedical ultrasound exposimetry. Biomed Appl Electroact Polym Actuators 369–83

    Google Scholar 

  • Hasegawa N, Tsukigase A, Usuki A (2005) Silicate layer dispersion in copolymer/clay nanocomposites. J Appl Polym Sci 98:1554–1557

    Google Scholar 

  • Hench LL (2006) The story of Bioglass®. J Mater Sci—Mater Med 17:967–978

    Google Scholar 

  • Hong Z, Liu A, Chen L, Chen X, Jing X (2009) Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method. J Non-Cryst Solids 355:368–372

    Google Scholar 

  • Janson A, Minier-Matar J, Al-Shamari E, Hussain A, Sharma R, Rowley D, Adham S (2018) Evaluation of new ion exchange resins for hardness removal from boiler feedwater. Emergent Mater 1(1–2):1–1

    Google Scholar 

  • Jell G, Verdejo R, Safinia L, Shaffer MS, Stevens MM, Bismarck A (2008) Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation. J Mater Chem 18:1865–1872

    Google Scholar 

  • Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng, A 393:1–11

    Google Scholar 

  • Joseph J, Deshmukh K, Chidambaram K, Faisal M, Selvarajan E, Sadasivuni KK, Ahamed MB, Pasha SKK (2018) Dielectric and electromagnetic interference shielding properties of germanium dioxide nanoparticle reinforced poly(vinylchloride) and poly(methylmethacrylate) blend nanocomposites. J Mater Sci: Mater Electron 29:20172–20188

    Google Scholar 

  • Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Google Scholar 

  • Kerman K, Kobayashi M, Tamiya E (2003) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15:R1

    Google Scholar 

  • Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Google Scholar 

  • Kim HW, Knowles JC, Kim HE (2004) Hydroxyapatite/poly(epsilon)-caprolactone) composite coating on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25:1279–1287

    Google Scholar 

  • Kim HW, Kim HE, Knowles JC (2006) Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Func Mater 16:1529–1535

    Google Scholar 

  • Kim JH, Ko JH, Bae BS (2007) Dispersion of silica nano-particles in sol-gel hybrid resins for fabrication of multi-scale hybrid nanocomposite. J Sol-Gel Sci Technol 41:249–255

    Google Scholar 

  • Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237

    Google Scholar 

  • Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869

    Google Scholar 

  • Kwak SY, Sei OhK (2003) Effect of Thermal History on Structural Changes in Melt-Intercalated poly(ε-caprolactone)/Organoclay Nanocomposites Investigated by Dynamic Viscoelastic Relaxation Measurements. Macromol Mater Eng 288:503–508

    Google Scholar 

  • Kwok NY, Dong S, Lo W, Wong KY (2005) An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD). Sens Actuators B: Chem 110:289–298

    Google Scholar 

  • Lahiff E, Lynam C, Gilmartin N, O’Kennedy R, Diamond D (2010) The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 398:1575–1589

    Google Scholar 

  • Lecouvet B, Sclavons M, Bailly C, Bourbigot S (2013) A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polym Degrad Stab 98:2268–2281

    Google Scholar 

  • Lee WF, Fu YT (2003) Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J Appl Polym Sci 89:3652–3660

    Google Scholar 

  • Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Google Scholar 

  • Lei Y, Mulchandani P, Chen W, Mulchandani A (2005) Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode. J Agric Food Chem 53:524–527

    Google Scholar 

  • Liff SM, Kumar N, McKinley GH (2007) High-performance elastomeric nanocomposites via solvent-exchange processing. Nat Mater 6:76

    Google Scholar 

  • Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Zhang Q (2011) Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering. Colloids Surf, B 83:367–375

    Google Scholar 

  • Liu K, Zhang JJ, Cheng FF, Zheng TT, Wang C, Zhu JJ (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034–12040

    Google Scholar 

  • Liu X, Holzwarth JM, Ma PX (2012) Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci 12:911–919

    Google Scholar 

  • Lu B, Li T, Zhao H, Li X, Gao C, Zhang S, Xie E (2012) Graphene-based composite materials beneficial to wound healing Nanoscale 4:2978–2982

