Skip to main content

Endovascular Ultraviolet Laser-Facilitated Reversal of Vasospasm Induced by Subarachnoid Hemorrhage in Canines

  • Chapter
  • First Online:
Subarachnoid Hemorrhage

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 127))

Summary

Background: Because treatments for cerebral arterial spasm—a delayed consequence of subarachnoid hemorrhage (SAH)—are clinically inconsistent, we describe here a new method for reversal of arterial spasm, possibly extensible to nitric oxide (NO)-sensitive microvasculature.

Methods: We subjected dogs to the intracisternal double-hemorrhage model of SAH (autologous blood injection on days 1 and 3) and began endovascular treatment of the spasmed basilar artery (BA) on Day 4. A conical-tip fused silica optical fiber was introduced via a microcatheter (inserted femorally) into the proximal vicinity of the spasmed BA. After local saline flushing of blood, an ultraviolet (UV) pulsed laser beam (355 nm Nd:YAG) was focused into the optical fiber and converted into a concentric ring beam, which facilitated endovascular irradiation for 30 s at intensities of 12–20 W/cm2. BA diameters were measured angiographically using a semiautomated routine over the entire BA length as well as the proximal, medial, and distal segments.

Results: On Day 4 the BAs had constricted by 21 ± 11%. After UV laser irradiation on Day 4, the constricted BAs dilated to 93 ± 15% of their normal diameters within minutes, and the dilation (91 ± 12%) persisted on Day 5. Most BA segments recovered to their respective baselines after UV irradiation, even when the UV beam was located considerably proximal to the BA origin. At days 4 and 5, the percent BA dilation normalized to Day 4 pre-treatment decreased linearly (by scatter plot, p < 0.02) over a range of about 60 mm from the UV irradiation site.

Conclusions: We conjecture that the vasodilator nitric oxide, produced at high local concentration from its vascular storage forms (chiefly nitrites) by UV laser-induced photoscission, stimulates a wave of arterial dilation, possibly by longitudinal propagation of transnitrosation reactions in the arterial wall, which reverses cerebral vasospasm semi-locally and thus avoids the deleterious effects of systemic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA:

Basilar artery

eNOS:

Endothelial nitric oxide synthase

Nd:YAG:

Neodymium yttrium aluminum garnet

NO:

Nitric oxide

SAH:

Subarachnoid hemorrhage

UV:

Ultraviolet

References

  1. Adamczyk P, He S, Amar AP, Mack WJ. Medical management of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: a review of current and emerging therapeutic interventions. Neurol Res Int. 2013;2013:462491. https://doi.org/10.1155/2013/462491.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andaluz N, Tomsick TA, Tew JM Jr, van Loveren HR, Yeh HS, Zuccarello M. Indications for endovascular therapy for refractory vasospasm after aneurysmal subarachnoid hemorrhage: experience at the University of Cincinnati. Surg Neurol. 2002;58:131–8.

    Article  PubMed  Google Scholar 

  3. Andrews KL, McGuire JJ, Triggle CR. A photosensitive vascular smooth muscle store of nitric oxide in mouse aorta: no dependence on expression of endothelial nitric oxide synthase. Br J Pharmacol. 2003;138:932–40. https://doi.org/10.1038/sj.bjp.0705115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Badjatia N, Topcuoglu MA, Pryor JC, Rabinov JD, Ogilvy CS, Carter BS, Rordorf GA. Preliminary experience with intra-arterial nicardipine as a treatment for cerebral vasospasm. AJNR Am J Neuroradiol. 2004;25:819–26.

    PubMed  PubMed Central  Google Scholar 

  5. Bauer AM, Rasmussen PA. Treatment of intracranial vasospasm following subarachnoid hemorrhage. Front Neurol. 2014;5:72. https://doi.org/10.3389/fneur.2014.00072.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, Duldner JE Jr, Harbaugh RE, Patel AB, Rosenwasser RH, American Heart A. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025. https://doi.org/10.1161/STROKEAHA.108.191395.

