Skip to main content

Temperature Stress and Redox Homeostasis: The Synergistic Network of Redox and Chaperone System in Response to Stress in Plants

  • Chapter
  • First Online:

Part of the book series: Heat Shock Proteins ((HESP,volume 17))

Abstract

A remarkable number of strategies has been developed by living organisms to mitigate conflict with environmental changes. The global environment rising with ambient temperature has a wide range of effects on plant growth, and therefore activation of various molecular defenses before the appearance of heat damage. Evidence revealed key components of stress that trigger enhanced tolerance, and some determinants for plant tolerance have been identified. The interplay between heat shock proteins (HSP) and redox proteins is supposed to be vital for the survival under extreme stress conditions. Any circumstance in which cellular redox homeostasis is disrupted can lead to the generation of reactive oxygen species (ROS) that are continuously generated in cells as an unavoidable consequence of aerobic life. Integrative network analysis of synthetic genetic interactions, protein-protein interactions, and functional annotations revealed many new functional processes linked to heat stress (HS) and oxidative stress (OS) tolerance, implicated upstream regulators activated by the either HS or OS, and revealed new connections between them. We present different models of acquired stress resistance to interpret the condition-specific involvement of genes. Considering the basic concepts and the recent advances, the following subsections provide an overview of calcium ion (Ca2+) and ROS interplay in abiotic signaling pathways; further we introduce several examples of chaperone and redox proteins that respond the change of cellular redox status under environmental circumstances. Thus, the involvement or contribution of redox proteins through the functional switching in conjunction with the HSP that prevent heat- and oxidative-induced protein aggregation in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

abscisic acid

AOX:

alternative oxidase

AsA:

ascorbic acid

APX:

ascorbate peroxidase

Ca2+ :

calcium ion

CaM:

calmodulin

CML:

CaM-like protein

CAT:

catalase

Cys:

cysteine

GRX:

glutaredoxin

GR:

glutathione reductase

GSH:

glutathione

GST1:

glutathione-S-transferase 1

GPX:

glutathione peroxidase

HIP:

Hsp70-interacting protein

HS:

heat stress

HSE:

heat shock element

HSG:

heat shock granule

HSP:

heat shock protein

HSF:

heat shock transcription factor

HSR:

heat shock response

H2O2 :

hydrogen peroxide

OH. :

hydroxyl radical

HMW:

high molecular weight

LMW:

low molecular weight

NTR:

NADPH-dependent TrxR

NO:

nitric oxide

OS:

oxidative stress

PDI:

protein disulfide isomerase

PRX:

peroxiredoxin

RBOH:

respiratory burst oxidase homolog

ROS:

reactive oxygen species

1O2 :

singlet oxygen

O2 ·- :

superoxide anion

SOD:

superoxide dismutase

TRX:

thioredoxin

TrxR:

thioredoxin reductases

TPR:

tetratricopeptide repeat

RNR:

ribonucleotide reductase

References

  • Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberti S, Esser C, Höhfeld J (2003) BAG-1-a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auh CK, Murphy TM (1995) Plasma membrane redox enzyme is involved in the synthesis of O2 and H2O2 by Phytophthora elicitor stimulated rose cells. Plant Physiol 107:1241–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballinger CA, Connell P, Wu Y et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay S, Starke DW, Mieyal JJ, Gronostajski RM (1998) Thioltransferase (Glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I. J Biol Chem 273:392–397

    Article  CAS  PubMed  Google Scholar 

  • Bäurle I (2016) Plant Heat Adaptation: priming in response to heat stress. F1000 Res 5. F1000 Faculty Rev-694

    Google Scholar 

  • Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379:245–259

    CAS  PubMed  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  PubMed  Google Scholar 

  • Berndt C, Lillig CH, Holmgren A (2008) Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta 1783:641–650

    Article  CAS  PubMed  Google Scholar 

  • Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolwell G, Bindschedler L, Blee K et al (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    CAS  PubMed  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S et al (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Balmer Y (2005) REDOX REGULATION: A broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Buchanan B, Schürmann P, Wolosiuk R, Jacquot JP (1979) Thioredoxin and enzyme regulation. Trends Biochem Sci 7:93–96

    Article  Google Scholar 

  • Caldas T, Malki A, Kern R, Abdallah J, Richarme G (2006) The E. coli thioredoxin homolog YbbN/Trxsc is a chaperone and a weak protein oxidoreductase. Biochem Biophys Res Commun 343:780–786

    Article  CAS  PubMed  Google Scholar 

  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 91:7017–7021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Song C (2006) Hydrogen peroxide homeostasis and signaling in plant cells. Sci China C Life Sci 49:1–11

    CAS  PubMed  Google Scholar 

  • Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE (1998) Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat Struct Biol 5:400–406

    Article  CAS  PubMed  Google Scholar 

  • Choi HI, Lee SP, Kim KS et al (2006) Redox-regulated cochaperone activity of the human DnaJ homolog Hdj2. Free Radic Biol Med 40:651–659

    Article  CAS  PubMed  Google Scholar 

  • Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565

    Article  CAS  PubMed  Google Scholar 

  • Chuang SE, Blattner FR (1993) Characterization of twenty-six new heat shock genes of Escherichia coli. J Bacteriol 175:5242–5252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couturier J, Wu HC, Dhalleine T et al (2014) Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1. Mol Plant 7:187–205

    Article  CAS  PubMed  Google Scholar 

  • Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson JF, Whyte B, Bissinger PH, Schiestl RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davletova S, Rizhsky L, Liang H et al (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, A.-H.-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deuerling E, Bukau B (2004) Chaperone-assisted folding of newly synthesized proteins in the cytosol. Afr J Biotechnol 39:261–277

    CAS  Google Scholar 

  • Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696

    Article  CAS  PubMed  Google Scholar 

  • Ding HD, Zhang HJ, Zhu XH, Hui L, Liang JS, Lu B (2012) Involvement of calcium and calmodulin signaling in adaptation to heat stress-induced oxidative stress in Solanum lycopersicum L. leaves. Afr J Biotechnol 11:3259–3269

    CAS  Google Scholar 

  • Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999

    Article  PubMed  PubMed Central  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  • Ellis J (1987) Proteins as molecular chaperones. Nature 328:378–379

    Article  CAS  PubMed  Google Scholar 

  • Fernandes AP, Fladvad M, Berndt C et al (2005) A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J Biol Chem 280:24544–24552

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giese KC, Vierling E (2002) Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J Biol Chem 277:46310–46318

    Article  CAS  PubMed  Google Scholar 

  • Giese KC, Vierling E (2004) Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression. J Biol Chem 279:32674–32683

    Article  CAS  PubMed  Google Scholar 

  • Giesguth M, Sahm A, Simon S, Dietz KJ (2015) Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett 589:718–725

    Article  CAS  PubMed  Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437

    Article  CAS  PubMed Central  Google Scholar 

  • Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graf PCF, Martinez-Yamout M, VanHaerents S, Lilie H, Dyson HJ, Jakob U (2004) Activation of the redox-regulated chaperone Hsp33 by domain unfolding. J Biol Chem 279:20529–20538

    Article  CAS  PubMed  Google Scholar 

  • Grant J, Loake G (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graumann J, Lilie H, Tang X et al (2001) Activation of the redox-regulated molecular chaperone Hsp33 – a two-step mechanism. Structure 9:377–387

    Article  CAS  PubMed  Google Scholar 

  • Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Härndahl U, Kokke BPA, Gustavsson N et al (2001) The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic α-helix. Biochim Biophys Acta 1545:227–237

    Article  PubMed  Google Scholar 

  • Hemantaranjan A, Nishant Bhanu A, Singh MN, Yadav DK, Patel PK (2014) Heat stress responses and thermotolerance. Adv Plants Agric Res 1:00012

    Google Scholar 

  • Hirano T, Kinoshita N, Morikawa K, Yanagida M (1990) Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60:319–328

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann JH, Linke K, Graf PCF, Lilie H, Jakob U (2004) Identification of a redox-regulated chaperone network. EMBO J 23:160–168

    Article  CAS  PubMed  Google Scholar 

  • Höhfeld J, Jentsch S (1997) GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J 16:6209–6216

    Article  PubMed  PubMed Central  Google Scholar 

  • Höhfeld J, Minami Y, Hartl F (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83:589–598

    Article  PubMed  Google Scholar 

  • Holmgren A (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci U S A 73:2275–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppe G, Chai Y, Crabb J, Sears J (2004) Protein s-glutathionylation in retinal pigment epithelium converts heat shock protein 70 to an active chaperone. Exp Eye Res 78:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Hoshi T, Heinemann SH (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang W, Li C et al (2008) Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Grow Regul 55:183

    Article  CAS  Google Scholar 

  • Hu T, Chen K, Hu L, Amombo E, Fu J (2016) H2O2 and Ca2+ – based signaling and associated ion accumulation, antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass. Sci Rep 6:36396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Ratliff KS, Schwartz MP, Spenner JM, Matouschek A (1999) Mitochondria unfold precursor proteins by unraveling them from their N-termini. Nat Struct Mol Biol 6:1132–1138

    Article  CAS  Google Scholar 

  • Hübel A, Schöffl F (1994) Arabidopsis heat shock factor: isolation and characterization of the gene and the recombinant protein. Plant Mol Biol 26:353–362

    Article  PubMed  Google Scholar 

  • Ilbert M, Horst J, Ahrens S et al (2007) The redox-switch domain of Hsp33 functions as dual stress sensor. Nat Struct Mol Biol 14:556–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquier-Sarlin MR, Polla BS (1996) Dual regulation of heat-shock transcription factor (HSF) activation and DNA-binding activity by H2O2: role of thioredoxin. Biochem J 318:187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakob U, Muse W, Eser M, Bardwell JCA (1999) Chaperone activity with a redox switch. Cell 96:341–352

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ 26:929–939

    Article  CAS  PubMed  Google Scholar 

  • Jung YJ, Melencion SMB, Lee ES et al (2015) Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Front Plant Sci 6:1141

    PubMed  PubMed Central  Google Scholar 

  • Kalmar B, Greensmith L (2009) Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration-evidence for neuroprotective and neurotoxic effects. Cell Mol Biol Lett 14:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern R, Malki A, Holmgren A, Richarme G (2003) Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J 371:965–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Choi SY, Kwon HY, Won MH, Kang TC, Kang JH (2002) Aggregation of α-synuclein induced by the Cu, Zn-superoxide dismutase and hydrogen peroxide system. Free Radic Biol Med 32:544–550

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Alam I, Kim YG et al (2012) Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol Lett 34:371–377

    Article  CAS  PubMed  Google Scholar 

  • Kirschner M, Winkelhaus S, Thierfelder JM, Nover L (2000) Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. Plant J 24:397–412

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q (2014) LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. J Integr Plant Biol 56:63–74

    Article  CAS  PubMed  Google Scholar 

  • Kthiri F, Le HT, Tagourti J et al (2008) The thioredoxin homolog YbbN functions as a chaperone rather than as an oxidoreductase. Biochem Biophys Res Commun 374:668–672

    Article  CAS  PubMed  Google Scholar 

  • Kumsta C, Jakob U (2009) Redox-regulated chaperones. Biochemistry 48:4666–4676

    Article  CAS  PubMed  Google Scholar 

  • Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–420

    Article  CAS  PubMed  Google Scholar 

  • Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239:3436–3444

    CAS  PubMed  Google Scholar 

  • LaVallie ER, Diblasio-Smith EA, Collins-Racie LA, Lu Z, McCoy JM (2003) Thioredoxin and related proteins as multifunctional fusion tags for soluble expression in E. coli. Methods Mol Biol 205:119–140

    CAS  PubMed  Google Scholar 

  • Le HT, Gautier V, Kthiri F, Kohiyama M, Katayama T, Richarme G (2011) DNA replication defects in a mutant deficient in the thioredoxin homolog YbbN. Biochem Biophys Res Commun 405:52–57

    Article  CAS  PubMed  Google Scholar 

  • Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Schöffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol Gen Genet 252:11–19

    CAS  PubMed  Google Scholar 

  • Lee JH, Hübel A, Schöffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • Lennon BW, Williams CH, Ludwig ML (2000) Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science 289:1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Li C, Chen Q, Gao X et al (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci China C Life Sci 48:540–550

    Article  CAS  PubMed  Google Scholar 

  • Lin BL, Wang JS, Liu HC et al (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 6:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist S, Craig SA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Linke K, Jakob U (2003) Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid Redox Signal 5:425–434

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Li B, Shang ZL et al (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132:1186–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HT, Sun DY, Zhou RG (2005) Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant Cell Environ 28:1276–1284

    Article  CAS  Google Scholar 

  • Liu HT, Gao F, Li GL et al (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang C, Chen J et al (2013) Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol Biochem 64:92–98

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267

    PubMed  PubMed Central  Google Scholar 

  • Lund P (2006) Chaperones, molecular. Reviews in cell biology and molecular medicine. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Mahalingam R, Shah N, Scrymgeour A, Fedoroff N (2005) Temporal evolution of the Arabidopsis oxidative stress response. Plant Mol Biol 57:709–730

    Article  CAS  PubMed  Google Scholar 

  • Martin JL (1995) Thioredoxin-a fold for all reasons. Structure 3:245–250

    Article  CAS  PubMed  Google Scholar 

  • May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12:53–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGee DJ, Kumar S, Viator RJ et al (2006) Helicobacter pylori thioredoxin is an arginase chaperone and guardian against oxidative and nitrosative stresses. J Biol Chem 281:3290–3296

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Miroshnichenko S, Tripp J, Nieden UZ, Neumann D, Conrad U, Manteuffel R (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41:269–281

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Moon JC, Hah YS, Kim WY et al (2005) Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 280:28775–28784

    Article  CAS  PubMed  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  • Nishida M, Harada S, Noguchi S, Satow Y, Inoue H, Takahashi K (1998) Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106. J Mol Biol 281:135–147

    Article  CAS  PubMed  Google Scholar 

  • Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA (2006) Regulon and promoter analysis of the E. coli heat-shock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes Dev 20:1776–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordlund P, Reichard P (2006) Ribonucleotide reductases. Annu Rev Biochem 75:681–706

    Article  CAS  PubMed  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  PubMed  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    Article  CAS  PubMed  Google Scholar 

  • Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R, Winge DR (2006) Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J Biol Chem 281:17661–17669

    Article  CAS  PubMed  Google Scholar 

  • Paget MS, Buttner MJ (2003) Thiol-based regulatory switches. Ann Rev Genet 37:91–121

    Article  CAS  PubMed  Google Scholar 

  • Panchuk II, Volkov RA, Schöffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paranhos A, Fernandez-Tarrago J, Corchete P (1999) Relationship between active oxygen species and cardenolide production in cell cultures of Digitalis thapsi: effect of calcium restriction. New Phytol 141:51–60

    Article  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Ann Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peremyslov VV, Hagiwara Y, Dolja VV (1999) HSP70 homolog functions in cell-to-cell movement of a plant virus. Proc Natl Acad Sci U S A 96:14771–14776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plater ML, Goode D, Crabbe MJC (1996) Effects of site-directed mutations on the chaperone-like activity of αB-crystallin. J Biol Chem 271:28558–28566

    Article  CAS  PubMed  Google Scholar 

  • Poole LB, Reynolds CM, Wood ZA, Karplus PA, Ellis HR, Li Calzi M (2000) AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. Eur J Biochem 267:6126–6133

    Article  CAS  PubMed  Google Scholar 

  • Port M, Tripp J, Zielinski D et al (2004) Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol 135:1457–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad TK (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026

    Article  CAS  Google Scholar 

  • Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19:1851–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritossa FM (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Chang Hum Health 2:90–104

    Article  Google Scholar 

  • Rüdiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  CAS  PubMed  Google Scholar 

  • Sargsyan E, Baryshev M, Szekely L, Sharipo A, Mkrtchian S (2002) Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex. J Biol Chem 77:17009–17015

    Article  CAS  Google Scholar 

  • Sarkar NK, Kim YK, Grover A (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10:393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    Article  CAS  PubMed  Google Scholar 

  • Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6:225–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique M, Gernhard S, von Koskull-Döring P, Vierling E, Scharf KD (2008) The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13:183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163:471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun AZ, Guo FQ (2016) Chloroplast retrograde regulation of heat stress responses in plants. Front Plant Sci 7:398

    PubMed  PubMed Central  Google Scholar 

  • Sung DY, Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol 132:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Takashima Y, Hirota K, Nakamura H et al (1999) Differential expression of glutaredoxin and thioredoxin during monocytic differentiation. Immunol Lett 68:397–401

    Article  CAS  PubMed  Google Scholar 

  • Vallelian-Bindschedler L, Schweizer P, Mosinger E, Metraux JP (1998) Heat-induced resistance in barley to powdery mildew (Blumeria graminis f.sp. hordei) is associated with a burst of active oxygen species. Physiol Plant Pathol 52:165–199

    Google Scholar 

  • van der Luit A, Olivari C, Haley A, Knight M, Trewavas A (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705–714

    Article  PubMed Central  Google Scholar 

  • van Montfort R, Slingsby C, Vierling E (2001) Structure and function of the small heat shock protein/a-crystallin family of molecular chaperones. Adv Protein Chem 59:105–156

    Article  PubMed  Google Scholar 

  • Veal EA, Findlay VJ, Day AM et al (2004) A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol Cell 15:129–139

    Article  CAS  PubMed  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  • Vignols F, Mouaheb N, Thomas D, Meyer Y (2003) Redox control of Hsp70-co-chaperone interaction revealed by expression of a thioredoxin-like Arabidopsis protein. J Biol Chem 278:4516–4523

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Waters ER, Aevermann BD, Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones 131:127–142

    Article  CAS  Google Scholar 

  • Weber C, Nover L, Fauth M (2008) Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant J 56:517–530

    Article  CAS  PubMed  Google Scholar 

  • Wells WW, Xu DP, Yang YF, Rocque PA (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265:15361–15364

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingert RA, Galloway JL, Barut B et al (2005) Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 436:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Linke K, Jatzek A, Jakob U (2005) Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17:381–392

    Article  CAS  PubMed  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653

    Article  CAS  PubMed  Google Scholar 

  • Wu HC, Luo DL, Vignols F, Jinn TL (2012) Heat shock-induced biphasic Ca2+ signature and OsCaM1-1 nuclear localization mediate downstream signalling in acquisition of thermotolerance in rice (Oryza sativa L.). Plant Cell Environ 35:1543–1557

    Article  CAS  PubMed  Google Scholar 

  • Xue HW, Chen X, Mei Y (2009) Function and regulation of phospholipid signaling in plants. Biochem J 421:145–156

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A 99:4097–4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhou RG, Gao YJ et al (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong M, Orosz A, Wu C (1998) Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 2:101–108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lynne Stracovsky for English editing. This work was supported by the National Taiwan University (grant nos. 101R892003-105R892003 and 106R891506) and by the Ministry of Science and Technology, Taiwan (grant nos. 105-2311-B-002-033-MY3 and 107-2923-B-002-003-MY3) to T.L.J. and (grant no. 105-2311-B-024-001) to H.C.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Chen Wu or Tsung-Luo Jinn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, HC., Vignols, F., Jinn, TL. (2019). Temperature Stress and Redox Homeostasis: The Synergistic Network of Redox and Chaperone System in Response to Stress in Plants. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Signaling Pathways. Heat Shock Proteins, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-03952-3_4

Download citation

Publish with us

Policies and ethics