    Google Scholar 

  • Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7:30–40

    Google Scholar 

  • Macossay J, Ybarra AV, Arjamend FA, Cantu T, Eubanks TM, Chipara M, Mohamed-Noriega N (2012) Electrospun polystyrene-multiwalled carbon nanotubes: imaging, thermal and spectroscopic characterization. Des Monomers Polym 15:197–205

    Google Scholar 

  • Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578:59–74

    Google Scholar 

  • McClory C, McNally T, Brennan GP, Erskine J (2007) Thermosetting polyurethane multiwalled carbon nanotube composites. J Appl Polym Sci 105:1003–1011

    Google Scholar 

  • Mittal V (2009) Polymer layered silicate nanocomposites: a review. Materials 2:992–1057

    Google Scholar 

  • Mohanapriya MK, Deshmukh K, Ahamed MB, Chidambaram K, Pasha SKK (2015) Structural, morphological and dielectric properties of multiphase nanocomposites consisting of polycarbonate, barium titanate and carbon black nanoparticles. Int J Chem Tech Res 8:32–41

    Google Scholar 

  • Morozowich NL, Weikel AL, Nichol JL, Chen C, Nair LS, Laurencin CT, Allcock HR (2011) Polyphosphazenes containing vitamin substituents: synthesis, characterization, and hydrolytic sensitivity. Macromolecules 44:1355–1364

    Google Scholar 

  • Muzaffar A, Ahamed MB, Deshmukh K, Faisal M, Pasha SKK (2018) Enhanced electromagnetic absorption in NiO and BaTiO3 based polyvinylidene fluoride nanocomposites. Mater Lett 218:217–220

    Google Scholar 

  • Nagaraj A, Govindaraj D, Rajan M (2018) Magnesium oxide entrapped Polypyrrole hybrid nanocomposite as an efficient selective scavenger for fluoride ion in drinking water. Emergent Mater. 1(1–2):1–9

    Google Scholar 

  • Neena D, Shah AH, Deshmukh K, Ahmad H, Fu DJ, Kondamareddy KK, Kumar P, Dwivedi RK, Sing V (2016) Influence of (Co-Mn) co-doping on the microstructures, optical properties of sol gel derived ZnO nanoparticles. Euro Phys J D 70:53

    Google Scholar 

  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Google Scholar 

  • Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV (2012) In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci—Mater Med 23:1749–1761

    Google Scholar 

  • Parambath SV, Ponnamma D, Sadasivuni KK, Thomas S, Stephen R (2017) Effect of nanostructured polyhedral oligomeric silsesquioxane on the physical properties of poly(vinyl alcohol). J Appl Polym Sci 134:45447

    Google Scholar 

  • Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23

    Google Scholar 

  • Pasha SKK, Deshmukh K, Ahamed MB, Chidambaram K, Mohanapriya MK, Nambiraj NA (2017) Investigation of microstructure, morphology, mechanical and dielectric properties of PVA/PbO nanocomposites. Adv Polym Tech 36(3):352–361

    Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Google Scholar 

  • Pawde SM, Deshmukh K (2009) Investigation of the structural, thermal, mechanical and optical properties of poly methylmethacrylate (PMMA) and polyvinylidenefluoride (PVDF) blends. J Appl Polym Sci 114(4):2169–2179

    Google Scholar 

  • Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Ahamed MB, Al-Maadeed MA (2018a) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1(1–2):55–65

    Google Scholar 

  • Ponnamma D, Goutham S, Sadasivuni KK, Rao KV, Cabibihan JJ, Al-Maadeed MAA (2018b) Controlling the sensing performance of rGO filled PVDF nanocomposite with the addition of secondary nanofillers. Synth Met 243:34–43

    Google Scholar 

  • Popelka A, Sobolciak P, Mrlík M, Nogellova Z, Chodák I, Ouederni M, Al-Maadeed MA, Krupa I (2018) Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends. Emergent Mater 1(1–2):1–8

    Google Scholar 

  • Porter RA (2000) Investigation of electroplated conducting polymers as antibody receptors in immuno-sensors. J Immunoassay 21:51–64

    Google Scholar 

  • Possner D, Kolbesen B (2007) Development of a new class of chromium free etch solutions for the delineation of defects in different semiconducting materials. Meet Abstr Electrochem Soc 19:1084–1084

    Google Scholar 

  • Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440

    Google Scholar 

  • Quirk RA, France RM, Shakesheff KM, Howdle SM (2004) Supercritical fluid technologies and tissue engineering scaffolds. Curr Opin Solid State Mater Sci 8:313–382