    Article  PubMed  Google Scholar 

  7. Caner B, Hou J, Altay O, Fujii M, Zhang JH. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem. 2012;123(Suppl 2):12–21. https://doi.org/10.1111/j.1471-4159.2012.07939.x.

    Article  CAS  PubMed  Google Scholar 

  8. Chaudhry H, Lynch M, Schomacker K, Birngruber R, Gregory K, Kochevar I. Relaxation of vascular smooth muscle induced by low-power laser radiation. Photochem Photobiol. 1993;58:661–9.

    Article  CAS  PubMed  Google Scholar 

  9. Clark JF, Sharp FR. Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:1223–33. https://doi.org/10.1038/sj.jcbfm.9600280.

    Article  CAS  PubMed  Google Scholar 

  10. Clouston JE, Numaguchi Y, Zoarski GH, Aldrich EF, Simard JM, Zitnay KM. Intraarterial papaverine infusion for cerebral vasospasm after subarachnoid hemorrhage. AJNR Am J Neuroradiol. 1995;16:27–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dietrich HH, Dacey RG Jr. Molecular keys to the problems of cerebral vasospasm. Neurosurgery. 2000;46:517–30.

    Article  CAS  PubMed  Google Scholar 

  12. Eskridge JM, McAuliffe W, Song JK, Deliganis AV, Newell DW, Lewis DH, Mayberg MR, Winn HR. Balloon angioplasty for the treatment of vasospasm: results of first 50 cases. Neurosurgery. 1998;42:510–6.

    Article  CAS  PubMed  Google Scholar 

  13. Fathi AR, Bakhtian KD, Pluta RM. The role of nitric oxide donors in treating cerebral vasospasm after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110:93–7. https://doi.org/10.1007/978-3-7091-0353-1_17.

    Article  PubMed  Google Scholar 

  14. Feletou M, Vanhoutte PM. Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol. 2006;26:1215–25. https://doi.org/10.1161/01.ATV.0000217611.81085.c5.

    Article  CAS  PubMed  Google Scholar 

  15. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4:432–46. https://doi.org/10.1007/s12975-013-0257-2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fujii Y, Takahashi A, Yoshimoto T. Percutaneous transluminal angioplasty in a canine model of cerebral vasospasm: angiographic, histologic, and pharmacologic evaluation. Surg Neurol. 1995;44:163–70.

    Article  CAS  PubMed  Google Scholar 

  17. Furchgott RF, Ehrreich SJ, Greenblatt E. The photoactivated relaxation of smooth muscle of rabbit aorta. J Gen Physiol. 1961;44:499–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grasso G. An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage. Brain Res Brain Res Rev. 2004;44:49–63.

    Article  CAS  PubMed  Google Scholar 

  19. Hacein-Bey L, Harder DR, Meier HT, Varelas PN, Miyata N, Lauer KK, Cusick JF, Roman RJ. Reversal of delayed vasospasm by TS-011 in the dual hemorrhage dog model of subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2006;27:1350–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansen-Schwartz J, Vajkoczy P, Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci. 2007;28:252–6. https://doi.org/10.1016/j.tips.2007.04.002.

    Article  CAS  PubMed  Google Scholar 

  21. Hoh BL, Ogilvy CS. Endovascular treatment of cerebral vasospasm: transluminal balloon angioplasty, intra-arterial papaverine, and intra-arterial nicardipine. Neurosurg Clin N Am. 2005;16:501–16. https://doi.org/10.1016/j.nec.2005.04.004.

    Article  PubMed  Google Scholar 

  22. Horikoshi T, Akiyama I, Yamagata Z, Nukui H. Retrospective analysis of the prevalence of asymptomatic cerebral aneurysm in 4518 patients undergoing magnetic resonance angiography—when does cerebral aneurysm develop? Neurol Med Chir. 2002;42:105–12.

    Article  Google Scholar 

  23. Iliff JJ, Thrane AS, Nedergaard M. The glymphatic system and brain interstitial fluid homeostasis. Primer on cerebrovascular diseases, 2nd edn; 2017. Elsevier Inc.

    Google Scholar 

  24. Komotar RJ, Schmidt JM, Starke RM, Claassen J, Wartenberg KE, Lee K, Badjatia N, Connolly ES Jr, Mayer SA. Resuscitation and critical care of poor-grade subarachnoid hemorrhage. Neurosurgery. 2009;64:397–410. https://doi.org/10.1227/01.NEU.0000338946.42939.C7.

    Article  PubMed  Google Scholar 

  25. Kubaszewski E, Peters A, McClain S, Bohr D, Malinski T. Light-activated release of nitric oxide from vascular smooth muscle of normotensive and hypertensive rats. Biochem Biophys Res Commun. 1994;200:213–8. https://doi.org/10.1006/bbrc.1994.1436.

    Article  CAS  PubMed  Google Scholar 

  26. Kuwayama A, Zervas NT, Belson R, Shintani A, Pickren K. A model for experimental cerebral arterial spasm. Stroke. 1972;3:49–56.

    Article  CAS  PubMed  Google Scholar 

  27. Linfante I, Delgado-Mederos R, Andreone V, Gounis M, Hendricks L, Wakhloo AK. Angiographic and hemodynamic effect of high concentration of intra-arterial nicardipine in cerebral vasospasm. Neurosurgery. 2008;63:1080–6. https://doi.org/10.1227/01.NEU.0000327698.66596.35.

    Article  PubMed  Google Scholar 

  28. Macdonald RL. Vasospasm: my first 25 years—what worked? What didn’t? what next? In: Fandino J, Marbacher S, Fathi AR, Muroi C, Keller E, editors. Neurovascular events after subarachnoid hemorrhage. Acta Neurochir Suppl, vol. 120; 2015. p. 1–10.

    Google Scholar 

  29. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, Marr A, Roux S, Kassell N. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011;10:618–25. https://doi.org/10.1016/S1474-4422(11)70108-9.

    Article  CAS  PubMed  Google Scholar 

  30. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, Nowbakht P, Roux S, Kassell N. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke. 2012;43:1463–9. https://doi.org/10.1161/STROKEAHA.111.648980.

    Article  CAS  PubMed  Google Scholar 

  31. Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, Frey A, Roux S, Pasqualin A, CONSCIOUS-1 Investigators. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39:3015–21. https://doi.org/10.1161/STROKEAHA.108.519942.

    Article  CAS  PubMed  Google Scholar 

  32. Maxwell AJ. Mechanisms of dysfunction of the nitric oxide pathway in vascular diseases. Nitric Oxide. 2002;6:101–24. https://doi.org/10.1006/niox.2001.0394.

    Article  CAS  PubMed  Google Scholar 

  33. Megyesi JF, Vollrath B, Cook DA, Findlay JM. In vivo animal models of cerebral vasospasm: a review. Neurosurgery. 2000;46:448–60.

    Article  CAS  PubMed  Google Scholar 

  34. Miller BA, Turan N, Chau M, Pradilla G. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. Biomed Res Int. 2014;2014:384342. https://doi.org/10.1155/2014/384342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morgenstern LB, Hemphill JC III, Anderson C, Becker K, Broderick JP, Connolly ES Jr, Greenberg SM, Huang JN, MacDonald RL, Messe SR, Mitchell PH, Selim M, Tamargo RJ, American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;41:2108–29. https://doi.org/10.1161/STR.0b013e3181ec611b.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nedospasov A, Rafikov R, Beda N, Nudler E. An autocatalytic mechanism of protein nitrosylation. Proc Natl Acad Sci U S A. 2000;97:13543–8. https://doi.org/10.1073/pnas.250398197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ng ES, Cheng ZJ, Ellis A, Ding H, Jiang Y, Li Y, Hollenberg MD, Triggle CR. Nitrosothiol stores in vascular tissue: modulation by ultraviolet light, acetylcholine and ionomycin. Eur J Pharmacol. 2007;560:183–92. https://doi.org/10.1016/j.ejphar.2007.01.016.

    Article  CAS  PubMed  Google Scholar 

  38. Nonoyama A. Using multiwavelength UV-visible spectroscopy for the characterization of red blood cells: an investigation of hypochromism. University of South Florida; 2004.

    Google Scholar 

  39. Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105:23–56. https://doi.org/10.1016/j.pharmthera.2004.10.002.

    Article  CAS  PubMed  Google Scholar 

  40. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, Kasuya H, Wellman G, Keller E, Zauner A, Dorsch N, Clark J, Ono S, Kiris T, Leroux P, Zhang JH. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8. https://doi.org/10.1179/174313209X393564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rassaf T, Preik M, Kleinbongard P, Lauer T, Heiss C, Strauer BE, Feelisch M, Kelm M. Evidence for in vivo transport of bioactive nitric oxide in human plasma. J Clin Invest. 2002;109:1241–8. https://doi.org/10.1172/JCI14995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez J, Maloney RE, Rassaf T, Bryan NS, Feelisch M. Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci U S A. 2003;100:336–41. https://doi.org/10.1073/pnas.0234600100.

    Article  CAS  PubMed  Google Scholar 

  43. Saito A, Nakazawa T. Cerebral vasospasm model produced by subarachnoid blood injection in dogs. Jpn J Pharmacol. 1989;50:250–2.

    Article  CAS  PubMed  Google Scholar 

  44. Saylisoy S, Simsek S, Adapinar B. Is there a connection between perivascular space and subarachnoid space? J Comput Assist Tomogr. 2014;38:33–5. https://doi.org/10.1097/RCT.0b013e3182a9a45a.

    Article  PubMed  Google Scholar 

  45. Sehba FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:381–98. https://doi.org/10.1179/016164106X114991.

    Article  CAS  PubMed  Google Scholar 

  46. Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol. 2011;43:27–40. https://doi.org/10.1007/s12035-010-8155-z.

    Article  CAS  PubMed  Google Scholar 

  47. Shen J, Pan JW, Fan ZX, Xiong XX, Zhan RY. Dissociation of vasospasm-related morbidity and outcomes in patients with aneurysmal subarachnoid hemorrhage treated with clazosentan: a meta-analysis of randomized controlled trials. J Neurosurg. 2013;119:180–9. https://doi.org/10.3171/2013.3.JNS121436.

    Article  PubMed  Google Scholar 

  48. Suschek CV, Schroeder P, Aust O, Sies H, Mahotka C, Horstjann M, Ganser H, Murtz M, Hering P, Schnorr O, Kroncke KD, Kolb-Bachofen V. The presence of nitrite during UVA irradiation protects from apoptosis. FASEB J. 2003;17:2342–4. https://doi.org/10.1096/fj.03-0359fje.

    Article  CAS  PubMed  Google Scholar 

  49. Terpolilli NA, Feiler S, Dienel A, Muller F, Heumos N, Friedrich B, Stover J, Thal S, Scholler K, Plesnila N. Nitric oxide inhalation reduces brain damage, prevents mortality, and improves neurological outcome after subarachnoid hemorrhage by resolving early pial microvasospasms. J Cereb Blood Flow Metab. 2015;36(12):2096–107. https://doi.org/10.1177/0271678X15605848.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Varsos VG, Liszczak TM, Han DH, Kistler JP, Vielma J, Black PM, Heros RC, Zervas NT. Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine, or papaverine in a “two-hemorrhage” canine model. J Neurosurg. 1983;57:11–7. https://doi.org/10.3171/jns.1983.58.1.0011.

    Article  Google Scholar 

  51. Watson BD. Dethrombosis facilitated by vasodilation. USA Patent U.S. Patent No. 6,539,944 B1; 2003.

    Google Scholar 

  52. Watson BD, Prado R. Photochemically-based models of focal experimental thrombotic stroke in rodents. Manual of surgical stroke models on rodents. Boca Raton, FL: CRC Press; 2008.

    Google Scholar 

  53. Watson BD, Prado R, Truettner J, Dietrich WD. Common carotid artery photothrombosis alters eNOS gene expression in distal cerebral arteries. Soc Neurosci Abstr. 2000;26(Part 2):1811.

    Google Scholar 

  54. Watson BD, Prado R, Veloso A, Brunschwig JP, Dietrich WD. Cerebral blood flow restoration and reperfusion injury after ultraviolet laser-facilitated middle cerebral artery recanalization in rat thrombotic stroke. Stroke. 2002;33:428–34.

    Article  PubMed  Google Scholar 

  55. Wolf EW, Banerjee A, Soble-Smith J, Dohan FC Jr, White RP, Robertson JT. Reversal of cerebral vasospasm using an intrathecally administered nitric oxide donor. J Neurosurg. 1998;89:279–88. https://doi.org/10.3171/jns.1998.89.2.0279.

    Article  CAS  PubMed  Google Scholar 

  56. Yarnitsky D, Lorian A, Shalev A, Zhang ZD, Takahashi M, Agbaje-Williams M, Macdonald RL. Reversal of cerebral vasospasm by sphenopalatine ganglion stimulation in a dog model of subarachnoid hemorrhage. Surg Neurol. 2005;64:5–11; discussion 11. https://doi.org/10.1016/j.surneu.2004.09.029.

    Article  PubMed  Google Scholar 

  57. Yin J, Lu TM, Qiu G, Huang RY, Fang M, Wang YY, Xiao D, Liu XJ. Intracerebral hematoma extends via perivascular spaces and perineurium. Tohoku J Exp Med. 2013;230:133–9.

    Article  CAS  PubMed  Google Scholar 

  58. Zemke D, Farooq MU, Mohammed Yahia A, Majid A. Delayed ischemia after subarachnoid hemorrhage: result of vasospasm alone or a broader vasculopathy? Vasc Med. 2007;12:243–9. https://doi.org/10.1177/1358863X07081316.

    Article  PubMed  Google Scholar 

  59. Zubkov AY, Tibbs RE, Clower B, Ogihara K, Aoki K, Zhang JH. Morphological changes of cerebral arteries in a canine double hemorrhage model. Neurosci Lett. 2002;326:137–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The optical fiber/microcatheter system was provided by OpusGen LLC of Doral, FL, under the name Opus-14 which, upon testing in rats and dogs (described above), led to a Phase I clinical trial on ischemic stroke in Italy in 2010, but OpusGen LLC ceased operations in 2013 when stentrievers became the accepted intervention. We thank Dr. Martin Feelisch for helpful comments regarding the propagating wave mechanism of dilation and Dr. Kunjan Dave for assistance with EndNote. Dr. Watson thanks Dr. John Zhang for suggesting that a canine model be used in what evolved into the present study.

Funding: Initial work on UV laser vasodilation was supported by grant R01 NS23244 (to Dr. Watson) from the National Institute of Neurological Diseases and Stroke. Subsequently, the same agency funded a collaboration via translational grant R21 NS48297 (to Dr. Watson) with VasCon LLC of Doral, FL, to develop the endovascular UV laser delivery system (then known as the Opus-14). To conduct the canine study, Dr. Hurst received research funds from VasCon LLC’s successor OpusGen LLC of Doral, FL, and the University of Pennsylvania SRA. Since March 2013, further commercialization has been the responsibility of Photothrombotics, Inc., Miami Beach, FL.

Conflict of Interest: US patent 6,593,944B1 entitled “Dethrombosis by Vasodilation” was awarded to Dr. Watson in 2003 and provided the conceptual backing for the dog study described herein; in 2013 the patent was assigned to Photothrombotics, Inc.

Drs. Sadasivan and Hurst report no conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brant D. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Watson, B.D., Sadasivan, C., Hurst, R.W. (2020). Endovascular Ultraviolet Laser-Facilitated Reversal of Vasospasm Induced by Subarachnoid Hemorrhage in Canines. In: Martin, R., Boling, W., Chen, G., Zhang, J. (eds) Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-04615-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04615-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04614-9

  • Online ISBN: 978-3-030-04615-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics