Skip to main content

Synthesis and Assembly

  • Chapter
  • First Online:
Anisotropic Metal Chalcogenide Nanomaterials

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 381 Accesses

Abstract

The synthetic protocol for anisotropic MC nanocrystals has been developed based on accumulation of a largely empirical recipe, followed by inductive conclusion. Afterwards, the initial parameters are optimized to obtain the targeted nanostructures. The systematic synthetic effort is repeated and devised to inter-relate each parameter with a rational design of novel and complex MC nanostructures. Normally, the shape of nanocrystals obtained through thermodynamically-controlled growth reflects the inherent symmetry of the crystal structure, hence 3D nanocrystals are readily obtained. Synthesis of nanocrystals that do not have any preferential growth direction requires purposeful shape-guiding. Reduction of the surface energy of a certain facet is a powerful way to obtain anisotropic MCs, which can be achieved by selectively attaching organic surfactants or using the organic templates as the shape-determining reactor. The MC nanocrystals can then be merged to form 1D or 2D nanostructures. Such oriented attachment can be tailored by engineering the interaction between the nanocrystals. Chemical transformation of pre-existing anisotropic nanocrystals into others has recently received a lot of interest because it allows preparation of nanocrystals that are chemically different but have the same shape and dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venables JA (2003) Introduction to surface and thin film processes. Cambridge University Press, Cambridge

    Google Scholar 

  2. Gates B, Mayers B, Cattle B, Xia Y (2002) Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Func Mater 12(3):219–227. https://doi.org/10.1002/1616-3028(200203)12:3%3c219:AID-ADFM219%3e3.0.CO;2-U

    Article  Google Scholar 

  3. Min Y, Moon GD, Kim C-E, Lee J-H, Yang H, Soon A, Jeong U (2014) Solution-based synthesis of anisotropic metal chalcogenide nanocrystals and their applications. J Mater Chem C 2(31):6222–6248. https://doi.org/10.1039/C4TC00586D

    Article  Google Scholar 

  4. Mayers B, Xia Y (2002) One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J Mater Chem 12(6):1875–1881. https://doi.org/10.1039/B201058E

    Article  Google Scholar 

  5. Gates B, Yin Y, Xia Y (2000) A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10–30 nm. J Am Chem Soc 122(50):12582–12583. https://doi.org/10.1021/ja002608d

    Article  Google Scholar 

  6. Lu Q, Gao F, Komarneni S (2004) Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires. Adv Mater 16(18):1629–1632. https://doi.org/10.1002/adma.200400319

    Article  Google Scholar 

  7. Liu Z, Hu Z, Liang J, Li S, Yang Y, Peng S, Qian Y (2004) Size-controlled synthesis and growth mechanism of monodisperse tellurium nanorods by a surfactant-assisted method. Langmuir 20(1):214–218. https://doi.org/10.1021/la035160d

    Article  Google Scholar 

  8. Xi B, Xiong S, Fan H, Wang X, Qian Y (2007) Shape-controlled synthesis of tellurium 1D nanostructures via a novel circular transformation mechanism. Cryst Growth Des 7(6):1185–1191. https://doi.org/10.1021/cg060663d

    Article  Google Scholar 

  9. Zhang B, Hou W, Ye X, Fu S, Xie Y (2007) 1D tellurium nanostructures: photothermally assisted morphology-controlled synthesis and applications in preparing functional nanoscale materials. Adv Func Mater 17(3):486–492. https://doi.org/10.1002/adfm.200600566

    Article  Google Scholar 

  10. Lin Z-H, Yang Z, Chang H-T (2008) Preparation of fluorescent tellurium nanowires at room temperature. Cryst Growth Des 8(1):351–357. https://doi.org/10.1021/cg070357f

    Article  Google Scholar 

  11. Liu J-W, Zhu J-H, Zhang C-L, Liang H-W, Yu S-H (2010) Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J Am Chem Soc 132(26):8945–8952. https://doi.org/10.1021/ja910871s

    Article  Google Scholar 

  12. Qin D, Zhou J, Luo C, Liu Y, Han L, Cao Y (2006) Surfactant-assisted synthesis of size-controlled trigonal Se/Te alloy nanowires. Nanotechnology 17(3):674. https://doi.org/10.1088/0957-4484/17/3/010

    Article  Google Scholar 

  13. Jeong U, Xia Y, Yin Y (2005) Large-scale synthesis of single-crystal CdSe nanowires through a cation-exchange route. Chem Phys Lett 416(4):246–250. https://doi.org/10.1016/j.cplett.2005.09.106

    Article  Google Scholar 

  14. Qian H-S, Yu S-H, Gong J-Y, Luo L-B, L-f Fei (2006) High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (Vinyl Pyrrolidone)-assisted hydrothermal process. Langmuir 22(8):3830–3835. https://doi.org/10.1021/la053021l

    Article  Google Scholar 

  15. Mo M, Zeng J, Liu X, Yu W, Zhang S, Qian Y (2002) Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv Mater 14(22):1658–1662. https://doi.org/10.1002/1521-4095(20021118)14:22%3c1658:AID-ADMA1658%3e3.0.CO;2-2

    Article  Google Scholar 

  16. Liu Z, Hu Z, Xie Q, Yang B, Wu J, Qian Y (2003) Surfactant-assisted growth of uniform nanorods of crystalline tellurium. J Mater Chem 13(1):159–162. https://doi.org/10.1039/B208420A

    Article  Google Scholar 

  17. Moon GD, Min Y, Ko S, Kim S-W, Ko D-H, Jeong U (2010) Understanding the epitaxial growth of SexTey@Te core − shell nanorods and the generation of periodic defects. ACS Nano 4(12):7283–7292. https://doi.org/10.1021/nn102196r

    Article  Google Scholar 

  18. Xiong S, Xi B, Wang W, Wang C, Fei L, Zhou H, Qian Y (2006) The fabrication and characterization of single-crystalline selenium nanoneedles. Cryst Growth Des 6(7):1711–1716. https://doi.org/10.1021/cg060005t

    Article  Google Scholar 

  19. Cao XB, Xie Y, Zhang SY, Li FQ (2004) Ultra-thin trigonal selenium nanoribbons developed from series-wound beads. Adv Mater 16(7):649–653. https://doi.org/10.1002/adma.200306317

    Article  Google Scholar 

  20. Zhang H, Ji Y, Ma X, Xu J, Yang D (2003) Long Bi2S3 nanowires prepared by a simple hydrothermal method. Nanotechnology 14(9):974. https://doi.org/10.1088/0957-4484/14/9/307

    Article  Google Scholar 

  21. Ma J, Wang Y, Wang Y, Chen Q, Lian J, Zheng W (2009) Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties. J Phys Chem C 113(31):13588–13592. https://doi.org/10.1021/jp902952k

    Article  Google Scholar 

  22. Yu Y, Wang RH, Chen Q, Peng LM (2006) High-quality ultralong Sb2Se3 and Sb2S3 nanoribbons on a large scale via a simple chemical route. J Phys Chem B 110(27):13415–13419. https://doi.org/10.1021/jp061599d

    Article  Google Scholar 

  23. Liu Z, Xu D, Liang J, Shen J, Zhang S, Qian Y (2005) Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. J Phys Chem B 109(21):10699–10704. https://doi.org/10.1021/jp050332w

    Article  Google Scholar 

  24. Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen MS, Berger S (2003) Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes. Nano Lett 3(6):857–862. https://doi.org/10.1021/nl0342085

    Article  Google Scholar 

  25. Yan Q, Chen H, Zhou W, Hng HH, Boey FYC, Ma J (2008) A simple chemical approach for PbTe nanowires with enhanced thermoelectric properties. Chem Mater 20(20):6298–6300. https://doi.org/10.1021/cm802104u

    Article  Google Scholar 

  26. Shi W, Yu J, Wang H, Zhang H (2006) Hydrothermal synthesis of single-crystalline antimony telluride nanobelts. J Am Chem Soc 128(51):16490–16491. https://doi.org/10.1021/ja066944r

    Article  Google Scholar 

  27. Cho K-S, Talapin DV, Gaschler W, Murray CB (2005) Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19):7140–7147. https://doi.org/10.1021/ja050107s

    Article  Google Scholar 

  28. W-k Koh, Bartnik AC, Wise FW, Murray CB (2010) Synthesis of monodisperse PbSe nanorods: a case for oriented attachment. J Am Chem Soc 132(11):3909–3913. https://doi.org/10.1021/ja9105682

    Article  Google Scholar 

  29. Zhu G, Zhang S, Xu Z, Ma J, Shen X (2011) Ultrathin ZnS single crystal nanowires: controlled synthesis and room-temperature ferromagnetism properties. J Am Chem Soc 133(39):15605–15612. https://doi.org/10.1021/ja2049258

    Article  Google Scholar 

  30. Cozzoli PD, Manna L, Curri ML, Kudera S, Giannini C, Striccoli M, Agostiano A (2005) Shape and phase control of colloidal ZnSe nanocrystals. Chem Mater 17(6):1296–1306. https://doi.org/10.1021/cm047874v

    Article  Google Scholar 

  31. Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297(5579):237–240. https://doi.org/10.1126/science.1072086

    Article  Google Scholar 

  32. Jiang F, Liu J, Li Y, Fan L, Ding Y, Li Y (2012) Ultralong CdTe nanowires: catalyst-free synthesis and high-yield transformation into core-shell heterostructures. Adv Func Mater 22(11):2402–2411. https://doi.org/10.1002/adfm.201102800

    Article  Google Scholar 

  33. Pradhan N, Xu H, Peng X (2006) Colloidal CdSe quantum wires by oriented attachment. Nano Lett 6(4):720–724. https://doi.org/10.1021/nl052497m

    Article  Google Scholar 

  34. Srivastava BB, Jana S, Sarma DD, Pradhan N (2010) Surface ligand population controlled oriented attachment: a case of CdS nanowires. J Phys Chem Lett 1(13):1932–1935. https://doi.org/10.1021/jz1006077

    Article  Google Scholar 

  35. Barnard AS, Xu H, Li X, Pradhan N, Peng X (2006) Modelling the formation of high aspect CdSe quantum wires: axial-growth versus oriented-attachment mechanisms. Nanotechnology 17(22):5707. https://doi.org/10.1088/0957-4484/17/22/029

    Article  Google Scholar 

  36. Gates B, Mayers B, Wu Y, Sun Y, Cattle B, Yang P, Xia Y (2002) Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature. Adv Func Mater 12(10):679–686. https://doi.org/10.1002/1616-3028(20021016)12:10%3c679:AID-ADFM679%3e3.0.CO;2-%23

    Article  Google Scholar 

  37. Jeong U, Camargo PHC, Lee YH, Xia Y (2006) Chemical transformation: a powerful route to metal chalcogenide nanowires. J Mater Chem 16(40):3893–3897. https://doi.org/10.1039/B606682H

    Article  Google Scholar 

  38. Luther JM, Zheng H, Sadtler B, Alivisatos AP (2009) Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J Am Chem Soc 131(46):16851–16857. https://doi.org/10.1021/ja906503w

    Article  Google Scholar 

  39. Li H, Zanella M, Genovese A, Povia M, Falqui A, Giannini C, Manna L (2011) Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases. Nano Lett 11(11):4964–4970. https://doi.org/10.1021/nl202927a

    Article  Google Scholar 

  40. Song JH, Wu Y, Messer B, Kind H, Yang P (2001) Metal nanowire formation using Mo3Se3− as reducing and sacrificing templates. J Am Chem Soc 123(42):10397–10398. https://doi.org/10.1021/ja016818h

    Article  Google Scholar 

  41. Samal AK, Pradeep T (2009) Room-temperature chemical synthesis of silver telluride nanowires. J Phys Chem C 113(31):13539–13544. https://doi.org/10.1021/jp901953f

    Article  Google Scholar 

  42. Moon GD, Ko S, Xia Y, Jeong U (2010) Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 4(4):2307–2319. https://doi.org/10.1021/nn9018575

    Article  Google Scholar 

  43. Wang K, Liang H-W, Yao W-T, Yu S-H (2011) Templating synthesis of uniform Bi2Te3 nanowires with high aspect ratio in triethylene glycol (TEG) and their thermoelectric performance. J Mater Chem 21(38):15057–15062. https://doi.org/10.1039/C1JM12384J

    Article  Google Scholar 

  44. Liang H-W, Liu S, Wu Q-S, Yu S-H (2009) An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires. Inorg Chem 48(11):4927–4933. https://doi.org/10.1021/ic900245w

    Article  Google Scholar 

  45. Ga Tai, Zhou B, Guo W (2008) Structural characterization and thermoelectric transport properties of uniform single-crystalline lead telluride nanowires. J Phys Chem C 112(30):11314–11318. https://doi.org/10.1021/jp8041318

    Article  Google Scholar 

  46. Samal AK, Pradeep T (2010) Lanthanum telluride nanowires: formation, doping, and Raman studies. J Phys Chem C 114(13):5871–5878. https://doi.org/10.1021/jp911658k

    Article  Google Scholar 

  47. Zhang G, Yu Q, Yao Z, Li X (2009) Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication. Chem Commun 17:2317–2319. https://doi.org/10.1039/B822595H

    Article  Google Scholar 

  48. Kim SH, Park BK (2010) Effects of Te nanowire microstructure and Bi3+ reduction rate on Bi2Te3 nanotubes. J Appl Phys 108(10):102808. https://doi.org/10.1063/1.3511689

    Article  Google Scholar 

  49. Li J, Tang X, Song L, Zhu Y, Qian Y (2009) From Te nanotubes to CoTe2 nanotubes: a general strategy for the formation of 1D metal telluride nanostructures. J Cryst Growth 311(20):4467–4472. https://doi.org/10.1016/j.jcrysgro.2009.08.007

    Article  Google Scholar 

  50. Fan H, Zhang Y, Zhang M, Wang X, Qian Y (2008) Glucose-assisted synthesis of CoTe nanotubes in situ templated by Te nanorods. Cryst Growth Des 8(8):2838–2841. https://doi.org/10.1021/cg7011364

    Article  Google Scholar 

  51. Zhu H, Luo J, Zhang H, Liang J, Rao G, Li J, Liu G, Du Z (2012) Controlled hydrothermal synthesis of tri-wing tellurium nanoribbons and their template reaction. CrystEngComm 14(1):251–255. https://doi.org/10.1039/C1CE05734K

    Article  Google Scholar 

  52. Som A, Pradeep T (2012) Heterojunction double dumb-bell Ag2Te-Te-Ag2Te nanowires. Nanoscale 4(15):4537–4543. https://doi.org/10.1039/C2NR30730H

    Article  Google Scholar 

  53. Liang HW, Liu S, Gong JY, Wang SB, Wang L, Yu SH (2009) Ultrathin Te nanowires: an excellent platform for controlled synthesis of ultrathin platinum and palladium nanowires/nanotubes with very high aspect ratio. Adv Mater 21(18):1850–1854. https://doi.org/10.1002/adma.200802286

    Article  Google Scholar 

  54. Shinde VR, Gujar TP, Noda T, Fujita D, Lokhande CD, Joo O-S (2009) Ultralong cadmium chalcogenide nanotubes from one-dimensional cadmium hydroxide nanowire bundles by soft solution chemistry. J Phys Chem C 113(32):14179–14183. https://doi.org/10.1021/jp904480v

    Article  Google Scholar 

  55. Kim JW, Shim H-S, Ko S, Jeong U, Lee C-L, Kim WB (2012) Thorny CdSe nanotubes via an aqueous anion exchange reaction process and their photoelectrochemical applications. J Mater Chem 22(39):20889–20895. https://doi.org/10.1039/C2JM32751A

    Article  Google Scholar 

  56. Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications. Imperial College Press

    Google Scholar 

  57. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. https://doi.org/10.1002/jcc.20495

    Article  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77 (18):3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  Google Scholar 

  59. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  60. Gao X, Gao T, Zhang L (2003) Solution-solid growth of [small alpha]-monoclinic selenium nanowires at room temperature. J Mater Chem 13(1):6–8. https://doi.org/10.1039/B209399E

    Article  MathSciNet  Google Scholar 

  61. Ren L, Zhang H, Tan P, Chen Y, Zhang Z, Chang Y, Xu J, Yang F, Yu D (2004) Hexagonal selenium nanowires synthesized via vapor-phase growth. J Phys Chem B 108(15):4627–4630. https://doi.org/10.1021/jp036215n

    Article  Google Scholar 

  62. Liu Z, Li S, Yang Y, Hu Z, Peng S, Liang J, Qian Y (2003) Shape-controlled synthesis and growth mechanism of one-dimensional nanostructures of trigonal tellurium. New J Chem 27(12):1748–1752. https://doi.org/10.1039/B306782C

    Article  Google Scholar 

  63. Zhang B, Dai W, Ye X, Hou W, Xie Y (2005) Solution-phase synthesis and electrochemical hydrogen storage of ultra-long single-crystal selenium submicrotubes. J Phys Chem B 109(48):22830–22835. https://doi.org/10.1021/jp054214k

    Article  Google Scholar 

  64. Malakooti R, Cademartiri L, Akçakir Y, Petrov S, Migliori A, Ozin GA (2006) Shape-controlled Bi2S3 nanocrystals and their plasma polymerization into flexible films. Adv Mater 18(16):2189–2194. https://doi.org/10.1002/adma.200600460

    Article  Google Scholar 

  65. Mizutani U (2008) Hume-Rothery rules for structurally complex alloy phases. CRC Press, London

    Google Scholar 

  66. Wang Y, Chen J, Wang P, Chen L, Chen Y-B, Wu L-M (2009) Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. J Phys Chem C 113(36):16009–16014. https://doi.org/10.1021/jp904448k

    Article  Google Scholar 

  67. Puzder A, Williamson AJ, Zaitseva N, Galli G, Manna L, Alivisatos AP (2004) The effect of organic ligand binding on the growth of CdSe nanoparticles probed by Ab Initio calculations. Nano Lett 4(12):2361–2365. https://doi.org/10.1021/nl0485861

    Article  Google Scholar 

  68. Yuho M, Ho Jun S, Jong-Jin C, Byung-Dong H, Geon Dae M (2018) Dimensional and compositional change of 1D chalcogen nanostructures leading to tunable localized surface plasmon resonances. Nanotechnology 29(34):345603

    Article  Google Scholar 

  69. Min-Seok K, Xing-Hua M, Ki-Hyun C, Seung-Yeol J, Kahyun H, Yun-Mo S (2018) A generalized crystallographic description of all tellurium nanostructures. Adv Mater 30(6):1702701. https://doi.org/10.1002/adma.201702701

    Article  Google Scholar 

  70. Manna L, Wang Cingolani R, Alivisatos AP (2005) First-principles modeling of unpassivated and surfactant-passivated bulk facets of Wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. J Phys Chem B 109(13):6183–6192. https://doi.org/10.1021/jp0445573

    Article  Google Scholar 

  71. Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1(6):333–337. https://doi.org/10.1021/nl0155532

    Article  Google Scholar 

  72. Nag A, Hazarika A, Shanavas KV, Sharma SM, Dasgupta I, Sarma DD (2011) Crystal structure engineering by fine-tuning the surface energy: the case of CdE (E=S/Se) nanocrystals. J Phys Chem Lett 2(7):706–712. https://doi.org/10.1021/jz200060a

    Article  Google Scholar 

  73. Xue P, Lu R, Li D, Jin M, Tan C, Bao C, Wang Z, Zhao Y (2004) Novel CuS nanofibers using organogel as a template: controlled by binding sites. Langmuir 20(25):11234–11239. https://doi.org/10.1021/la048582b

    Article  Google Scholar 

  74. Lv R, Cao C, Zhu H (2004) Synthesis and characterization of ZnS nanowires by AOT micelle-template inducing reaction. Mater Res Bull 39(10):1517–1524. https://doi.org/10.1016/j.materresbull.2004.04.019

    Article  Google Scholar 

  75. Lv R, Cao C, Zhai H, Wang D, Liu S, Zhu H (2004) Growth and characterization of single-crystal ZnSe nanorods via surfactant soft-template method. Solid State Commun 130(3):241–245. https://doi.org/10.1016/j.ssc.2004.01.030

    Article  Google Scholar 

  76. Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Coll Interface Sci 28:65–108. https://doi.org/10.1016/0001-8686(87)80009-X

    Article  Google Scholar 

  77. Mullin JW (2001) Crystallization, 4th edn. Butterworth-Heinemann, Woburn

    Google Scholar 

  78. Zhang Q, Liu S-J, Yu S-H (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19(2):191–207. https://doi.org/10.1039/B807760F

    Article  Google Scholar 

  79. Penn RL, Banfield JF (1998) Oriented attachment and growth, twinning, polytypism, and formation of metastable phases; insights from nanocrystalline TiO2. Am Miner 83(9–10):1077–1082. https://doi.org/10.2138/am-1998-9-1016

    Article  Google Scholar 

  80. Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281(5379):969–971. https://doi.org/10.1126/science.281.5379.969

    Article  Google Scholar 

  81. Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289(5480):751–754. https://doi.org/10.1126/science.289.5480.751

    Article  Google Scholar 

  82. Moldovan D, Yamakov V, Wolf D, Phillpot SR (2002) Scaling behavior of grain-rotation-induced grain growth. Phys Rev Lett 89(20):206101. https://doi.org/10.1103/physrevlett.89.206101

  83. Leite ER, Giraldi TR, Pontes FM, Longo E, Beltrán A, Andrés J (2003) Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Appl Phys Lett 83(8):1566–1568. https://doi.org/10.1063/1.1605241

    Article  Google Scholar 

  84. Zhuang Z, Zhang J, Huang F, Wang Y, Lin Z (2009) Pure multistep oriented attachment growth kinetics of surfactant-free SnO2 nanocrystals. Phys Chem Chem Phys 11(38):8516–8521. https://doi.org/10.1039/B907967J

    Article  Google Scholar 

  85. Zheng H, Smith RK, Y-w Jun, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932):1309–1312. https://doi.org/10.1126/science.1172104

    Article  Google Scholar 

  86. Zhang J, Lin Z, Lan Y, Ren G, Chen D, Huang F, Hong M (2006) A multistep oriented attachment kinetics: coarsening of ZnS nanoparticle in concentrated NaOH. J Am Chem Soc 128(39):12981–12987. https://doi.org/10.1021/ja062572a

    Article  Google Scholar 

  87. Zhang J, Wang Y, Zheng J, Huang F, Chen D, Lan Y, Ren G, Lin Z, Wang C (2007) Oriented attachment kinetics for ligand capped nanocrystals: coarsening of Thiol-PbS nanoparticles. J Phys Chem B 111(6):1449–1454. https://doi.org/10.1021/jp067040v

    Article  Google Scholar 

  88. Huang F, Zhang H, Banfield JF (2003) Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett 3(3):373–378. https://doi.org/10.1021/nl025836+

    Article  Google Scholar 

  89. Hu Z, Oskam G, Penn RL, Pesika N, Searson PC (2003) The influence of anion on the coarsening kinetics of ZnO nanoparticles. J Phys Chem B 107(14):3124–3130. https://doi.org/10.1021/jp020580h

    Article  Google Scholar 

  90. Talapin DV, Yu H, Shevchenko EV, Lobo A, Murray CB (2007) Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire − nanocrystal heterostructures. J Phys Chem C 111(38):14049–14054. https://doi.org/10.1021/jp074319i

    Article  Google Scholar 

  91. Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3(2):244–255. https://doi.org/10.1021/nn800820e

    Article  Google Scholar 

  92. Liu K, Zhao N, Kumacheva E (2011) Self-assembly of inorganic nanorods. Chem Soc Rev 40(2):656–671. https://doi.org/10.1039/C0CS00133C

    Article  Google Scholar 

  93. Zanella M, Bertoni G, Franchini IR, Brescia R, Baranov D, Manna L (2011) Assembly of shape-controlled nanocrystals by depletion attraction. Chem Commun 47(1):203–205. https://doi.org/10.1039/C0CC02477E

    Article  Google Scholar 

  94. Ahmed S, Ryan KM (2009) Centimetre scale assembly of vertically aligned and close packed semiconductor nanorods from solution. Chem Commun 42:6421–6423. https://doi.org/10.1039/B914478A

    Article  Google Scholar 

  95. Ryan KM, Mastroianni A, Stancil KA, Liu H, Alivisatos AP (2006) Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett 6(7):1479–1482. https://doi.org/10.1021/nl060866o

    Article  Google Scholar 

  96. Kelly D, Singh A, Barrett CA, O’Sullivan C, Coughlan C, Laffir FR, O’Dwyer C, Ryan KM (2011) A facile spin-cast route for cation exchange of multilayer perpendicularly-aligned nanorod assemblies. Nanoscale 3(11):4580–4583. https://doi.org/10.1039/C1NR11031D

    Article  Google Scholar 

  97. Gupta S, Zhang Q, Emrick T, Russell TP (2006) “Self-Corralling” nanorods under an applied electric field. Nano Lett 6(9):2066–2069. https://doi.org/10.1021/nl061336v

    Article  Google Scholar 

  98. Moon GD, Ko S, Min Y, Zeng J, Xia Y, Jeong U (2011) Chemical transformations of nanostructured materials. Nano Today 6(2):186–203. https://doi.org/10.1016/j.nantod.2011.02.006

    Article  Google Scholar 

  99. Shao H-F, Qian X-F, Zhu Z-K (2005) The synthesis of ZnS hollow nanospheres with nanoporous shell. J Solid State Chem 178(11):3522–3528. https://doi.org/10.1016/j.jssc.2005.09.007

    Article  Google Scholar 

  100. Cabot A, Smith RK, Yin Y, Zheng H, Reinhard BM, Liu H, Alivisatos AP (2008) Sulfidation of Cadmium at the nanoscale. ACS Nano 2(7):1452–1458. https://doi.org/10.1021/nn800270m

    Article  Google Scholar 

  101. Wang Y, Cai L, Xia Y (2005) Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater 17(4):473–477. https://doi.org/10.1002/adma.200401416

    Article  Google Scholar 

  102. Bernard Ng CH, Tan H, Fan WY (2006) Formation of Ag2Se nanotubes and dendrite-like structures from UV irradiation of a CSe2/Ag colloidal solution. Langmuir 22(23):9712–9717. https://doi.org/10.1021/la061253u

    Article  Google Scholar 

  103. Agarwal R, Krook NM, Ren M-L, Tan LZ, Liu W, Rappe AM, Agarwal R (2018) Anion exchange in II–VI semiconducting nanostructures via atomic templating. Nano Lett 18(3):1620–1627. https://doi.org/10.1021/acs.nanolett.7b04424

    Article  Google Scholar 

  104. Mohl M, Kumar A, Reddy ALM, Kukovecz A, Konya Z, Kiricsi I, Vajtai R, Ajayan PM (2010) Synthesis of catalytic porous metallic nanorods by galvanic exchange reaction. J Phys Chem C 114(1):389–393. https://doi.org/10.1021/jp9083508

    Article  Google Scholar 

  105. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139). https://doi.org/10.1126/science.1226419

    Article  Google Scholar 

  106. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim H-Y, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571. https://doi.org/10.1126/science.1194975

    Article  Google Scholar 

  107. Dines MB (1975) Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides. Mater Res Bull 10(4):287–291. https://doi.org/10.1016/0025-5408(75)90115-4

    Article  Google Scholar 

  108. Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H (2011) Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew Chem Int Ed 50(47):11093–11097. https://doi.org/10.1002/anie.201106004

    Article  Google Scholar 

  109. Zheng J, Zhang H, Dong S, Liu Y, Nai CT, Shin HS, Jeong HY, Liu B, Loh KP (2014) High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat Commun 5:2995. https://doi.org/10.1038/ncomms3995

    Article  Google Scholar 

  110. Liu K-K, Zhang W, Lee Y-H, Lin Y-C, Chang M-T, Su C-Y, Chang C-S, Li H, Shi Y, Zhang H, Lai C-S, Li L-J (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 12(3):1538–1544. https://doi.org/10.1021/nl2043612

    Article  Google Scholar 

  111. Yang H, Giri A, Moon S, Shin S, Myoung J-M, Jeong U (2017) Highly scalable synthesis of MoS2 thin films with precise thickness control via polymer-assisted deposition. Chem Mater 29(14):5772–5776. https://doi.org/10.1021/acs.chemmater.7b01605

    Article  Google Scholar 

  112. Giri A, Yang H, Thiyagarajan K, Jang W, Myoung JM, Singh R, Soon A, Cho K, Jeong U (2017) One-step solution phase growth of transition metal dichalcogenide thin films directly on solid substrates. Adv Mater 29(26):1700291. https://doi.org/10.1002/adma.201700291

    Article  Google Scholar 

  113. Lee J, Pak S, Giraud P, Lee YW, Cho Y, Hong J, Jang AR, Chung HS, Hong WK, Jeong HY, Shin HS, Occhipinti LG, Morris SM, Cha S, Sohn JI, Kim JM (2017) Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n–n heterojunction devices. Adv Mater 29(33):1702206. https://doi.org/10.1002/adma.201702206

    Article  Google Scholar 

  114. Chen H, Chen Z, Ge B, Chi Z, Chen H, Wu H, Cao C, Duan X (2017) General strategy for two-dimensional transition metal dichalcogenides by ion exchange. Chem Mater 29(23):10019–10026. https://doi.org/10.1021/acs.chemmater.7b03523

    Article  Google Scholar 

  115. Beberwyck BJ, Surendranath Y, Alivisatos AP (2013) Cation exchange: a versatile tool for nanomaterials synthesis. J Phys Chem C 117(39):19759–19770. https://doi.org/10.1021/jp405989z

    Article  Google Scholar 

  116. Kang K, Lee K-H, Han Y, Gao H, Xie S, Muller DA, Park J (2017) Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550:229. https://doi.org/10.1038/nature23905

    Article  Google Scholar 

  117. Vaughn DD, Patel RJ, Hickner MA, Schaak RE (2010) Single-crystal colloidal nanosheets of GeS and GeSe. J Am Chem Soc 132(43):15170–15172. https://doi.org/10.1021/ja107520b

    Article  Google Scholar 

  118. Oyler KD, Ke X, Sines IT, Schiffer P, Schaak RE (2009) Chemical synthesis of two-dimensional iron chalcogenide nanosheets: FeSe, FeTe, Fe(Se, Te), and FeTe2. Chem Mater 21(15):3655–3661. https://doi.org/10.1021/cm901150c

    Article  Google Scholar 

  119. Chen L, Zhan H, Yang X, Sun Z, Zhang J, Xu D, Liang C, Wu M, Fang J (2010) Composition and size tailored synthesis of iron selenide nanoflakes. CrystEngComm 12(12):4386–4391. https://doi.org/10.1039/C005097K

    Article  Google Scholar 

  120. Zhang Y, Lu J, Shen S, Xu H, Wang Q (2011) Ultralarge single crystal SnS rectangular nanosheets. Chem Commun 47(18):5226–5228. https://doi.org/10.1039/C0CC05528J

    Article  Google Scholar 

  121. Vaughn DD, In S-I, Schaak RE (2011) A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: the case of SnSe. ACS Nano 5(11):8852–8860. https://doi.org/10.1021/nn203009v

    Article  Google Scholar 

  122. Plashnitsa VV, Vietmeyer F, Petchsang N, Tongying P, Kosel TH, Kuno M (2012) Synthetic strategy and structural and optical characterization of thin highly crystalline titanium disulfide nanosheets. J Phys Chem Lett 3(11):1554–1558. https://doi.org/10.1021/jz300487p

    Article  Google Scholar 

  123. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147. https://doi.org/10.1038/nnano.2010.279

    Article  Google Scholar 

  124. Lee C, Li Q, Kalb W, Liu X-Z, Berger H, Carpick RW, Hone J (2010) Frictional characteristics of atomically thin sheets. Science 328(5974):76–80. https://doi.org/10.1126/science.1184167

    Article  Google Scholar 

  125. Jeong S, Yoo D, J-t Jang, Kim M, Cheon J (2012) Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. J Am Chem Soc 134(44):18233–18236. https://doi.org/10.1021/ja3089845

    Article  Google Scholar 

  126. Zhang J, Peng Z, Soni A, Zhao Y, Xiong Y, Peng B, Wang J, Dresselhaus MS, Xiong Q (2011) Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett 11(6):2407–2414. https://doi.org/10.1021/nl200773n

    Article  Google Scholar 

  127. Lu W, Ding Y, Chen Y, Wang ZL, Fang J (2005) Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. J Am Chem Soc 127(28):10112–10116. https://doi.org/10.1021/ja052286j

    Article  Google Scholar 

  128. Soni A, Yanyuan Z, Ligen Y, Aik MKK, Dresselhaus MS, Xiong Q (2012) Enhanced thermoelectric properties of solution grown Bi2Te3–xSex nanoplatelet composites. Nano Lett 12(3):1203–1209. https://doi.org/10.1021/nl2034859

    Article  Google Scholar 

  129. Son JS, Choi MK, Han M-K, Park K, Kim J-Y, Lim SJ, Oh M, Kuk Y, Park C, Kim S-J, Hyeon T (2012) n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett 12(2):640–647. https://doi.org/10.1021/nl203389x

    Article  Google Scholar 

  130. Mehta RJ, Zhang Y, Karthik C, Singh B, Siegel RW, Borca-Tasciuc T, Ramanath G (2012) A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater 11:233. https://doi.org/10.1038/nmat3213

    Article  Google Scholar 

  131. Min Y, Moon GD, Kim BS, Lim B, Kim J-S, Kang CY, Jeong U (2012) Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J Am Chem Soc 134(6):2872–2875. https://doi.org/10.1021/ja209991z

    Article  Google Scholar 

  132. Min Y, Roh JW, Yang H, Park M, Kim SI, Hwang S, Lee SM, Lee KH, Jeong U (2013) Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv Mater 25(10):1425–1429. https://doi.org/10.1002/adma.201203764

    Article  Google Scholar 

  133. Son JS, Wen XD, Joo J, Chae J, Baek Si, Park K, Kim JH, An K, Yu JH, Kwon SG, Choi SH, Wang Z, Kim YW, Kuk Y, Hoffmann R, Hyeon T (2009) Large scale soft colloidal template synthesis of 1.4nm thick CdSe nanosheets. Angew Chem Int Ed 48 (37):6861–6864. https://doi.org/10.1002/anie.200902791

    Article  Google Scholar 

  134. Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard WA, Kim MJ, Xu X, Ye PD, Wu W (2018) Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron 1(4):228–236. https://doi.org/10.1038/s41928-018-0058-4

    Article  Google Scholar 

  135. Li Z, Peng X (2011) Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. J Am Chem Soc 133(17):6578–6586. https://doi.org/10.1021/ja108145c

    Article  Google Scholar 

  136. Kovalenko MV, Scheele M, Talapin DV (2009) Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324(5933):1417–1420. https://doi.org/10.1126/science.1170524

    Article  Google Scholar 

  137. Acharya S, Dutta M, Sarkar S, Basak D, Chakraborty S, Pradhan N (2012) Synthesis of micrometer length indium sulfide nanosheets and study of their dopant induced photoresponse properties. Chem Mater 24(10):1779–1785. https://doi.org/10.1021/cm3003063

    Article  Google Scholar 

  138. Jiang L, Zhu Y-J, Cui J-B (2010) Cetyltrimethylammonium bromide assisted self-assembly of NiTe2 nanoflakes: nanoflake arrays and their photoluminescence properties. J Solid State Chem 183(10):2358–2364. https://doi.org/10.1016/j.jssc.2010.08.004

    Article  Google Scholar 

  139. Zhang G, Wang W, Lu X, Li X (2009) Solvothermal synthesis of V–VI binary and ternary hexagonal platelets: the oriented attachment mechanism. Cryst Growth Des 9(1):145–150. https://doi.org/10.1021/cg7012528

    Article  Google Scholar 

  140. Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA (2006) Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314(5797):274–278. https://doi.org/10.1126/science.1128045

    Article  Google Scholar 

  141. Son JS, Park K, Kwon SG, Yang J, Choi MK, Kim J, Yu JH, Joo J, Hyeon T (2012) Dimension-controlled synthesis of CdS nanocrystals: from 0D quantum dots to 2D nanoplates. Small 8(15):2394–2402. https://doi.org/10.1002/smll.201200506

    Article  Google Scholar 

  142. Zhu TJ, Chen X, Meng XY, Zhao XB, He J (2010) Anisotropic growth of cubic PbTe nanoparticles to nanosheets: controlled synthesis and growth mechanisms. Cryst Growth Des 10(8):3727–3731. https://doi.org/10.1021/cg100563x

    Article  Google Scholar 

  143. Schliehe C, Juarez BH, Pelletier M, Jander S, Greshnykh D, Nagel M, Meyer A, Foerster S, Kornowski A, Klinke C, Weller H (2010) Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329(5991):550–553. https://doi.org/10.1126/science.1188035

    Article  Google Scholar 

  144. Wang Z, Schliehe C, Wang T, Nagaoka Y, Cao YC, Bassett WA, Wu H, Fan H, Weller H (2011) Deviatoric stress driven formation of large single-crystal PbS nanosheet from nanoparticles and in situ monitoring of oriented attachment. J Am Chem Soc 133(37):14484–14487. https://doi.org/10.1021/ja204310b

    Article  Google Scholar 

  145. Jeong S, Han JH, J-t Jang, J-w Seo, Kim J-G, Cheon J (2011) Transformative two-dimensional layered nanocrystals. J Am Chem Soc 133(37):14500–14503. https://doi.org/10.1021/ja2049594

    Article  Google Scholar 

  146. Wu XJ, Huang X, Qi X, Li H, Li B, Zhang H (2014) Copper-based ternary and quaternary semiconductor nanoplates: templated synthesis, characterization, and photoelectrochemical properties. Angew Chem Int Ed 53(34):8929–8933. https://doi.org/10.1002/anie.201403655

    Article  Google Scholar 

  147. Estrada CA, Zingaro RA, Meyers EA, Nair PK, Nair MTS (1994) Modification of chemically deposited ZnSe thin films by ion exchange reaction with copper ions in solution. Thin Solid Films 247(2):208–212. https://doi.org/10.1016/0040-6090(94)90801-X

    Article  Google Scholar 

  148. Zhao W, Zhang C, Geng F, Zhuo S, Zhang B (2014) Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 8(10):10909–10919. https://doi.org/10.1021/nn504755x

    Article  Google Scholar 

  149. Yang B, Xue D-J, Leng M, Zhong J, Wang L, Song H, Zhou Y, Tang J (2015) Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S1 − xSex)3 film: molecular precursor identification, film fabrication and band gap tuning. Sci Rep 5:10978. https://doi.org/10.1038/srep10978

    Article  Google Scholar 

  150. Mitzi DB, Kosbar LL, Murray CE, Copel M, Afzali A (2004) High-mobility ultrathin semiconducting films prepared by spin coating. Nature 428:299. https://doi.org/10.1038/nature02389

    Article  Google Scholar 

  151. Milliron DJ, Mitzi DB, Copel M, Murray CE (2006) Solution-processed metal chalcogenide films for p-type transistors. Chem Mater 18(3):587–590. https://doi.org/10.1021/cm052300r

    Article  Google Scholar 

  152. Mitzi DB, Copel M, Murray CE (2006) High-mobility p-type transistor based on a spin-coated metal telluride semiconductor. Adv Mater 18(18):2448–2452. https://doi.org/10.1002/adma.200600157

    Article  Google Scholar 

  153. Yang W, Duan H-S, Cha KC, Hsu C-J, Hsu W-C, Zhou H, Bob B, Yang Y (2013) Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films. J Am Chem Soc 135(18):6915–6920. https://doi.org/10.1021/ja312678c

    Article  Google Scholar 

  154. Mitzi DB, Raoux S, Schrott AG, Copel M, Kellock A, Jordan-Sweet J (2006) Solution-based processing of the phase-change material KSb5S8. Chem Mater 18(26):6278–6282. https://doi.org/10.1021/cm0619510

    Article  Google Scholar 

  155. Kang J-G, Park J-G, Kim D-W (2010) Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries. Electrochem Commun 12(2):307–310. https://doi.org/10.1016/j.elecom.2009.12.025

    Article  Google Scholar 

  156. Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18(73):193–335. https://doi.org/10.1080/00018736900101307

    Article  Google Scholar 

  157. Jaegermann W, Tributsch H (1988) Interfacial properties of semiconducting transition metal chalcogenides. Prog Surf Sci 29(1):1–167. https://doi.org/10.1016/0079-6816(88)90015-9

    Article  Google Scholar 

  158. Arnaud Y, Chevreton M (1981) Etude comparative des composés TiX2 (X=S, Se, Te). Structures de TiTe2 et TiSeTe. J Solid State Chem 39(2):230–239. https://doi.org/10.1016/0022-4596(81)90336-4

    Article  Google Scholar 

  159. Jang J-T, Jeong S, Seo J-W, Kim M-C, Sim E, Oh Y, Nam S, Park B, Cheon J (2011) Ultrathin Zirconium Disulfide Nanodiscs. J Am Chem Soc 133(20):7636–7639. https://doi.org/10.1021/ja200400n

    Article  Google Scholar 

  160. Coleman RV, Giambattista B, Hansma PK, Johnson A, McNairy WW, Slough CG (1988) Scanning tunnelling microscopy of charge-density waves in transition metal chalcogenides. Adv Phys 37(6):559–644. https://doi.org/10.1080/00018738800101439

    Article  Google Scholar 

  161. Friend RH, Jerome D (1979) Periodic lattice distortions and charge density waves in one- and two-dimensional metals. J Phys C: Solid State Phys 12(8):1441. https://doi.org/10.1088/0022-3719/12/8/009

    Article  Google Scholar 

  162. Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen SR, Tenne R (1997) Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387:791. https://doi.org/10.1038/42910

    Article  Google Scholar 

  163. Wang W, Poudel B, Yang J, Wang DZ, Ren ZF (2005) High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. J Am Chem Soc 127(40):13792–13793. https://doi.org/10.1021/ja054861p

    Article  Google Scholar 

  164. Shi W, Zhou L, Song S, Yang J, Zhang H (2008) Hydrothermal synthesis and thermoelectric transport properties of impurity-free antimony telluride hexagonal nanoplates. Adv Mater 20(10):1892–1897. https://doi.org/10.1002/adma.200702003

    Article  Google Scholar 

  165. Hulliger F (1976) Structural chemistry of layer-type phases. Reidel publishing, Dordrecht

    Google Scholar 

  166. Takemura Y, Suto H, Honda N, Kakuno K, Saito K (1997) Characterization of FeSe thin films prepared on GaAs substrate by selenization technique. J Appl Phys 81(8):5177–5179. https://doi.org/10.1063/1.365162

    Article  Google Scholar 

  167. Wu XJ, Zhang ZZ, Zhang JY, Ju ZG, Li BH, Li BS, Shan CX, Zhao DX, Yao B, Shen DZ (2008) Growth of FeSe on general substrates by metal-organic chemical vapor deposition and the application in magnet tunnel junction devices. Thin Solid Films 516(18):6116–6119. https://doi.org/10.1016/j.tsf.2007.11.012

    Article  Google Scholar 

  168. Malik MA, Afzaal M, O’Brien P (2010) Precursor chemistry for main group elements in semiconducting materials. Chem Rev 110(7):4417–4446. https://doi.org/10.1021/cr900406f

    Article  Google Scholar 

  169. Liu W, Lee J-S, Talapin DV (2013) III–V nanocrystals capped with molecular metal chalcogenide ligands: high electron mobility and ambipolar photoresponse. J Am Chem Soc 135(4):1349–1357. https://doi.org/10.1021/ja308200f

    Article  Google Scholar 

  170. Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59. https://doi.org/10.1038/35003535

    Article  Google Scholar 

  171. Choi J, Kang N, Yang HY, Kim HJ, Son SU (2010) Colloidal synthesis of cubic-phase copper selenide nanodiscs and their optoelectronic properties. Chem Mater 22(12):3586–3588. https://doi.org/10.1021/cm100902f

    Article  Google Scholar 

  172. Mahler B, Nadal B, Bouet C, Patriarche G, Dubertret B (2012) Core/shell colloidal semiconductor nanoplatelets. J Am Chem Soc 134(45):18591–18598. https://doi.org/10.1021/ja307944d

    Article  Google Scholar 

  173. Ithurria S, Bousquet G, Dubertret B (2011) Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J Am Chem Soc 133(9):3070–3077. https://doi.org/10.1021/ja110046d

    Article  Google Scholar 

  174. Xu C, Zeng Y, Rui X, Xiao N, Zhu J, Zhang W, Chen J, Liu W, Tan H, Hng HH, Yan Q (2012) Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-li-storage performance. ACS Nano 6(6):4713–4721. https://doi.org/10.1021/nn2045714

    Article  Google Scholar 

  175. Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q (2013) Single-layer single-crystalline SnSe nanosheets. J Am Chem Soc 135(4):1213–1216. https://doi.org/10.1021/ja3108017

    Article  Google Scholar 

  176. Sines IT, Vaughn DD, Biacchi AJ, Kingsley CE, Popczun EJ, Schaak RE (2012) Engineering porosity into single-crystal colloidal nanosheets using epitaxial nucleation and chalcogenide anion exchange reactions: the conversion of SnSe to SnTe. Chem Mater 24(15):3088–3093. https://doi.org/10.1021/cm301734b

    Article  Google Scholar 

  177. Zhang H, Wang H, Xu Y, Zhuo S, Yu Y, Zhang B (2012) Conversion of Sb2Te3 hexagonal nanoplates into three-dimensional porous single-crystal-like network-structured te plates using oxygen and tartaric acid. Angew Chem Int Ed 51(6):1459–1463. https://doi.org/10.1002/anie.201107460

    Article  Google Scholar 

  178. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421. https://doi.org/10.1126/science.1070821

    Article  Google Scholar 

  179. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci 99(8):4769–4774. https://doi.org/10.1073/pnas.082065899

    Article  Google Scholar 

  180. Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557. https://doi.org/10.1038/nmat1949

    Article  Google Scholar 

  181. Dinsmore AD, Crocker JC, Yodh AG (1998) Self-assembly of colloidal crystals. Curr Opin Colloid Interface Sci 3(1):5–11. https://doi.org/10.1016/S1359-0294(98)80035-6

    Article  Google Scholar 

  182. Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12(10):693–713. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10%3c693:AID-ADMA693%3e3.0.CO;2-J

    Article  Google Scholar 

  183. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829. https://doi.org/10.1038/39834

    Article  Google Scholar 

  184. Zhang YS, Yao J, Wang LV, Xia Y (2014) Fabrication of cell patches using biodegradable scaffolds with a hexagonal array of interconnected pores (SHAIPs). Polymer 55(1):445–452. https://doi.org/10.1016/j.polymer.2013.06.019

    Article  Google Scholar 

  185. Pusey PN, van Megen W (1986) Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340. https://doi.org/10.1038/320340a0

    Article  Google Scholar 

  186. Davis KE, Russel WB, Glantschnig WJ (1989) Disorder-to-order transition in settling suspensions of colloidal silica: X-ray measurements. Science 245(4917):507–510. https://doi.org/10.1126/science.245.4917.507

    Article  Google Scholar 

  187. Ballato J, James A (1999) A ceramic photonic crystal temperature sensor. J Am Ceram Soc 82(8):2273–2275. https://doi.org/10.1111/j.1151-2916.1999.tb02078.x

    Article  Google Scholar 

  188. Li H-L, Marlow F (2006) Solvent effects in colloidal crystal deposition. Chem Mater 18(7):1803–1810. https://doi.org/10.1021/cm052294z

    Article  Google Scholar 

  189. Jiang P, McFarland MJ (2004) Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J Am Chem Soc 126(42):13778–13786. https://doi.org/10.1021/ja0470923

    Article  Google Scholar 

  190. Trau M, Saville DA, Aksay IA (1996) Field-induced layering of colloidal crystals. Science 272(5262):706–709. https://doi.org/10.1126/science.272.5262.706

    Article  Google Scholar 

  191. Rogach AL, Kotov NA, Koktysh DS, Ostrander JW, Ragoisha GA (2000) Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals. Chem Mater 12(9):2721–2726. https://doi.org/10.1021/cm000274l

    Article  Google Scholar 

  192. Wostyn K, Zhao Y, Yee B, Clays K, Persoons A, Schaetzen Gd, Hellemans L (2003) Optical properties and orientation of arrays of polystyrene spheres deposited using convective self-assembly. J Chem Phys 118(23):10752–10757. https://doi.org/10.1063/1.1573173

    Article  Google Scholar 

  193. Jiang P, Bertone J, Hwang K, Colvin V (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11(8):2132–2140. https://doi.org/10.1021/cm990080+

    Article  Google Scholar 

  194. Li J, Han Y (2006) Optical intensity gradient by colloidal photonic crystals with a graded thickness distribution. Langmuir 22(4):1885–1890. https://doi.org/10.1021/la052699y

    Article  Google Scholar 

  195. Park SH, Xia Y (1999) Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir 15(1):266–273. https://doi.org/10.1021/la980658e

    Article  Google Scholar 

  196. Wong S, Kitaev V, Ozin GA (2003) Colloidal crystal films: advances in universality and perfection. J Am Chem Soc 125(50):15589–15598. https://doi.org/10.1021/ja0379969

    Article  Google Scholar 

  197. Pelton RH, Chibante P (1986) Preparation of aqueous lattices with N-isopropylacrylamide. Colloids Surf 20(3):247–256. https://doi.org/10.1016/0166-6622(86)80274-8

    Article  Google Scholar 

  198. Dabbousi BO, Murray CB, Rubner MF, Bawendi MG (1994) Langmuir-Blodgett manipulation of size-selected CdSe nanocrystallites. Chem Mater 6(2):216–219. https://doi.org/10.1021/cm00038a020

    Article  Google Scholar 

  199. Collier CP, Saykally RJ, Shiang JJ, Henrichs SE, Heath JR (1997) Reversible tuning of silver quantum dot monolayers through the metal-insulator transition. Science 277(5334):1978–1981. https://doi.org/10.1126/science.277.5334.1978

    Article  Google Scholar 

  200. Fried T, Shemer G, Markovich G (2001) Ordered two-dimensional arrays of ferrite nanoparticles. Adv Mater 13(15):1158–1161. https://doi.org/10.1002/1521-4095(200108)13:15%3c1158:AID-ADMA1158%3e3.0.CO;2-6

    Article  Google Scholar 

  201. Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P (2003) Langmuir–Blodgett Silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3(9):1229–1233. https://doi.org/10.1021/nl0344209

    Article  Google Scholar 

  202. Li YJ, Huang WJ, Sun SG (2006) A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew Chem Int Ed 45(16):2537–2539. https://doi.org/10.1002/anie.200504595

    Article  Google Scholar 

  203. Seo HJ, Jeong W, Lee S, Moon GD (2018) Ultrathin silver telluride nanowire films and gold nanosheet electrodes for a flexible resistive switching device. Nanoscale 10(12):5424–5430. https://doi.org/10.1039/C8NR01429A

    Article  Google Scholar 

  204. Moon GD, Lee TI, Kim B, Chae G, Kim J, Kim S, Myoung J-M, Jeong U (2011) Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano 5(11):8600–8612. https://doi.org/10.1021/nn202733f

    Article  Google Scholar 

  205. Acharya S, Das B, Thupakula U, Ariga K, Sarma DD, Israelachvili J, Golan Y (2013) A bottom-up approach toward fabrication of ultrathin PbS sheets. Nano Lett 13(2):409–415. https://doi.org/10.1021/nl303568d

    Article  Google Scholar 

  206. Dun C, Hewitt CA, Li Q, Xu J, Schall DC, Lee H, Jiang Q, Carroll DL (2017) 2D chalcogenide nanoplate assemblies for thermoelectric applications. Adv Mater 29(21):1700070. https://doi.org/10.1002/adma.201700070

    Article  Google Scholar 

  207. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419. https://doi.org/10.1038/nature12385

    Article  Google Scholar 

  208. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353(6298). https://doi.org/10.1126/science.aac9439

    Article  Google Scholar 

  209. Xu W, Liu W, Schmidt JF, Zhao W, Lu X, Raab T, Diederichs C, Gao W, Seletskiy DV, Xiong Q (2016) Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541:62. https://doi.org/10.1038/nature20601

    Article  Google Scholar 

  210. Rivera P, Seyler KL, Yu H, Schaibley JR, Yan J, Mandrus DG, Yao W, Xu X (2016) Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351(6274):688–691. https://doi.org/10.1126/science.aac7820

    Article  Google Scholar 

  211. Lin Y-C, Chang C-YS, Ghosh RK, Li J, Zhu H, Addou R, Diaconescu B, Ohta T, Peng X, Lu N, Kim MJ, Robinson JT, Wallace RM, Mayer TS, Datta S, Li L-J, Robinson JA (2014) Atomically thin heterostructures based on single-layer Tungsten Diselenide and graphene. Nano Lett 14(12):6936–6941. https://doi.org/10.1021/nl503144a

    Article  Google Scholar 

  212. Wierzbowski J, Klein J, Sigger F, Straubinger C, Kremser M, Taniguchi T, Watanabe K, Wurstbauer U, Holleitner AW, Kaniber M, Müller K, Finley JJ (2017) Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci Rep 7(1):12383. https://doi.org/10.1038/s41598-017-09739-4

    Article  Google Scholar 

  213. Roy T, Tosun M, Hettick M, Ahn GH, Hu C, Javey A (2016) 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl Phys Lett 108(8):083111. https://doi.org/10.1063/1.4942647

    Article  Google Scholar 

  214. Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie SG, Wang F (2014) Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat Commun 5:4966. https://doi.org/10.1038/ncomms5966

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geon Dae Moon .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, G.D. (2019). Synthesis and Assembly. In: Anisotropic Metal Chalcogenide Nanomaterials. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-03943-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03943-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03942-4

  • Online ISBN: 978-3-030-03943-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics