Skip to main content

Traditional Raman and SERS: Fundamentals and State of the Art

  • Chapter
  • First Online:
Surface Enhanced Raman Spectroscopy for Biophysical Applications

Part of the book series: Springer Theses ((Springer Theses))

  • 607 Accesses

Abstract

An interesting approach to the study of matter is represented by spectroscopy, that infers information about materials and biosystems by driving their interaction with controlled probes, as beams of light, electrons and neutrons. In this chapter, the basic physics of Raman and Surface Enhanced Raman Scattering (SERS) will be discussed. Furthermore, we will present a review of the scientific literature concerning the themes that are relevant for the Thesis, and in particular the fabrication of nanocolloid-based SERS substrates for sensing and biosensing and the application of SERS to biomedical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann KR, Henkel T et al (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8(18):2665–2670

    Article  Google Scholar 

  2. Albrecht AC (1961) On the theory of Raman intensities. J Chem Phys 34(5):1476–1484

    Article  ADS  Google Scholar 

  3. Alba M, Pazos-Perez N et al (2013) Macroscale Plasmonic Substrates for Highly Sensitive Surface-Enhanced Raman Scattering. Angewandte Chemie International Edition 52(25):6459–6463

    Article  Google Scholar 

  4. Alexander KD, Hampton MJ et al (2009) A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays. J Raman Spectrosc 40(12):2171–2175

    Article  ADS  Google Scholar 

  5. Alvarez-Puebla R, Cui B (2007) Nanoimprinted SERS-active substrates with tunable surface plasmon resonances. J Phys Chem C 111(18):6720–6723

    Article  Google Scholar 

  6. Ando J, Fujita K (2011) Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett 11(12):5344–5348

    Article  ADS  Google Scholar 

  7. Arbiol J, Kalache B et al (2007) Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism. Nanotechnology 18(30):305606

    Article  Google Scholar 

  8. Arlett JL, Myers EB (2011) Comparative advantages of mechanical biosensors. Nat Nanotechnol 6(4):203–215

    Article  ADS  Google Scholar 

  9. Assali S, Zardo I (2013) Direct band gap wurtzite gallium phosphide nanowires. Nano Lett 13(4):1559–1563

    Article  ADS  Google Scholar 

  10. Auguié B, Bendana XM et al (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82(15):155447

    Article  ADS  Google Scholar 

  11. Ausman LK, Li S et al (2012) Structural effects in the electromagnetic enhancement mechanism of surface-enhanced Raman scattering: Dipole reradiation and rectangular symmetry effects for nanoparticle arrays. J Phys Chem C 116(33):17318–17327

    Article  Google Scholar 

  12. El Badawy AM, Luxton TP et al (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266

    Article  ADS  Google Scholar 

  13. Baia M, Toderas F (2006) Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles. Chem Phys Lett 422(1):127–132

    Article  ADS  Google Scholar 

  14. Baldassarre L, Sakat E (2015) Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett 15(11):7225–7231

    Article  ADS  Google Scholar 

  15. Bizzarri AR, Cannistraro S (2003) Temporal fluctuations in the SERRS spectra of single iron-protoporphyrin IX molecule. Chem Phys 290(2):297–306

    Article  Google Scholar 

  16. Benz F, Schmidt MK et al Single-molecule optomechanics in “picocavities”. Science 354(6313):726–729

    Article  ADS  Google Scholar 

  17. Bessar H, Venditti I (2016) Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf B: Biointerfaces 141:141–147

    Article  Google Scholar 

  18. Boca-Farcau S, Potara M (2013) Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharma 11(2):391–399

    Article  Google Scholar 

  19. Ben-Jaber S, Peveler WJ et al (2016) Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat Comm 7:12189

    Article  ADS  Google Scholar 

  20. Cattani-Scholz A, Liao K-C et al (2012) Molecular architecture: construction of self-assembled organophosphonate duplexes and their electrochemical characterization. Langmuir 28(20):7889–7896

    Article  Google Scholar 

  21. Chance RR, Prock A (1974) Lifetime of an emitting molecule near a partially reflecting surface. J Chem Phys 60(7):2744–2748

    Article  ADS  Google Scholar 

  22. Chapman HN, Fromme P et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470(7332):73–77

    Article  ADS  Google Scholar 

  23. Chirumamilla M, Toma A (2014) 3D nanostar dimers with a Sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering. Adv Mater 26(15):2353–2358

    Article  Google Scholar 

  24. Chinen AB, Guan CM et al (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574

    Article  Google Scholar 

  25. Choucair A, Soo PL et al (2005) Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir 21(20):9308–9313

    Article  Google Scholar 

  26. Chu Y, Zhu W (2011) Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate. Optics Express 19(21):20054–20068

    Article  ADS  Google Scholar 

  27. Cialla D, Pollok S et al (2014) SERS-based detection of biomolecules. Nanophotonics 3(6):383–411

    Google Scholar 

  28. Chen S-H, Kotlarchyk M (2007) Interactions of photons and neutrons with matter. World Scientific, Singapore

    Book  Google Scholar 

  29. Cabrini S, Kawata S (2012) Nanofabrication handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  30. Colthup N, Daly LH et al (1975) Introduction to infrared and Raman spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  31. Coluccio ML, Das G et al (2009) Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron Eng 86(4):1085–1088

    Article  Google Scholar 

  32. Coluccio ML, Gentile F et al (2015) Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Sci Adv 1(8):e1500487

    Article  ADS  Google Scholar 

  33. Cottat M, D’Andrea C (2015) High sensitivity, high selectivity SERS detection of MnSOD using optical nanoantennas functionalized with aptamers. J Phys Chem C 119(27):15532–15540

    Article  Google Scholar 

  34. Das G, Patra N et al (2012) Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst 137(8):1785–1792

    Article  ADS  Google Scholar 

  35. De Angelis F, Malerba M (2013) 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett 13(8):3553–3558

    Article  ADS  Google Scholar 

  36. Desmoulin SK, Hou Z et al (2012) The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol Ther 13(14):1355–1373

    Article  Google Scholar 

  37. Di Fabrizio E, Grella L et al (1997) Nanometer biodevice fabrication by electron beam lithography. J Vac Sci Technol B 15(6):2892–2896

    Article  Google Scholar 

  38. Dykman LA, Khlebtsov NG (2013) Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 114(2):1258–1288

    Article  Google Scholar 

  39. Dochow S, Krafft C (2011) Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11(8):1484–1490

    Article  Google Scholar 

  40. Doering WE, Piotti ME et al (2007) SERS as a foundation for nanoscale, optically detected biological labels. Adv Mater 19(20):3100–3108

    Article  Google Scholar 

  41. Domenici F, Bizzarri AR et al (2012) Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 421(1):9–15

    Article  Google Scholar 

  42. Domenici F, Fasolato C (2016) Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study. Colloids Surf A: Physicochem Eng Asp 498:168–175

    Article  Google Scholar 

  43. De La Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7(12):821–824

    Article  ADS  Google Scholar 

  44. Ehrenberg MS, Friedman AE et al (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30(4):603–610

    Article  Google Scholar 

  45. Enoch S, Quidant R (2004) Optical sensing based on plasmon coupling in nanoparticle arrays. Optics Express 12(15):3422–3427

    Article  ADS  Google Scholar 

  46. Evans CL, Xie XS (2008) Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Ann Rev Anal Chem 1:883–909

    Article  Google Scholar 

  47. Fang Y, Seong N-H et al (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392

    Article  ADS  Google Scholar 

  48. Fan JA, Wu C et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328(5982):1135–1138

    Article  ADS  Google Scholar 

  49. Fan M, Andrade GFS et al (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chimica Acta 693(1):7–25

    Article  Google Scholar 

  50. Fasolato C, Domenici F et al (2014) Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters. Appl Phys Lett 105(7):073105

    Article  ADS  Google Scholar 

  51. Fasolato C, Giantulli S et al (2016) Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale 8(39):17304–17313

    Article  Google Scholar 

  52. Fasolato C, Giantulli S et al (2018) Antifolate functionalized nanovectors: SERS investigation motivates effective theranostics, In preparation

    Google Scholar 

  53. Fleischmann M, Hendra PJ et al (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  ADS  Google Scholar 

  54. Morral AF, i, Arbiol J, et al (2007) Synthesis of silicon nanowires with wurtzite crystalline structure by using standard chemical vapor deposition. Adv Mater 19(10):1347–1351

    Google Scholar 

  55. Frauenfelder H, Petsko GA et al (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics

    Google Scholar 

  56. Fratoddi I, Venditti I (2015) How toxic are gold nanoparticles? The state-of-theart. Nano Res 8(6):1771–1799

    Article  Google Scholar 

  57. Galler K, Bräutigam K et al (2014) Making a big thing of a small cell-recent advances in single cell analysis. Analyst 139(6):1237–1273

    Article  ADS  Google Scholar 

  58. Giannini V, Vecchi G et al (2010) Lighting up multipolar surface Plasmon polaritons by collective resonances in arrays of nanoantennas. Phys Rev Lett 105(26):266801

    Article  ADS  Google Scholar 

  59. Gaber BP, Peticolas WL (1977) On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochimica et Biophysica. Acta (BBA)-Biomembranes 465(2):260–274

    Article  Google Scholar 

  60. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862

    Article  Google Scholar 

  61. Gregas MK, Yan F et al (2011) Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge. Nanomed: Nanotechnol Biol Med 7(1):115–122

    Article  Google Scholar 

  62. Freeman RG, Grabar KC et al (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267(5204):1629

    Article  ADS  Google Scholar 

  63. Gunnarsson LK, Bjerneld EJ (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78(6):802–804

    Article  ADS  Google Scholar 

  64. Hauge HIT, Verheijen MA et al (2015) Hexagonal silicon realized. Nano Lett 15(9):5855–5860

    Article  ADS  Google Scholar 

  65. Hayashi S, Koh R et al (1988) Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles. Phys Rev Lett 60(11):1085

    Article  ADS  Google Scholar 

  66. Haynes CL, McFarland AD et al (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342

    Article  Google Scholar 

  67. Hayat A, Catanante G et al (2014) Current trends in nanomaterial-based amperometric biosensors. Sensors 14(12):23439–23461

    Article  Google Scholar 

  68. Hidi IJ, Mühlig A (2014) LOC-SERS: towards point-of-care diagnostic of methotrexate. Anal Methods 6(12):3943–3947

    Article  Google Scholar 

  69. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366

    Article  ADS  Google Scholar 

  70. Qingyan H, Tay L-L (2007) Mammalian cell surface imaging with nitrile-functionalized nanoprobes: biophysical characterization of aggregation and polarization anisotropy in SERS imaging. J Am Chem Soc 129(1):14–15

    Article  Google Scholar 

  71. Huang X, Jain PK et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228

    Article  Google Scholar 

  72. Hulteen JC, Treichel DA et al (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103(19):3854–3863

    Article  Google Scholar 

  73. Hung AM, Micheel CM et al (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5(2):121–126

    Article  ADS  Google Scholar 

  74. Swarnapali A, Indrasekara DS, Meyers S et al (2010) Gold nanostar substrates for SERS based chemical sensing in the femtomolar regime. Nanoscale 6(15):8891–8899

    Google Scholar 

  75. Jensen L, Strand P-O et al (2002) Polarizability of molecular clusters as calculated by a dipole interaction model. J Chem Phys 116(10):4001–4010

    Article  ADS  Google Scholar 

  76. Jensen L, Aikens CM et al (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37(5):1061–1073

    Article  Google Scholar 

  77. Won Jeong J, Masud Parvez Arnob M et al (2016) 3D Cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced raman spectroscopy analysis. Adv Mater 28:8695

    Article  Google Scholar 

  78. Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci 101(52):17930–17935

    Article  ADS  Google Scholar 

  79. Kim NH, Lee SJ et al (2011) Reversible tuning of SERS hot spots with aptamers. Adv Mater 23(36):4152–4156

    Article  Google Scholar 

  80. Kleinman SL, Frontiera RR et al (2013) Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15(1):21–36

    Article  Google Scholar 

  81. Kneipp K, Wang Y et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667

    Article  ADS  Google Scholar 

  82. Kneipp K, Kneipp H et al (2002) Surface-enhanced Raman scattering and biophysics. J Phys: Condens Matter 14(18):R597

    Google Scholar 

  83. Kneipp K, Moskovits M et al (2006) Surface-enhanced Raman scattering: physics and applications, vol 103. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  84. Kneipp J, Kneipp H (2007) One-and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7(9):2819–2823

    Article  ADS  Google Scholar 

  85. Kneipp K (2016) Chemical contribution to SERS enhancement: an experimental study on a series of polymethine dyes on silver nanoaggregates. J Phys Chem C

    Google Scholar 

  86. Krenn JR, Dereux A et al (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82(12):2590

    Article  ADS  Google Scholar 

  87. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer Science & Business Media, Berlin

    Google Scholar 

  88. Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C 112(48):18849–18859

    Article  Google Scholar 

  89. Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112(14):5605–5617

    Article  Google Scholar 

  90. Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42(6):734–742

    Article  Google Scholar 

  91. Lombardi JR, Birke RL (2014) Theory of surface-enhanced Raman scattering in semiconductors. J Phys Chem C 118(20):11120–11130

    Article  Google Scholar 

  92. Le Ru EC, Blackie EJ (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803

    Article  Google Scholar 

  93. Le Ru EC, Schroeter LC et al (2012) Direct measurement of resonance Raman spectra and cross sections by a polarization difference technique. Anal Chem 84(11):5074–5079

    Article  Google Scholar 

  94. Lefrant S, Baltog I (1999) Structural properties of some conducting polymers and carbon nanotubes investigated by SERS spectroscopy. Synth Metals 100(1):13–27

    Article  Google Scholar 

  95. Li K, Stockman MI et al (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91(22):227402

    Article  ADS  Google Scholar 

  96. Li J, Fattal D et al (2009) Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy. Appl Phys Lett 94(26):263114

    Article  ADS  Google Scholar 

  97. Li Q, Jiang Y (2013) High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging. Small 9(6):927–932

    Article  Google Scholar 

  98. Li F, Zhang H (2014) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87(1):274–292

    Article  Google Scholar 

  99. Linden S, Kuehl J et al (2001) Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys Rev Lett 86(20):4688

    Article  ADS  Google Scholar 

  100. Lin C-Y, Javadi M et al (2014) Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomed: Nanotechnol Biol Med 10(1):67–76

    Article  Google Scholar 

  101. Ling X, Huang S (2015) Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res 48(7):1862–1870

    Article  Google Scholar 

  102. Liu H, Yang Z (2014) Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J Am Chem Soc 136(14):5332–5341

    Article  Google Scholar 

  103. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  Google Scholar 

  104. Lombardi JR, Birke RL et al (1986) Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys 84(8):4174–4180

    Article  ADS  Google Scholar 

  105. Long DA (2002) The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Wiley, New York

    Book  Google Scholar 

  106. Loweth CJ, Caldwell WB et al (1999) DNA-based assembly of gold nanocrystals. Angewandte Chemie International Edition 38(12):1808–1812

    Article  Google Scholar 

  107. Lu W, Singh AK et al (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132(51):18103–18114

    Article  Google Scholar 

  108. Lu H, Ren X et al (2015) Broadband near-field enhancement in the macroperiodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes. Nanoscale 7(40):16798–16804

    Article  ADS  Google Scholar 

  109. Lu H, Ren X et al (2015) Experimental and theoretical investigation of macro- periodic and micro-random nanostructures with simultaneously spatial translational symmetry and long-range order breaking. Sci Rep 5

    Google Scholar 

  110. Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71(1):121–138

    Article  Google Scholar 

  111. Maier SA, Brongersma ML et al (2002) Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B 65(19):193408

    Article  ADS  Google Scholar 

  112. Mangialardo S, Gontrani L et al (2012) Role of ionic liquids in protein refolding: native/fibrillar versus treated lysozyme. RSC Adv 2(32):12329–12336

    Article  Google Scholar 

  113. Matschulat A, Drescher D et al (2010) Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4(6):3259–3269

    Article  Google Scholar 

  114. McPherson A (1976) The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis. Methods Biochem Anal 23:249–345

    Google Scholar 

  115. Muluneh M, Issadore D (2014) Microchip-based detection of magnetically labeled cancer biomarkers. Adv Drug Deliv Rev 66:101–109

    Article  Google Scholar 

  116. Miao J, Ishikawa T (2008) Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Ann Rev Phys Chem 59:387–410

    Article  ADS  Google Scholar 

  117. Michaels AM, Nirmal M (1999) Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121(43):9932–9939

    Article  Google Scholar 

  118. Morton SM, Jensen L (2009) Understanding the molecule- surface chemical coupling in SERS. J Am Chem Soc 131(11):4090–4098

    Article  Google Scholar 

  119. Moore JE, Morton SM et al Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS. J Phys Chem Lett 3(17):2470–2475

    Article  Google Scholar 

  120. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783

    Article  Google Scholar 

  121. Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15(15):5301–5311

    Article  Google Scholar 

  122. Maroto P, Rini B (2014) Molecular biomarkers in advanced renal cell carcinoma. Clin Cancer Res 20(8):2060–2071

    Article  Google Scholar 

  123. Neugebauer U, Rösch P et al (2006) On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. ChemPhysChem 7(7):1428–1430

    Article  Google Scholar 

  124. Novotny L, Hecht B (2012) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  125. Nimse SB, Sonawane MD et al (2016) Biomarker detection technologies and future directions. Analyst 141(3):740–755

    Article  ADS  Google Scholar 

  126. Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte für Chemie-Chem Mon 139(3):183–195

    Article  Google Scholar 

  127. Odobel F, Pellegrin Y (2013) Bio-inspired artificial light-harvesting antennas for enhancement of solar energy capture in dye-sensitized solar cells. Energy EnvironSci 6(7):2041–2052

    Article  Google Scholar 

  128. Osawa M, Matsuda N (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98(48):12702–12707

    Article  Google Scholar 

  129. Otto A (1984) Surface-enhanced Raman scattering: "Classical" and "Chemical" origins. Light scattering in solids IV. Springer, pp 289–418

    Google Scholar 

  130. Otto A, Mrozek I et al (1992) Surface-enhanced Raman scattering. J Phys: Condens Matter 4(5):1143

    ADS  Google Scholar 

  131. Otto A (2005) The ‘chemical’(electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc 36(6–7):497–509

    Article  ADS  Google Scholar 

  132. Pallaoro A, Braun GB et al (2011) Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proc Natl Acad Sci 108(40):16559–16564

    Article  ADS  Google Scholar 

  133. Pallaoro A, Hoonejani MR et al (2015) Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9(4):4328–4336

    Article  Google Scholar 

  134. Pazos-Perez N, Wagner CS et al (2012) Organized plasmonic clusters with high coordination number and extraordinary enhancement in Surface-Enhanced Raman Scattering (SERS). Angewandte Chemie International Edition 51(51):12688–12693

    Article  Google Scholar 

  135. Pepe MS, Etzioni R et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061

    Article  Google Scholar 

  136. Pettinger B (1986) Light scattering by adsorbates at Ag particles: Quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs. J Chem Phys 85(12):7442–7451

    Article  ADS  Google Scholar 

  137. Petry R, Schmitt M et al (2003) Raman spectroscopy-a prospective tool in the life sciences. ChemPhysChem 4(1):14–30

    Article  Google Scholar 

  138. Piccirilli F, Mangialardo S et al (2012) Sequential dissociation of insulin amyloids probed by high pressure Fourier transform infrared spectroscopy. Soft Matter 8(47):11863–11870

    Article  ADS  Google Scholar 

  139. Picciolini S, Mehn D (2014) Polymer nanopillar-gold arrays as surface- enhanced raman spectroscopy substrate for the simultaneous detection of multiple genes. ACS Nano 8(10):10496–10506

    Article  Google Scholar 

  140. Pinchuk AO, Schatz GC (2008) Nanoparticle optical properties: Far-and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater Sci Eng: B 149(3):251–258

    Article  Google Scholar 

  141. Ximei Qian and Shinning Ming Nie (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920

    Article  Google Scholar 

  142. Rechberger W, Hohenau A (2003) Optical properties of two interacting gold nanoparticles. Optics Commun 220(1):137–141

    Article  ADS  Google Scholar 

  143. Salvati A, Pitek AS et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  ADS  Google Scholar 

  144. Salvati E, Stellacci F et al (2015) Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine 10(23):3495–3512

    Article  Google Scholar 

  145. Samanta A, Maiti KK et al (2011) Ultrasensitive near-infrared raman reporters for SERS-based in vivo cancer detection. Angewandte Chemie International Edition 50(27):6089–6092

    Article  Google Scholar 

  146. Samal AK, Polavarapu L et al (2013) Size Tunable Au@ Ag core- shell nanoparticles: synthesis and surface-enhanced raman scattering properties. Langmuir 29(48):15076–15082

    Article  Google Scholar 

  147. Sandroff CJ, Nottenburg RN (1987) Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation. Appl Phys Lett 51(1):33–35

    Article  ADS  Google Scholar 

  148. Schatz GC, Young MA et al (2006) Electromagnetic mechanism of SERS. Surface-enhanced Raman scattering. Springer, pp 19–45

    Google Scholar 

  149. Schlücker S, Küstner B (2006) Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J Raman Spectrosc 37(7):719–721

    Article  ADS  Google Scholar 

  150. Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10(9–10):1344–1354

    Article  Google Scholar 

  151. Schmid G (2011) Nanoparticles: from theory to application. Wiley, New York

    Google Scholar 

  152. Schuetz M, Mueller CI et al (2011) Design and synthesis of Raman reporter molecules for tissue imaging by immuno-SERS microscopy. J Biophotonics 4(6):453–463

    Article  Google Scholar 

  153. Schlücker S (2014) Surface-Enhanced raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition 53(19):4756–4795

    Article  Google Scholar 

  154. Shaw CP, Fan M et al (2013) Statistical correlation between SERS intensity and nanoparticle cluster size. J Phys Chem C 117(32):16596–16605

    Article  Google Scholar 

  155. Signorelli S, Cannistraro S et al (2016) Structural characterization of the intrinsically disordered protein p53 using Raman spectroscopy. Appl Spectrosc 0003702816651891

    Google Scholar 

  156. Silberstein L (1917) Molecular refractivity and atomic interaction. II. Lond Edinb Dublin Philos Mag J 33(198):521–533

    Article  Google Scholar 

  157. Si S, Mandal TK (2007) pH-controlled reversible assembly of peptide-functionalized gold nanoparticles. Langmuir 23(1):190–195

    Article  Google Scholar 

  158. Song J, Zhou J (2012) Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 134(32):13458–13469

    Article  Google Scholar 

  159. Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids-a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581(5):795–799

    Article  Google Scholar 

  160. Stender AS, Marchuk K et al (2013) Single cell optical imaging and spectroscopy. Chem Rev 113(4):2469–2527

    Article  Google Scholar 

  161. Stiles PL, Dieringer JA et al (2008) Surface-enhanced Raman spectroscopy. Ann Rev Anal Chem 1:601–626

    Article  Google Scholar 

  162. Storhoff JJ, Elghanian R (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964

    Article  Google Scholar 

  163. Storhoff JJ, Lazarides AA (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650

    Article  Google Scholar 

  164. Stöckle RM, Suh YD et al (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318(1):131–136

    Article  ADS  Google Scholar 

  165. Strehle KR, Cialla D et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547

    Article  Google Scholar 

  166. Sunde M, Serpell LC et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739

    Article  Google Scholar 

  167. Sun Z, Zhao B et al (2007) ZnO nanoparticle size-dependent excitation of surface Raman signal from adsorbed molecules: observation of a charge-transfer resonance. Appl Phys Lett 91(22):221106

    Article  ADS  Google Scholar 

  168. Tamaru H, Kuwata H (2002) Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett 80(10):1826–1828

    Article  ADS  Google Scholar 

  169. Thacker VV, Herrmann LO et al (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 5

    Google Scholar 

  170. Thomas R, Swathi RS (2012) Organization of metal nanoparticles for surfaceenhanced spectroscopy: a difference in size matters. J Phys Chem C 116(41):21982–21991

    Article  Google Scholar 

  171. Valley N, Greeneltch N (2013) A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): Theory and experiment. J Phys Chem Lett 4(16):2599–2604

    Article  Google Scholar 

  172. Vecchi G, Giannini V et al (2009) Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80(20):201401

    Article  ADS  Google Scholar 

  173. Watson JD, Crick FHC et al (1953) Molecular structure of nucleic acids. Nature 171(4356):737–738

    Article  ADS  Google Scholar 

  174. Wang X, Shi W (2011) Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism. J Am Chem Soc 133(41):16518–16523

    Article  Google Scholar 

  175. Wang X, Shi W (2012) Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures. Phys Chem Chem Phys 14(17):5891–5901

    Article  Google Scholar 

  176. Wang X, Liow C (2015) Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. Adv Mater 27(13):2207–2214

    Article  Google Scholar 

  177. Wu H-Y, Cunningham BT (2014) Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor. Nanoscale 6(10):5162–5171

    Article  ADS  Google Scholar 

  178. Xu H, Bjerneld EJ et al (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357

    Article  ADS  Google Scholar 

  179. Weigao X, Ling X (2012) Surface enhanced Raman spectroscopy on a flat grapheme surface. Proc Natl Acad Sci 109(24):9281–9286

    Article  ADS  Google Scholar 

  180. Yaffe O, Ely T (2013) Effect of molecule-surface reaction mechanism on the electronic characteristics and photovoltaic performance of molecularly modified Si. J Phys Chem C 117(43):22351–22361

    Article  Google Scholar 

  181. Yan B, Thubagere A et al (2009) Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. Acs Nano 3(5):1190–1202

    Article  Google Scholar 

  182. Yan B, Boriskina SV et al (2011) Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing. J Phys Chem C 115(50):24437–24453

    Article  Google Scholar 

  183. Yonemaru Y, Palonpon AF et al (2015) Super-spatial-and-spectral-resolution in vibrational imaging via saturated coherent anti-stokes raman scattering. Phys Rev Appl 4(1):014010

    Article  ADS  Google Scholar 

  184. Zhu Z, Zhu T et al (2004) Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling. Nanotechnology 15(3):357

    Article  ADS  MathSciNet  Google Scholar 

  185. Zito G, Rusciano G et al (2015) Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure. Nanoscale 7(18):8593–8606

    Article  ADS  Google Scholar 

  186. Zou S, Schatz GC (2005) Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem Phys Lett 403(1):62–67

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Fasolato .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasolato, C. (2018). Traditional Raman and SERS: Fundamentals and State of the Art. In: Surface Enhanced Raman Spectroscopy for Biophysical Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-03556-3_2

Download citation

Publish with us

Policies and ethics