Skip to main content

Cardiotoxicité des anthracyclines dans le contexte du cancer du sein

  • Conference paper
Cancer du sein
  • 273 Accesses

Abstrait

La problématique de la cardiotoxicité des anthracyclines dans le contexte du cancer du sein se pose tant en situation adjuvante que métastatique. Le traitement adjuvant concerne plus de patientes, avec un meilleur pronostic, mais dans ce contexte, les possibles complications des traitements risquent d’avoir un « poids » plus lourd. En situation métastatique, la toxicité cardiaque attendue est plus importante, mais dans cette situation, le mauvais pronostic des patientes et l’efficacité espérée des anthracyclines peuvent justifier cette « prise de risque ».

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références anthracyclines

  1. Von Hoff DD, Layard M, Basa P et al. (1979) Risk factors for doxorubicin-induced-congestive heart failure. Ann intern Med 91: 710–717

    Google Scholar 

  2. Billingham ME, Bristow MR (1984) Evaluation of anthracycline cardiotoxicity: predictive ability and functional correlation of endomyocardial biopsy. Cancer Treatment Symposia 3: 71–76

    Google Scholar 

  3. Bristow MR, Mason JW, Billingham ME, Daniels JR (1981) Dose-effect and structure-function relationships in doxorubicin cardiomyopathy. Am Heart J 102: 709–718

    Article  PubMed  CAS  Google Scholar 

  4. Billingham ME, Mason JW, Bristow MR, Daniels JR (1978) Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 62: 865–872

    PubMed  CAS  Google Scholar 

  5. Von Hoff DD, Rozencweig M, Layard M, Slavik M, Muggia FM (1977) Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med 62: 200–208

    Article  Google Scholar 

  6. Swain S, Whaley FS, Ewer MS (2003) Congestive heart failure in patients with Doxrubicin: a retrospective analysis of three trials. Cancer 97: 2869–2879

    Article  PubMed  CAS  Google Scholar 

  7. Fumoleau P, Roche H, Kerbrat P et al. (2006) Long term cardiac toxicity after adjuvant epirubicin-based cheemotherapy in early breast cancer. French Adjuvant study Group results. Ann Oncol 17: 85–92

    Article  PubMed  CAS  Google Scholar 

  8. Billingham ME, Bristow MR, Glatstein E et al. (1977) Adriamycin cardiotoxicity: endomyocardial evidence of enhancement by irradiation. Am J Surg Pathol 1: 17–23

    PubMed  CAS  Google Scholar 

  9. Zambetti M, Moliterni A, Materazzo C et al. (2001) Long-term cardiac sequelae in operable breast cancer patients given adjuvant chemotherapy with or without doxorubicin and breast irradiation. J Clin Oncol 19: 37–43

    PubMed  CAS  Google Scholar 

  10. Ryberg N, Nielsen D, Skovsgaard T et al. (1998) Epirubicin cardiotoxicity: an analysis of 469 patients with metatstatic breast cancer. J Clin Oncol 16: 3502–3508

    PubMed  CAS  Google Scholar 

  11. Senkus-Konefka E, Jassem J (2006) Complications of breast-cancer radiotherapy. Clin Oncol (R Coll Radiol) 18: 229–235

    CAS  Google Scholar 

  12. Slamon DJ, Leyland-Jones B, Shak S et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792

    Article  PubMed  CAS  Google Scholar 

  13. Schaadt B, Kelbaek H (1997) Age and left ventricular ejection fraction idenify patients with advanced breast cancer at high risk for development of Epirubicin-induced heart failure. J Nucl Cardiol 4: 494–501

    Article  PubMed  CAS  Google Scholar 

  14. Doroshow JH (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43: 460–472

    PubMed  CAS  Google Scholar 

  15. Rajagopalan S, Politi PM, Sinha BK et al. (1988) Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res 48: 4766–4769

    PubMed  CAS  Google Scholar 

  16. Ito H, Miller SC, Billingham ME et al. (1990) Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc Natl Acad Sci USA 87: 4275–4279

    Article  PubMed  CAS  Google Scholar 

  17. Jackson JA, Reeves JP, Muntz KH et al. (1984) Evaluation of free radical effects and catecholamine alterations in adriamycin cardiotoxicity. Am J Pathol 117: 140–153

    PubMed  CAS  Google Scholar 

  18. Myers CE, McGuire WP, Liss RH et al. (1977) Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 197: 165–167

    Article  PubMed  CAS  Google Scholar 

  19. Doroshow JH, Locker GY, Myers CE (1980) Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest 65: 128–135

    Article  PubMed  CAS  Google Scholar 

  20. Legha SS, Benjamin RS, Mackay B et al. (1982) Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med 96: 133–139

    PubMed  CAS  Google Scholar 

  21. Hortobagyi GN, Frye D, Budzar AU et al. (1989) Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast carcinoma. Cancer 63: 37–45

    Article  PubMed  CAS  Google Scholar 

  22. Shapira J, Goffried M, Lishner M, Ravid M (1990) Reduced cardiotoxicity of doxorubicin by a six hour infusion regimen. Cancer 65: 870–873

    Article  PubMed  CAS  Google Scholar 

  23. Lipschultz SE, Giantris AL, Lipsitz SR et al. (2002) Doxorubicin administration by continuous infusion is not cardioprotective. J Clin Oncol 20: 1677–1682

    Article  Google Scholar 

  24. Ganzina F (1983) 4′-epi-doxorubicin, a new analogue of doxorubicin: a preliminary overview of preclinical and clinical data. Cancer Treat Rev 10: 1–22

    Article  PubMed  CAS  Google Scholar 

  25. Lahtinen R, Kuikka J, Nousiainene T et al. (1991) Cardiotoxicity of epirubicin and doxorubicin: a double-blind randomized study. Eur J Hematol 46: 301–305

    CAS  Google Scholar 

  26. Cottin Y, Touzery C, Dalloz F et al. (1998) Comparison of epirubicin and doxorubicin cardiotoxicity induced by low doses: Evolution of the diastolic and systolic parameters studies by radionuclide angiography. Clin Cardiol 21: 665–670

    PubMed  CAS  Google Scholar 

  27. Perez DJ, Harvey VJ, Robinson BA et al. (1991) A randomized comparison of single-agent doxorubicin and epirubicin as first-line cytotoxic therapy in advanced breast cancer. J Clin Oncol 12: 2148–2152

    Google Scholar 

  28. Lanchubury AP, HabboubiA N (1993) Epirubicin and Doxorubicin: a comparison of their caracteristics therapeutic activity and toxicity Cancer Treat Rev 19: 197–228

    Article  Google Scholar 

  29. Bergsagel DE, Park Ch (1969) The improvement of the animal tumor model. Cancer Res 29: 2334–2338

    PubMed  CAS  Google Scholar 

  30. Torti FM et al. (1986) Cardiotoxicity of Epirubicin and Doxorubicin: assessment by endomyocardial biopsy. Cancer Res 46: 3722–3727

    PubMed  CAS  Google Scholar 

  31. Hortobagy et al. (1989) A comparative study of Doxorubicin and Epirubicin in patients with metastatic breast cancer. Am J Clin Oncol 12: 57–62

    Google Scholar 

  32. Jain K et al. (1985) A prospective randomised comparison of Epirubicin and Doxorubicin in patients with advanced breast cancer. J Clin Oncol 3: 818–826

    PubMed  CAS  Google Scholar 

  33. Brambilla C et al. (1986) Phase II study of Doxorubicin vs Epirubicin in advanced Breast Cancer. Cancer Treast Rep 70: 261–266

    CAS  Google Scholar 

  34. Tagughi T et al. (1986) A prospective randomised trial comparing Epirubicin and Doxorubicin in advanced or recurrent breast cancer. Jpn J Cancer Chemoth 13: 3498–3507

    Google Scholar 

  35. Lawton PA, Spittle MF, Ostrowski MJ et al. (1993) A comparison of Doxorubicin, epirubicin and mitozantrone as single agents in advanced breast carcinoma. Clin Oncol 5: 80–84

    Article  CAS  Google Scholar 

  36. Perez et al. (1991) A randomised comparison of single agent Doxorubicin and Epirubicin as first line cytotoxic therapy in advanced. Breast Cancer J Clin Oncol 9: 2148–2152

    CAS  Google Scholar 

  37. French Epirubicin Study Group (1988) A prospective randomised phase III trial comparing combination therapy with cyclophosphamide fluorouracil and either Doxorubicin and Epirubicin. J Clin Oncol 6: 679–688

    Google Scholar 

  38. Phase III randomised study of Fluorouracil (1988) Epirubicin and Cyclophosphamide, vs Fluorouracil, Doxorubicin and Cyclophosphamide in advanced breast cancer: an Italian multicentre Breast Study with Epirubicin. J Clin Oncol 6: 976–982

    Google Scholar 

  39. Fossati R et al. (1998) Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31510 womens. J Clin Oncol 16: 3439–3460

    PubMed  CAS  Google Scholar 

  40. O’Byrne KJ, Thomas AL, Sharma RA et al. (2002) A phase I dose escalating study of daunoxome, liposomal daunorubicin, in metastatic breast cancer. Br J Cancer 87: 15–20

    Article  PubMed  CAS  Google Scholar 

  41. Batist G, Ramakrishnan G, Rao CS et al. (2001) Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer 19: 1444–1454

    CAS  Google Scholar 

  42. Harris L, Batist G, Belt R et al. (2002) Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as firstline therapy of metastatic breast cancer. Cancer 94: 25–36

    Article  PubMed  CAS  Google Scholar 

  43. O’Brien M, Wigler N, Inbar M et al. (2004) Reduced cardiac toxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin versus doxorubicin for first-line treatement of metastatic breast cancer. Ann Oncol 3: 440–449

    Article  Google Scholar 

  44. Safra T, Muggia F, Jeffers S etal. (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 11: 1029–1033

    Article  PubMed  CAS  Google Scholar 

  45. Siveski-Iliskovic N, Kaul N, Singal PK (1994) Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation 89: 2829–2835

    PubMed  CAS  Google Scholar 

  46. Siveski-Iliskovic N, Hill M, Chow DA et al. (1995) Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 91: 10–15

    PubMed  CAS  Google Scholar 

  47. Singal PK, Siveski-Iliskovic N, Hill M et al. (1995) Combination therapy with probucol prevents adriamycin-induced cardiomyopathy. J Mol Cell Cardiol 27: 1055–1063

    Article  PubMed  CAS  Google Scholar 

  48. Herman EH, Ferrans VJ (1981) Reduction of chronic doxorubicin cardiotoxicity in dogs by pretreatment with (I)-l,2-bis(3,5-dioxopiperozinyl-l-yl) propane (ICRF-187). Cancer Res 41: 3436–3440

    PubMed  CAS  Google Scholar 

  49. Speyer JL, Green MD, Kramer E et al. (1988) Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer. N Engl J Med 319: 745–752

    Article  PubMed  CAS  Google Scholar 

  50. Speyer JL, Green MD, Zeleniuch-Jacquotte A et al. (1992) ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol 10: 117–127

    PubMed  CAS  Google Scholar 

  51. Seifert CF, Nesser ME, Thompson DF (1994) Dexrazoxane in the prevention of doxorubicin-induced cardiotoxicity. Ann Pharmacother 28: 1063–1072

    PubMed  CAS  Google Scholar 

  52. Kolaric K, Bradamante V, Cervek J et al. (1995) A phase-II trial of cardioprotection with Cardioxane (ICRF-187) in patients with advanced breast cancer receiving 5-fluorouracil, doxorubicin and cyclophosphamide. Oncol 52: 251–255

    CAS  Google Scholar 

  53. Bu’Lock FA, Gabriel HM, Oakhill A et al. (1993) Cardioprotection by ICRF187 against high dose anthracycline toxicity in children with malignant disease. Br Heart J 70: 185–188

    Article  CAS  Google Scholar 

  54. Swain SM, Whaley FS, Gerber MC et al. (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 4: 1318–1332

    Google Scholar 

  55. Steinherz LJ, Graham T, Hurwitz R et al. (1992) Guidelines for cardiac monitoring of children during and after anthracycline therapy: report of the Cardiology Committee of the Childrens Cancer Study Group. Pediatrics 89: 942–949

    PubMed  CAS  Google Scholar 

  56. Lipshultz SE, Sanders SP, Goorin AM et al. (1994) Monitoring for anthracycline cardiotoxicity. Pediatrics 93: 433–437

    PubMed  CAS  Google Scholar 

  57. Jensen BV et al. (2002) Functional monitoring of anthracyclin cardiotoxicity: a prospective, blinded, long term observational study of outcome in 120 patients. Ann Oncol 13: 699–709

    Article  PubMed  CAS  Google Scholar 

  58. Nielsen D, Jensen JB, Dombernowsky P et al. (1990) Epirubicin cardiotoxicity: a study of 135 patients with advanced breast cancer. J Clin Oncol 8: 1806–1810

    PubMed  CAS  Google Scholar 

  59. Marchandise B, Schroeder E, Bosly A et al. (1989) Early detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J 118: 92–98

    Article  PubMed  CAS  Google Scholar 

  60. Lee BH, Goodenday LS, Muswick GJ et al. (1987) Alternations in left ventricular diastolic function with doxorubicin therapy. J Am Coll Cardiol 9: 184–188

    Article  PubMed  CAS  Google Scholar 

  61. Stoddard MF, Seeger J, Liddell NE et al. (1992) Prolongation of isovolumetric relaxation time as assessed by Doppler echocardiography predicts doxorubicininduced systolic dysfunction in humans. J Am Coll Cardiol 20: 62–69

    PubMed  CAS  Google Scholar 

  62. Ganz WI, Sridhar KS, Forness TJ (1993) Detection of early anthracycline cardiotoxicity by monitoring the peak filling rate. Am J Clin Oncol 16: 109–112

    Article  PubMed  CAS  Google Scholar 

  63. Hausdorf G, Morf G, Beron G et al. (1988) Long term doxorubicin cardiotoxicity in childhood: non-invasive evaluation of the contractile state and diastolic filling. Br Heart J 60: 309–315

    Article  PubMed  CAS  Google Scholar 

  64. Cottin Y, Touzery C, Coudert B et al. (1995) Impairment of diastolic function during short-term anthracycline chemotherapy. Br Heart J 73: 61–64

    Article  PubMed  CAS  Google Scholar 

  65. Schmitt K, Tulzer G, Merl M et al. (1995) Early detection of doxorubicin and daunorubicin cardiotoxicity by echocardiography: diastolic versus systolic parameters. Eur J Pediatr 154: 201–204

    Article  PubMed  CAS  Google Scholar 

  66. Morandi P, Ruffini PA, Benvenuto GM et al. (2001) Serum cardiac troponin I levels and ECG/Echo monitoring in breast cancer patients undergoing highdose (7g/m2) cyclophosphamide. Bone Marrow Transplant 3: 277–282

    Article  Google Scholar 

  67. Herman EH, Lipshultz SE, Rifai N et al. (1998) Use of cardiac troponin T levels as an indicator of doxorubicin-induced cardiotoxicity. Cancer Res 58: 195–197

    PubMed  CAS  Google Scholar 

  68. Lipshultz SE, Rifai N, Sallan SE et al. (1997) Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 96: 2641–2648

    PubMed  CAS  Google Scholar 

  69. Cardinale D, Sandri MT, Colombo A et al. (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109: 2749–2754

    Article  PubMed  CAS  Google Scholar 

  70. Nousiainen T, Vanninen E, Jantunen E et al. (2002) Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med 251: 228–234

    Article  PubMed  CAS  Google Scholar 

  71. Daugaard G, Lassen U, Bie P et al. (2005) Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. Eur J Heart Fail 7: 87–93

    Article  PubMed  CAS  Google Scholar 

  72. Cardinale D et al. (2006) Prevention of high dose chemotherapy-induced cardiotoxicity in high risk patients by angiotensin converting enzyme inhibition. Circulation 114: 2474–2481

    Article  PubMed  CAS  Google Scholar 

  73. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML (1991) Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 266: 1672–1677

    Article  PubMed  CAS  Google Scholar 

  74. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324: 808–815

    Article  PubMed  CAS  Google Scholar 

  75. Steinherz LJ, Steinherz PG, Tan C (1995) Cardiac failure and dysrhythmias 6-19 years after anthracycline therapy: a series of 15 patients. Med Pediatr Oncol 24: 352–361

    Article  PubMed  CAS  Google Scholar 

  76. Steinherz L, Steinherz P (1991) Delayed cardiac toxicity from anthracycline therapy. Pediatrician 18: 49–52

    PubMed  CAS  Google Scholar 

  77. Prosnitz RG, Chen YH, Marks LB (2005) Cardiac toxicity following thoracic radiation. Semin Oncol 32: S71–S80

    Article  PubMed  Google Scholar 

  78. Gyenes G (1998) Radiation-induced ischemic heart disease in breast cancer a review. Acta Oncol 37: 241–246

    Article  PubMed  CAS  Google Scholar 

  79. Ferrari E, Lagrange JL, Taillan B et al. (1993) Complications Cardiaques de la radiothérapie. Ann Med Interne 144: 23–27

    CAS  Google Scholar 

  80. Ferrari E, Darmon JP, Taillan B et al. (1990) Bloc Auriculo-Ventriculaire radique 18 ans après radiothérapie pour une maladie de Hodgkin. Presse Med 19: 1463–1464

    PubMed  CAS  Google Scholar 

Références trastuzumab

  1. Slamon DJ, Leyland-Jones B, Shak S et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792

    Article  PubMed  CAS  Google Scholar 

  2. Romond EH, Perez EA, Bryant J et al. (2005) trastuzumab plus adjuvant chemotherapy for operable HER-2-positive breast cancer. N Engl J Med 353: 1673–1684

    Article  PubMed  CAS  Google Scholar 

  3. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al. (2005) Trasstuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353: 1659–1672

    Article  PubMed  CAS  Google Scholar 

  4. Joensuu H, Kellokumpu-Lehtinen P, Bono P et al. (2006) Adjuvant docetaxel or vorelbine with or without trastuzumab for breast cancer. N Engl J med 354: 809–820

    Article  PubMed  CAS  Google Scholar 

  5. Ozcelik C, Erdmann B, Pilz B et al. (2002) Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci USA 99: 8880–8885

    Article  PubMed  CAS  Google Scholar 

  6. Grazette LP, Boecker W, Matsui T et al. (2004) Inhinition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptininduced cardiomyopathy. J Am Coll Cardiol 44: 2231–2238

    Article  PubMed  CAS  Google Scholar 

  7. Negro A, Brar BK, Gu Y et al. (2006) erbB2 is required for G protein-coupled receptor signaling in the heart PNAS 103: 15889–15893

    CAS  Google Scholar 

  8. Schneider JW, Chang AY, Rocco TP (2001) Cardiotoxicity in signal transduction therapeutics: erbB2 antibodies and the heart. Semin Oncol 28: 18–26

    Article  PubMed  CAS  Google Scholar 

  9. Fuchs IB, Landt S, Bueler H et al. (2003) Analysis of HER2 and HER4 in human myocardium to clarify the cardiotoxicity of trastuzumab (Herceptin). Breast Cancer Res Treat 82: 23–28

    Article  PubMed  CAS  Google Scholar 

  10. Behr et al. (2001) N Engl J Med 345: 995–996

    Article  PubMed  CAS  Google Scholar 

  11. Bengala C, Zamagni C, Pedrazzoli P et al. (2006) (GITMO) Group. Cardiac toxicity of trastuzumab in metastatic breast cancer patients previously treated with high-dose chemotherapy: a retrospective study. Br J Cancer 94: 1016–1020

    Article  PubMed  CAS  Google Scholar 

  12. Ewer MS, Vooletich MT, Durand JB et al. (2005) Revresibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23: 7820–7826

    Article  PubMed  CAS  Google Scholar 

  13. Kelly H, Kimmick G, Dees EC et al. (2006) Response and cardiac toxicity of trastuzumab given in conduction with weekly Paclitaxel after doxorubicin/cyclophosphamide. Clin Breast Cancer 7: 237–243

    PubMed  CAS  Google Scholar 

  14. Guarneri V, Lenihan DJ, Valero V et al. (2006) Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D Andersosn Cancer Center experience. J Clin Oncol 24: 4107–4115

    Article  PubMed  CAS  Google Scholar 

  15. Cook-Bruns N (2001) Retrospective analysis of the safety of herceptin in metastatic breast cancer. Oncol 61: 56–58

    Article  Google Scholar 

  16. Marty M, Baselga J, Gatzemeier U et al. (2003) Changes in left ventricular ejection fraction (LVEF) during trastuzumab therapy: a pooled analysis of four trials. Proc Am Soc Clin Oncol 22: 19

    Google Scholar 

  17. Cobleigh MA, Vogel CL, Tripathy D et al. (1999) Multinational study of the efficacy and safety of humanised anti-HER2 monoclonal antibody in women who also have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17: 2639–2648

    PubMed  CAS  Google Scholar 

  18. Vogel C, Cobleigh M, Tripathy D et al. (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-over expressing metastatic breast cancer. J Clin Oncol 20: 719–726

    Article  PubMed  CAS  Google Scholar 

  19. Baselga J (1999) Safety profile of Herceptin® as a single agent and in combination with chemotherapy. Europ J Cancer 35: S324

    Article  Google Scholar 

  20. Wolff AC Wang M, Sparano JA et al. (2004) Cardiac safety and clinical activity of pegylated liposomal doxorubicin and docetaxel with or without trastuzumab at 1st line chemotherapy in HER2 positive and HER2 negative metastatic breast cancer. Breast Cancer Res Treat 88: S125

    Google Scholar 

  21. Kim E, Gaiotti DA, Volm MD et al. (2004) Reversible cardiotoxicity from pegylated liposomal doxorubicin plus trastuzumab (herceptin): Results from 2 prospective studies. Breast Cancer Res Treat 88: S204

    Google Scholar 

  22. Theodoulou M, Campos SM, Batist G et al. (2002) TLC D99 (D, Myocet) and herceptin is safe in advanced breast cancer: Final cardiac and safety analysis. Proc Am Soc Clin Oncol 21: 55a

    Google Scholar 

  23. Eidtmann H, Thomseen C, Untch M et al. (2002) Herceptin in combination with epirubicin plus cyclpophosphamide: Cardiac safety in advanced breast cancer. Proc Am Soc Clin Oncol 21: 60a

    Google Scholar 

  24. Untch M, Eidtmann H du Bois A et al. (2004) Cardiac safety of trastuzumab in combination with epirubicin and cyclophosphamide in women with metastatic breast cancer: results of a phase I trial. Eur J Cancer 40: 988–997

    Article  PubMed  CAS  Google Scholar 

  25. Chia S, Clemons M, Martin LA et al. (2006) Pegylated liposomal doxorubicin and trastuzumab in HER-2 overexpressing metastatic breast cancer: A multicenter phase II trial. J Clin Oncol 24: 2773–2778

    Article  PubMed  CAS  Google Scholar 

Références anti-aromastases

  1. Stamler J, Wentworth D, Neaton JD (1986) Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 256: 2823–2828

    Article  PubMed  CAS  Google Scholar 

  2. Stamler J, Daviglus ML, Garside DB et al. (2000) Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA 284: 311–318

    Article  PubMed  CAS  Google Scholar 

  3. Coates AS, Keshaviah A, Thurlimann B et al. (2007) Five years of letrozole compared with tamoxifen as initial adjuvant therapy for postmenopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 25: 486–492

    Article  PubMed  CAS  Google Scholar 

  4. Bundred NJ (2005) The effects of aromatase inhibitors on lipids and thrombosis. Br J Cancer 93(Suppl I) S23–S27

    Article  PubMed  CAS  Google Scholar 

  5. Markopoulos C, Polychronis A, Zobolas V et al. (2005) The effect of exemestane on the lipidemic profile of postmenopausal early breast cancer patients: preliminary results of the TEAM Greek sub-study. Breast Cancer Res Treat 93: 61–66

    Article  PubMed  CAS  Google Scholar 

  6. Wasan KM, Goss PE, Pritchard PH et al. (2005) The influence of Letrozole on serum lipid concentrations in postmenopausal women with primary breast cancer who had completed 5 years of adjuvant tamoxifen (NCIC CTG MA.17L). Ann Oncol 16: 707–715

    Article  PubMed  CAS  Google Scholar 

  7. Markopoulos C, Chrissochou M, Michailidou A et al. (2005) Effect of Exemestane on the lipidemic profile of post-menopausal operable breast cancer patients following 5–7 years of adjuvant tamoxifen: preliminary results of the ATENA substudy. Anticancer Drugs 16: 879–883

    Article  PubMed  CAS  Google Scholar 

  8. Geisler J, Lonning PE, Krag LE et al. (2006) Changes in bone and lipid metabolism in postmenopausal women with early breast cancer after terminating 2-year treatment with exemestane: A randomised, placebo-controlled study. Eur J Cancer. In press

    Google Scholar 

  9. Hozumi Y, Kawano M, Hakamata Y et al. (2000) Tamoxifen inhibits lipoprotein activity: in vivo and in vitro studies. Horm Res 53: 36–39

    Article  PubMed  CAS  Google Scholar 

  10. Dziewulska-Bokiniec A, Wojtacki J, Skokowski J et al. (1994) The effect of tamoxifen treatment on serum cholesterol fractions in breast cancer women. Neoplasma 41: 13–16

    PubMed  CAS  Google Scholar 

  11. Gylling H, Pyrhonen S, Mantyla E et al. (1996) Tamoxifen and toremifene lower serum cholesterol by inhibition of delta 8-cholesterol conversion to lathosterol in women with breast cancer. J Clin Oncol 14: 2407–2408

    Google Scholar 

  12. Markopoulos C, Chrissochou M, Antonopoulou Z et al. (2006) Duration of tamoxifen effect on lipidemic profile of postmenopausal breast cancer patients following deprivation of treatment. Oncol 70: 301–305

    Article  CAS  Google Scholar 

  13. Howell A, Cuzick J, Baum M et al. (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365: 60–62

    Article  PubMed  CAS  Google Scholar 

  14. A comparison of letrozole and Tamoxifen in postmenopausal women with breast cancer (2005) N Engl J Med 353: 2747–2757

    Google Scholar 

  15. A randomized trial of Exemestane after two to three years of Tamoxifen therapy in postmenopausal women with primary breast cancer (2004) N Engl J Med 350: 1081–1092

    Google Scholar 

  16. Grainger DJ, Schofield PM (2005) Tamoxifen for the prevention of myocardial infarction in humans: preclinical and early clinical evidence. Circulation 112: 3018–3012

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this paper

Cite this paper

Ferrari, E., Lokiek, F., Facchini, T., Marsiglia, H. (2007). Cardiotoxicité des anthracyclines dans le contexte du cancer du sein. In: Cancer du sein. Springer, Paris. https://doi.org/10.1007/978-2-287-71478-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-71478-8_46

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-71477-1

  • Online ISBN: 978-2-287-71478-8

Publish with us

Policies and ethics