    Google Scholar 

  • Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomaterials 2012:8

    Google Scholar 

  • Rajan KP, Al-Ghamdi A, Ramesh P, Nando GB (2012) Blends of thermoplastic polyurethane (TPU) and polydimethyl siloxane rubber (PDMS), part-I: assessment of compatibility from torque rheometry and mechanical properties. J Polym Res 19:9872

    Google Scholar 

  • Rama MS, Swaminathan S (2010) Polycarbonate/clay nanocomposites via in situ melt polycondensation. Ind Eng Chem Res 49:2217–2227

    Google Scholar 

  • Rana VK, Choi MC, Kong JY, Kim GY, Kim MJ, Kim SH, Ha CS (2011) Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol Mater Eng 296:131–140

    Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Google Scholar 

  • Roskies M, Jordan JO, Fang D, Abdallah MN, Hier MP, Mlynarek A, Tamimi F, Tran SD (2016) Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. J Biomater Appl 31:132–139

    Google Scholar 

  • Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Google Scholar 

  • Saha K, Butola BS, Joshi M (2014) Drug release behavior of polyurethane/clay nanocomposite: Film versus nanofibrous web. J Appl Polymer Sci 131

    Google Scholar 

  • Samanta S, Chatterjee DP, Manna S, Mandal A, Garai A, Nandi AK (2009) Multifunctional hydrophilic poly(vinylidene fluoride) graft copolymer with supertoughness and supergluing properties. Macromolecules 42:3112–3120

    Google Scholar 

  • Sankaran S, Deshmukh K, Ahamed MB, Pasha SKK (2018) Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Composites Part A: Appl Sci Manuf 114:49–71

    Google Scholar 

  • Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6:2364–2371

    Google Scholar 

  • Sathapathy KD, Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Pasha SKK, AlMaadeed MAA, Ahmad J (2017) High-quality factor poly(vinylidenefluoride) based novel nanocomposites filled with graphene nanoplatelets and vanadium pentoxide for high-Q capacitor applications. Adv Mater Lett 8(3):288–294

    Google Scholar 

  • Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG (2013) Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52:296–304

    Google Scholar 

  • Serrano MC, Gutiérrez MC, del Monte F (2014) Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Prog Polym Sci 39:1448–1471

    Google Scholar 

  • Sharma AL, Singhal R, Kumar A, Pande KK, Malhotra BD (2004) Immobilization of glucose oxidase onto electrochemically prepared poly(aniline-co-fluoroaniline) films. J Appl Polym Sci 913999–4006

    Google Scholar 

  • Shin SR, Aghaei-Ghareh-Bolagh B, Dang TT, Topkaya SN, Gao X, Yang SY, Khademhosseini A (2013) Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater 25:6385–6391

    Google Scholar 

  • Simmons A, Padsalgikar AD, Ferris LM, Poole-Warren LA (2008) Biostability and biological performance of PDMS-based polyurethane for controlled drug release. Biomaterials 29:2987–2995

    Google Scholar 

  • Sinha RS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Google Scholar 

  • Sitharaman B, Shi X, Walboomers XF, Liao H, Cuijpers V, Wilson L, Jansen JA (2008) In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone 43:362–370

    Google Scholar 

  • Smith AM, Ingham A, Grover LM, Perrie Y (2010) Polymer film formulations for the preparation of enteric pharmaceutical capsules. J Pharm Pharmacol 62:167–172

    Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Google Scholar 

  • Stuart MA, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101

    Google Scholar 

  • Styan KE, Martin DJ, Simmons A, Poole-Warren LA (2012) In vivo biostability of polyurethane–organosilicate nanocomposites. Acta Biomater 8:2243–2253

    Google Scholar 

  • Sumathra M, Sadasivuni KK, Kumar SS, Rajan M (2018) Cisplatin-loaded graphene oxide/Chitosan/Hydroxyapatite composite as a promising tool for osteosarcoma-affected bone regeneration. ACS Omega 3(11):14620–14633

    Google Scholar 

  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Google Scholar 

  • Tan ET, Ling JM, Dinesh SK (2016) The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer. J Neurosurg 124:1531–1537

    Google Scholar 

  • Thangamani GJ, Deshmukh K, Sadasivuni KK, Ponnamma D, Goutham S, Rao KV, Chidambaram K, Ahamed MB, Grace AN, Faisal M, Pasha SKK (2017) White graphene reinforced polypyrrole and polyvinylalcohol blend nanocomposites as a chemiresistive sensors for room temperature detection of liquid petroleum gases. Microchim Acta 184(10):3977–3987

    Google Scholar 

  • Thangamani GJ, Deshmukh K, Chidambaram K, Ahamed MB, Sadasivuni KK, Ponnamma D, Faisal M, Nambiraj NA, Pasha SKK (2018) Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behavior of poly(vinylalcohol) nanocomposites for the detection of ethanol and propanol vapors. J Mater Sci: Mater Electron 29(6):5186–5205

    Google Scholar 

  • Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516

    Google Scholar 

  • Tian F, Xu B, Zhu L, Zhu G (2001) Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol–gel derived composite carbon electrode. Anal Chim Acta 443:9–16

    Google Scholar 

  • Timmaraju MV, Gnanamoorthy R, Kannan K (2011) Influence of imbibed moisture and organoclay on tensile and indentation behavior of polyamide 66/hectorite nanocomposites. Compos B Eng 42:466–472

    Google Scholar 

  • Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Invest 2:2

    Google Scholar 

  • Tripathy J (2017) Polymer Nanocomposites for Biomedical and Biotechnology Applications. In: Properties and Applications of Polymer Nanocomposites Springer, Berlin, Heidelberg, pp 57–76

    Google Scholar 

  • Veerapandian M, Yuna K (2009) The state of the art in biomaterials as nanobiopharmaceuticals. Dig J Nanomaterials Biostructures (DJNB): 4

    Google Scholar 

  • Wang S, Gaylord BS, Bazan GC (2004) Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. J Am Chem Soc 126:5446–5451

    Google Scholar 

  • Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005a) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:88–800

    Google Scholar 

  • Wang SF, Shen L, Zhang WD, Tong YJ (2005b) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromol 6:3067–3072

    Google Scholar 

  • Wang P, Ma J, Wang Z, Shi F, Liu Q (2012) Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT). Langmuir 28:4776–4786

    Google Scholar 

  • Ward R, Anderson J, McVenes R, Stokes K (2006) In vivo biostability of polysiloxane polyether polyurethanes: Resistance to biologic oxidation and stress cracking. J Biomed Mater Res, Part A 77:580–589

    Google Scholar 

  • Wiesli MG, Özcan M (2015) High-performance polymers and their potential application as medical and oral implant materials: a review. Implant Dent 24:448–457

    Google Scholar 

  • Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interface. Polymer 44:7757–7764

    Google Scholar 

  • Wu TM, Yang SH (2006) Surface characterization and barrier properties of plasma-modified polyethersulfone/layered silicate nanocomposites. J Polym Sci, Part B: Polym Phys 44:3185–3194

    Google Scholar 

  • Wu CJ, Gaharwar AK, Schexnailder PJ, Schmidt G (2010) Development of biomedical polymer-silicate nanocomposites: a materials science perspective. Materials 3:2986–3005

    Google Scholar 

  • Xu R, Manias E, Snyder AJ, Runt J (2001) New biomedical poly(urethane urea) − layered silicate nanocomposites. Macromolecules 34:337–339

    Google Scholar 

  • Zhang L, Yuan R, Huang X, Chai Y, Tang D, Cao S (2005) A new label-free amperometric immunosenor for rubella vaccine. Anal Bioanal Chem 381:1036–1040

    Google Scholar 

  • Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21:10399–10406

    Google Scholar 

  • Zheng WG, Lee YH, Park CB (2010) Use of nanoparticles for improving the foaming behaviors of linear PP. J Appl Polym Sci 117:2972–2979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. M. Abdul Majeed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdul Majeed, S.S.M., Muzaffar, A., Deshmukh, K., Basheer Ahamed, M. (2019). Amorphous and Semicrystalline Thermoplastic Polymer Nanocomposites Applied in Biomedical Engineering. In: Sadasivuni, K., Ponnamma, D., Rajan, M., Ahmed, B., Al-Maadeed, M. (eds) Polymer Nanocomposites in Biomedical Engineering . Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04741-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04741-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04740-5

  • Online ISBN: 978-3-030-04741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics