Skip to main content

SERS-Active Nanovectors for Single-Cell Cancer Screening and Theranostics

  • Chapter
  • First Online:
Surface Enhanced Raman Spectroscopy for Biophysical Applications

Part of the book series: Springer Theses ((Springer Theses))

  • 480 Accesses

Abstract

In this chapter, we will report on the application of folate-based SERS active nanovectors to single cell screening for cancer diagnostics. Owing to the overexpression of folate receptor on cancer cells, their selective targeting with the SERS-nanovector can be achieved. A single cell screening procedure based on Raman microimaging can be used to discriminate normal and cancer cells and the level of folate receptor expression can even be inferred by SERS measurements over statistically relevant cell populations. Therapeutic features of the nanovectors can be implemented by substituting folate molecule with toxic antifolate drugs. As the characterization of folate/antifolate nanovectors was discussed in Chap. 3, here we will mainly focus on the biophysical results of the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ando J, Fujita K et al (2011) Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett 11(12):5344–5348

    Article  ADS  Google Scholar 

  2. Backman V, Wallace MB et al (2000) Detection of preinvasive cancer cells. Nature 406(6791):35–36

    Article  ADS  Google Scholar 

  3. Barlogie B, Raber MN et al (1983) Flow cytometry in clinical cancer research. Cancer Res 43(9):3982–3997

    Google Scholar 

  4. Bazak R, Houri M et al (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784

    Article  Google Scholar 

  5. Bailey LB, Gregory JF et al (1999) Folate metabolism and requirements. J Nutr 129(4):779–782

    Article  Google Scholar 

  6. Boca-Farcau S, Potara M et al (2013) Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharm 11(2):391–399

    Article  Google Scholar 

  7. Boecking A, Stockhausen J et al (2004) Towards a single cell cancer diagnosis. Multimodal and monocellular measurements of markers and morphology (5M). Cell Oncol 26(1–2):73–80

    Google Scholar 

  8. Cao D-L, Ye D-W et al (2011) A multiplex model of combining gene-based, protein-based, and metabolite-based with positive and negative markers in urine for the early diagnosis of prostate cancer. Prostate 71(7):700–710

    Article  Google Scholar 

  9. Chen C, Ke J et al (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500(7463):486–489

    Article  ADS  Google Scholar 

  10. Chinen AB, Guan CM et al (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574

    Article  Google Scholar 

  11. Cross SE, Jin Y-S et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783

    Article  ADS  Google Scholar 

  12. Desmoulin SK, Hou Z et al (2012) The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol Ther 13(14):1355–1373

    Article  Google Scholar 

  13. Domenici F, Bizzarri AR et al (2011) SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 6:2033–2042

    Google Scholar 

  14. Domenici F, Bizzarri AR et al (2012) Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 421(1):9–15

    Article  Google Scholar 

  15. Dreaden EC, Alkilany AM et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    Article  Google Scholar 

  16. Ehrenberg MS, Friedman AE et al (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30(4):603–610

    Article  Google Scholar 

  17. Fan K, Cao C et al (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464

    Article  ADS  Google Scholar 

  18. Farber S, Diamond LK et al (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238(23):787–793

    Article  Google Scholar 

  19. Fasolato C, Giantulli S et al (2016) Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale 8(39):17304–17313

    Article  Google Scholar 

  20. Fasolato C, Giantulli S et al (2018) Antifolate functionalized nanovectors: SERS investigation motivates effective theranostics (in preparation)

    Google Scholar 

  21. Feng D, Song Y et al (2013) Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe. Anal Chem 85(13):6530–6535

    Article  Google Scholar 

  22. Fratoddi I, Venditti I et al (2015) How toxic are gold nanoparticles? the state-of theart. Nano Res 8(6):1771–1799

    Article  Google Scholar 

  23. Fujiwara R, Takenaka S et al (2014) Expression of human solute carrier family transporters in skin: possible contributor to drug-induced skin disorders. Sci Rep 4:5251

    Article  Google Scholar 

  24. Ghosh P, Han G et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Article  Google Scholar 

  25. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862

    Article  Google Scholar 

  26. Harisinghani MG, Barentsz J et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Article  Google Scholar 

  27. Hattori Y, Maitani Y (2005) Folate-linked nanoparticle-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther 12(10):796–809

    Article  Google Scholar 

  28. Huang X, Jain PK et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228

    Article  Google Scholar 

  29. Joshi HC, Vangapandu SN et al (2013) Conjugates of noscapine and folic acid and their use in treating cancer. US Patent 8,426,398

    Google Scholar 

  30. Kah JCY, Kho KW et al (2007) Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles. Int J Nanomed 2(4):785

    Google Scholar 

  31. Kang MJ, Park SH et al (2013) Folic acid-tethered Pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation. Int J Nanomed 8:1155

    Article  Google Scholar 

  32. Kelemen LE (2006) The role of folate receptor a in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119(2):243–250

    Article  Google Scholar 

  33. Kneipp J, Kneipp H et al (2010) Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotechnol Biol Med 6(2):214–226

    Article  Google Scholar 

  34. Krinsley DH, Pye K et al (2005) Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks. Cambridge University Press, Cambridge

    Google Scholar 

  35. Krüger J, Singh K et al (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12(4):486

    Article  Google Scholar 

  36. Li Y, Heo J et al (2015) Organelle specific imaging in live cells and immunolabeling using resonance Raman probe. Biomaterials 53:25–31

    Article  Google Scholar 

  37. Lu W, Singh AK et al (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132(51):18103–18114

    Article  Google Scholar 

  38. Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71(1):121–138

    Article  Google Scholar 

  39. Mansoori GA, Brandenburg KS et al (2010) A comparative study of two folateconjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2(4):1911–1928

    Article  Google Scholar 

  40. Mirkin CA, Meade TJ et al (2015) Nanotechnology-based precision tools for the detection and treatment of cancer. Springer, Cham

    Book  Google Scholar 

  41. Mitsunaga M, Ogawa M et al (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17(12):1685–1691

    Article  Google Scholar 

  42. Pallaoro A, Hoonejani MR et al (2015) Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9(4):4328–4336

    Article  Google Scholar 

  43. Parker N, Turk MJ et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  Google Scholar 

  44. Salvati A, Pitek AS et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  ADS  Google Scholar 

  45. Samadian H, Hosseini-Nami S et al (2016) Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 142(11):1–13

    Article  Google Scholar 

  46. Singh R, Kesharwani P et al (2015) Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev Ind Pharm 41(11):1888–1901

    Article  Google Scholar 

  47. Smith RA, Manassaram-Baptiste D et al (2015) Cancer screening in the United States, 2015: a review of current American Cancer Society guidelines and current issues in cancer screening. CA: Cancer J Clin 65(1):30–54

    Google Scholar 

  48. Vo-Dinh T, Wang H-N et al (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102

    Google Scholar 

  49. Weitman SD, Lark RH et al (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    Google Scholar 

  50. Werner ME, Karve S et al (2011) Folate-targeted nanoparticle delivery of chemo-and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32(33):8548–8554

    Article  Google Scholar 

  51. Weddell JC, Imoukhuede PI (2014) Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PloS one 9(5):e97271

    Article  ADS  Google Scholar 

  52. Wibowo AS, Singh M et al (2013) Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci 110(38):15180–15188

    Article  ADS  Google Scholar 

  53. Marietta W, Gunning W et al (1999) Expression of folate receptor type a in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomark Prev 8(9):775–782

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Fasolato .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasolato, C. (2018). SERS-Active Nanovectors for Single-Cell Cancer Screening and Theranostics. In: Surface Enhanced Raman Spectroscopy for Biophysical Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03556-3_5

Download citation

Publish with us

Policies and ethics