Skip to main content

The Microscopic Structure of the Nervous System: Its Function

  • Chapter
  • First Online:
Surgical Disorders of the Peripheral Nerves

Abstract

The essential component of the system is the nerve cell with its dendrites and its prolongation, the axon (Figs. 2.1–2.3). Young (1945) characterized the axon as “a very long cylinder of a semi fluid nature.” It is a column of neuronal cytoplasm, the axoplasm enclosed by a cell membrane, the axolemma. Thomas et al. (1993a) described the axoplasm as a “fluid cytosol in which are suspended formed elements.” The most conspicuous of the latter is the cytoskeleton consisting of neurotubules, neurofilaments and matrix. In addition, there are mitochondria, axoplasmic reticulum, lamellar and multivesicular bodies, and membranous cisterns, tubes and vesicles. It is the cytoskeleton that provides the apparatus for axoplasmic transport. Berthold et al. (2005) describe the axolemma as a three-layered unit membrane about 8 nm thick and consider that it: “conveys signals between the neurone and its Schwann cells that control the proliferative and myelin producing functions of the Schwann cells and partly regulate axon size.” The glial cells of the peripheral nervous system are essential for the development, maturation, survival and regeneration of the neurone. The relationship between the axon and the Schwann cell is lifelong. The myelinating and non myelinating Schwann cells are the main peripheral glial cells. There are others, which include the satellite cells surrounding cell bodies in the dorsal root and autonomic ganglia, the glia of the enteric system; the teloglia (terminal Schwann cells) at the terminals of somatic motor axons and the glia associated with sensory terminals such as the Pacinian corpuscle. Mirsky and Jessen (2005) observe: “evidence to date suggests that the molecular and morphological differences between these various cells depend on the specific location and cellular environment in which they are found and that the glial cells of the PNS retain unusual plasticity throughout life.” King (Berthold et al. 2005) estimated that about 10% of nuclei within the endoneurium of a normal peripheral or spinal nerve root are fibroblasts, and that endogenous macrophages account for between 2% and 9%. Most of the remainder are Schwann cells. Whilst mast cells are also seen their function is not well understood.

Rolfe Birch M. Chir, FRCP&S (Glas), FRCS (Edin), FRCS (Eng) by election Professor in Neurological Orthopaedic Surgery, University College, London

Visiting Professor, Department of Academic Neurology, Imperial College, London

Honorary Orthopaedic Consultant, Hospital for Sick Children Great Ormond Street, London

The National Hospital for Nervous Diseases, Queen Square, London

Raigmore Hospital, Inverness

Honorary Orthopaedic Surgeon to the Royal Navy

Consultant in Charge, War Nerve Injuries Clinic at the Defence Medical Rehabilitation Centre, Headley Court, Leatherhead, Surrey

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamkiewicz AA (1881a) Die Blutgefässe des Menschlichen Ruckemarkes; 1) Die gefässe der Ruckenarksubstanz Situngsb.d.k Acad.d. Wissensch. Math Naturw C1 84:469–502

    Google Scholar 

  • Adamkiewicz AA (1881b) Die Blutgefässe des Menschlichen Ruckemarkes; 2) Die gefässe der Ruchenmarksoberfläche Situngsb.d.k Acad.d. Wissensch. Math Naturw C1 85:101–130

    Google Scholar 

  • Adrian ED (1928) The action of the sense organs. In: The basis of sensation. Hafner Publishing Co Ltd, London

    Google Scholar 

  • Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve endings. Part 2. The responses of a single end organ. J Physiol (Lond) 61:151–171

    CAS  Google Scholar 

  • Anand P, Terenghi G, Warner G, Kopelman P, Sinicropi DV, Williams-Chestnut RE (1996) The role of nerve growth factor in human diabetic neuropathy. Nat Med 2:703–707

    Article  PubMed  CAS  Google Scholar 

  • Anand U, Otto WR, Casula MA, Day NC, Davis JB, Bountra C, Birch R, Anand P (2006) The effect of neurotrophic factors in morphology TRPVI expression and capsaicin responses of cultured human DRG sensory neurons. Neurosci Lett 399:51–56

    Article  PubMed  CAS  Google Scholar 

  • Anand U, Otto WR, Facer P, Zebda N, Selmer I, Gunthorpe MJ, Chessell IP, Sinisi M, Birch R, Anand P (2008a) TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons. Neurosci Lett 438:221–227

    Article  PubMed  CAS  Google Scholar 

  • Anand U, Otto WR, Bountra C, Chessell IP, Sinisi M, Birch R, Anand P (2008b) Cytosine arabinoside affects the heat and capsaicin receptor TRPV1 localisation and sensitivity in human sensory neurons. J Neurooncol 89:1–7

    Article  PubMed  CAS  Google Scholar 

  • Anand U, Otto WR, Sanchez-Herrera D, Facer P, Yiangou Y, Korchev Y, Birch R, Benham C, Bountra C, Chessell IP, Anand P (2008c) Canabinoid receptor CB2 localisation and agonist-mediated inhibition of capcaisin responses in human sensory neurons. Pain 138:667–680

    Article  PubMed  CAS  Google Scholar 

  • Banks RW (2005) The muscle spindle. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 6, pp 131–150

    Chapter  Google Scholar 

  • Banks RW, Barker D, Stacey MJ (1982) The sensory innervation of cat muscle spindles. Philos Trans R Soc Lond B299:329–364

    Article  Google Scholar 

  • Bar KJ, Saldanha GJ, Kennedy AJ, Facer P, Birch R, Carlstedt T, Anand P (1998) GDNF and its receptor component Ret in injured human nerves and dorsal root ganglia. NeuroReport 9(1):43–47

    Article  PubMed  CAS  Google Scholar 

  • Batten FB (1897) The muscle-spindle under pathological conditions. Brain 20:138–179

    Article  Google Scholar 

  • Bell MA, Weddell AGM (1984) A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other animals. Brain 107:871–898

    Article  PubMed  Google Scholar 

  • Berthold CH, Carlstedt T, Corneliuson O (1984) Anatomy of the nerve root at the central-peripheral transitional region. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R (eds) Peripheral neuropathy, 2nd edn. Saunders, Philadelphia, pp 156–170

    Google Scholar 

  • Berthold CH, Carlstedt T, Corneliuson O (1993) Anatomy of the mature transitional zone. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 75–80

    Google Scholar 

  • Berthold CH, King RHM, Rydmark M (2005) The myelinated nerve fibres. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 3, pp 42–62

    Google Scholar 

  • Blix M (1884) Experimentelle Beitrage zur Lösung der Frage über die specifische Energie der Hautnerven. Z Biol 20:141–156

    Google Scholar 

  • Bonney G (1959) Prognosis in traction lesions of the brachial plexus. J Bone Joint Surg 41B:4–35

    Google Scholar 

  • Bostock H (1993) Impulse propagation in experimental neuropathy. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 109–120

    Google Scholar 

  • Boyd IA (1962) The structure and function of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindle. Philos Trans R Soc Lond B 245:81–136

    Article  Google Scholar 

  • Boyd IA (1966) The behaviour of isolated mammalian muscle spindles with intact innervation. J Physiol (Lond) 186:109P–110P

    CAS  Google Scholar 

  • Boyd IA, Smith RS (1984) The muscle spindle. In: Dyck PJ, Thomas PK, Lambert EH, Burge R (eds) Peripheral neuropathy, 2nd edn. WB Saunders, Philadelphia, pp 171–202

    Google Scholar 

  • Brimijoin S (2005) Axonal transport: properties, mechanisms and role in nerve disease. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 18, pp 387–409

    Chapter  Google Scholar 

  • Brindley GS (1986) The action of parasympathetic and sympathetic nerves in human micturition, erection and seminal emission and their restoration in paraplegic patients by implanted electrical stimulators. The Ferrier lecture. Proc R Soc Lond B 235:111–120

    Article  Google Scholar 

  • Brodal A (1981a) Neurological anatomy. Oxford University Press, New York/Oxford

    Google Scholar 

  • Brodal A (1981b) Neuron theory. Ibid. Oxford University Press, New York/Oxford, p 9

    Google Scholar 

  • Brodal A (1981c) Extrapyramidal tracts. Ibid. Oxford University Press, New York/Oxford, pp 194–211

    Google Scholar 

  • Brodal A (1981d) The fibers in the dorsal funiculi and the medial lemniscus. Ibid. Oxford University Press, New York/Oxford, pp 74–84

    Google Scholar 

  • Bunge RD, Bunge MB, Eldridge CF (1986) Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci 9:305–328

    Article  PubMed  CAS  Google Scholar 

  • Cajal RS (1928) Neurotrophic action of the distal stump. In: Degeneration and regeneration in the nervous system. Oxford University Press, London/New York, p 196 (May RM (trans ed))

    Google Scholar 

  • Cajal RS (1928b) Neurotrophic action of distal stump.(trans, ed: May RM) Oxford University Press, London/New York, p 196

    Google Scholar 

  • Cajal RS (1954) Neuron theory or reticular theory? Purkiss WU, Fox CA (trans). Consejo Superior de Investigaciones Cientificas Instituto “Ramon y Cajal”, Madrid

    Google Scholar 

  • Carlstedt T (1981) An electron microscopical study of the developing transitional region in feline S1 dorsal rootlets. J NeurolSci 50:357–372

    Article  PubMed  CAS  Google Scholar 

  • Chen YG, McClinton MA, Dasilva MF, Shaw Wilgis EF (2000) Innervation of the metacarpophalangeal and interphalangeal joints: a microanatomic and histological study of the nerve endings. J Hand Surg 25A:128–133

    Article  Google Scholar 

  • Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolished chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  PubMed  CAS  Google Scholar 

  • Chiu SY (2005) Channel function in mammalian axons and support cells. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 4, pp 95–112

    Chapter  Google Scholar 

  • Clarke E, Bearn JS (1972) The spiral nerve bands of Fontana. Brain 95:1–20

    Article  PubMed  CAS  Google Scholar 

  • Clifton GL, Coggeshall RE, Vance WH, Willis WD (1976) Receptive fields of unmyelinated ventral root afferent fibres in the cat. J Physiol (Lond) 256:573–600

    CAS  Google Scholar 

  • Coggeshall RB, Coulter JD, Willis WD (1974) Unmyelinated axons in the ventral roots of the cat lumbosacral enlargement. J Comp Anat 153:39–58

    CAS  Google Scholar 

  • Cohen S, Levi-Montalcini R, Hamburger V (1954) A nerve growth stimulating factor isolated from sarcomas 37 and 180. Proc Nat Acad Sci USA 40:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Cooper S, Daniel PM (1963) Muscle spindles in man: their morphology in the lumbricals and the deep muscles of the neck. Brain 86:563–588

    Article  PubMed  CAS  Google Scholar 

  • Corbin KB, Gardner ED (1937) Decrease in number of myelinated nerve fibres in human spinal roots with age. Anat Rec 68:63–74

    Article  Google Scholar 

  • Cottrell L (1940) Histologic variations with age in apparently normal nerve trunks. Arch Neurol Psychiatry (Chicago) 43:1138–1150

    Article  Google Scholar 

  • Cowen T, Ulfhake B, King RHM (2005) Aging in the peripheral nervous system. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 22, pp 483–507

    Chapter  Google Scholar 

  • Davis KD, Pope GE (2002) Noxious cold evokes multiple sensations with distinct time cause. Pain 98:179–185

    Article  PubMed  Google Scholar 

  • Dommisse GF (1974) The blood supply of the spinal cord. A critical vascular zone in spinal surgery. J Bone Joint Surg 56B:225–235

    Google Scholar 

  • Dommisse GF (1975) The arteries and veins of the human spinal cord from birth, 1st edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Durrenberger PF, Facer P, Gray RA, Chessell IP, Naylor A, Bountra C, Banati RB, Birch R, Anand P (2004) Cyclooxygenase – 2 (COX-2) in injured human nerve and a rat model of nerve injury. J Peripher Nerv Syst 9:15–24

    Article  PubMed  CAS  Google Scholar 

  • Dyck PJ, Dyck PJB, Engelstad J (2005) Pathological alterations of nerves. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 32, pp 733–829

    Chapter  Google Scholar 

  • Dyck PJB, Engelstad J, Dyck PJ (2005b) Microvasculitis. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 106, pp 2405–2414

    Chapter  Google Scholar 

  • Eames R, Gamble G (1970) Schwann cell relationships in normal human cutaneous nerves. J Anat 106:417–435

    PubMed  CAS  Google Scholar 

  • Facer P, Casula MA, Smith GD, Benham CD, Chessell IP, Bountra C, Sinisi M, Birch R, Anand P (2007) Differential expression of the capsaicin receptor TRPVI and elated novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7(1):11

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Sitzoglou K, Ali Z, Halonen P (1988) The conduction velocities of peripheral nerve fibres conveying sensations of warming and cooling. J Neurol Neurosurg Psychiatry 51:1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Fraher JP (2005) The CNS-PNS transitional zone. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 3, pp 67–78

    Google Scholar 

  • Galbraith JA, Myers RR (1991) Impulse conduction. In: Gelberman RH (ed) Operative nerve repair and reconstruction. JB Lippincott (2 volumes), Philadelphia vol 1, Chapter 2, pp 19–45

    Google Scholar 

  • Gamble HJ (1964) Comparative electron-microscopic observations on the connective tissue of a peripheral nerve and a spinal nerve root in the rat. J Anat 98:17–24

    PubMed  CAS  Google Scholar 

  • Gamble HJ, Eames RA (1964) An electron microscope study of the connective tissues of human peripheral nerve. J Anat 98:655–662

    PubMed  CAS  Google Scholar 

  • Gasser HF (1955) Properties of dorsal root unmedullated fibres on the two sides of the ganglion. J Gen Physiol 38:709–728

    Article  PubMed  CAS  Google Scholar 

  • Goldscheider A (1884) Die spezifische Energie der Gefühlsnerven der Haut. Monatshefte für praktische Dermatologie 3:283–300

    Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PBC (1972) The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effect of paralysing joint afferents. Brain 95:705–748

    Article  PubMed  CAS  Google Scholar 

  • Gordon G, Jukes MJM (1964) Descending influences on the exteroceptive organisations of the cat’s gracile nucleus. J Physiol (Lond) 173:291–319

    CAS  Google Scholar 

  • Graham BT, Sherrington CS (1912) On the instability of a cortical point. Proc R Soc 85B:250–277

    Google Scholar 

  • Greenfield JG, Carmichael EA (1935) The peripheral nerves in cases of subacute combined degeneration of the cord. Brain 58:483–491

    Article  Google Scholar 

  • Hagbarth K-E, Torebjörk HE, Wallin BG (1993) Microelectrode exploration of human peripheral nerves. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 658–671

    Google Scholar 

  • Hall SM (1997) Axonal regeneration through acellular muscle grafts. J Anat 190:57–71

    Article  PubMed  Google Scholar 

  • Hall SM (1999) The biology of chronically denervated Schwann cells. Ann NY Acad Sci 883:215–233

    Article  PubMed  CAS  Google Scholar 

  • Hall SM (2001) Nerve repair: a neurobiologists view. J Hand Surg 26B:129–136

    Google Scholar 

  • Hall SM (2005) The response to injury in the peripheral nervous system. J Bone Joint Surg 87B:1309–1319

    Google Scholar 

  • Hall SM, Williams PL (1970) Studies in the “incisures” of Schmidt and Lanterman. J Cell Sci 6:767–791

    PubMed  CAS  Google Scholar 

  • Hallin RG, Torebjörk HE (1973) Electrically induced A and C fibre responses in intact human skin nerves. Exp Brain Res 16:309–320

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Keefe EL (1944) The effects of peripheral factors on the proliferation and differentiation in the spinal cord of chick embryos. J Exp Zool 96:223

    Article  Google Scholar 

  • Head H (1920) Studies in neurology, vol 2. Oxford University Press, London

    Google Scholar 

  • Head H, Sherrin J (1905) The consequences of injury to the peripheral nerves in man. Brain 28:116–338

    Article  Google Scholar 

  • Head H, Rivers WHR, Sherrin J (1905) The afferent nervous system from a new aspect. Brain 28:99–116

    Article  Google Scholar 

  • Hebb DO (1947) The effects of early experience on problem solving at maturity. Am Physiol 2:737–745

    Google Scholar 

  • Hill S, Hall S (1999) Microscopic anatomy of the posterior interosseous and median nerves at sites of potential entrapment in the forearm. J Hand Surg 24B:170–176

    Google Scholar 

  • Hodgkin AL (1937a) Evidence of electrical transmission in nerve. Part II. J Physiol (Lond) 90:211–232

    CAS  Google Scholar 

  • Hodgkin AL (1937b) Evidence of electrical transmission in nerve. Part I. J Physiol (Lond) 90:183–210

    CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1939) Action potential recorded from inside a nerve fibre. Nature 144:710–711

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Hogervorst T, Brand RA (1998) Mechanoreceptors in joint function. Current concept reviews. J Bone Joint Surg 80A:1365–1378

    Google Scholar 

  • Horsley V (1897) Short note on sense organs in muscle and on the preservation of muscle spindles in conditions of extreme muscular atrophy. Brain 20:375–376

    Article  Google Scholar 

  • Hromada J (1963) On the nerve supply of the connective tissue of some peripheral nervous system components. Acta Anat 55:343–351

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF, Stämpfli R (1949) Evidence for saltatory conduction in peripheral myelinated fibres. J Physiol (Lond) 108:315–339

    Google Scholar 

  • Iggo A (1961) Non-myelinated fibres from mammalian skeletal muscle. J Physiol (Lond) 155:52P–53P

    Google Scholar 

  • Iggo A (1985) Cutaneous sensation. In: Swash M, Kennard C (eds) The scientific basis of clinical neurology. Churchill Livingstone, Edinburgh, pp 153–162

    Google Scholar 

  • Jacobs JM, Love S (1985) Qualitative and quantitative morphology of human sural nerve at different ages. Brain 108:897–924

    Article  PubMed  Google Scholar 

  • Kadiyala RK, Ramirez A, Taylor AE, Saltzman CL, Cassell MD (2005) The blood supply of the common peroneal nerve in the popliteal fossa. J Bone Joint Surg 87B:337–342

    Google Scholar 

  • Kennedy WR, Wendel-Schafer-Crabb G, Polydefkis M, McArthur J (2005) Pathology and quantitation of cutaneous innervation. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 34, pp 869–895

    Chapter  Google Scholar 

  • Kimura J (1993) The effects of age. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, p 605

    Google Scholar 

  • Kühne W (1864) Über die Endigung der nerven in den Nervenhügeln der Muskeln. Archiv fur pathologische anatomie and Physiologie und für klinische Medicin (Virchow) 30:187–220

    Google Scholar 

  • Landon DN (1985) Structure and function of nerve fibres. In: Swash M, Kennard C (eds) Scientific basis of neurology. Churchill Livingstone, Edinburg, London pp 375–389

    Google Scholar 

  • Lasek RJ (1982) Translocation of the neuronal cytoskeleton and axonal locomotion. Philos Trans R Soc Lon B 299:313–327

    Article  CAS  Google Scholar 

  • Laviano M (1992/93) Il nervo accessorio spinale pro sovrascapolare nelle avulsioni del plesso brachiale. Tesi de Specializzazone, Universita delgli studi de Roma “La Sapienza”, Facolta di Medicina e Chirurgia

    Google Scholar 

  • Lawson SN (2005) The peripheral sensory nervous system: dorsal root ganglion neurones. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 8, pp 163–202

    Chapter  Google Scholar 

  • Levi-Montalcini R, Angeletti PU (1968) Nerve growth factor. Physiol Rev 48:534–569

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Meyer H, Hamburger V (1954) In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res 14:49–57

    PubMed  CAS  Google Scholar 

  • Li H, Wigley C, Hall SM (1998) Chronically denervated rat Schwann cells respond to GGF in vitro. Glia 24:290–303

    Article  PubMed  CAS  Google Scholar 

  • Light AR, Perl ER (1993) Peripheral sensory systems. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 149–165

    Google Scholar 

  • Lim AYT, Pereira BP, Kumar VP, de Coninck C, Taki C, Baudet J, Merle M (2004) Intramuscular innervation of upper limb skeletal muscles. Muscle Nerve 29:523–530

    Article  PubMed  Google Scholar 

  • Loeb GE (1976) Ventral root projections of myelinated dorsal root ganglion cells in the cat. Brain Res 106:159–165

    Article  PubMed  CAS  Google Scholar 

  • Low FN (1976) The perineurium and connective tissue of peripheral nerve. In: Landon DN (ed) The peripheral nerve. Chapman & Hall, London, Chapter 3

    Google Scholar 

  • Lundborg G (1979) The intrinsic vascularization of human peripheral nerves: structural and functional effects. J Hand Surg 4:34–41

    CAS  Google Scholar 

  • Lundborg G (1988) Vascular systems. In: Lundborg G Nerve injury and repair. Churchill Livingstone, Edinburgh, pp 32–63

    Google Scholar 

  • Lundborg G (1988b) Vascular systems. Churchill Livingstone, Edinburgh, pp 32–63

    Google Scholar 

  • Lundborg G (2004a) Nerve injury and repair: regeneration, reconstruction and cortical remodelling, 2nd edn. Elsevier, Churchill Livingstone

    Google Scholar 

  • Lundborg G (2004b) Sensation and sensorimotor integration in hand function. Ibid 2nd edn. Elsevier, Churchill Livingstone, Chapter 8, pp 198–210

    Google Scholar 

  • Lundborg G (2004c) Brain plasticity and cortical remodelling. Ibid 2nd edn. Elsevier, Churchill Livingstone, Chapter 9, pp 211–223

    Google Scholar 

  • MacQuillan A (2006) The variance of nerve axon to muscle fibre ratio and its effect on outcome in functional muscle transfer. Thesis, MD University of London

    Google Scholar 

  • Matthews PBC (1981) Evolving views of the internal operation of and functional role of the muscle spindle. J Physiol (Lond) 320:1–30

    CAS  Google Scholar 

  • McDonald WI (1963) The effects of experimental demyelination on conduction in peripheral nerves: a histological and electrophysiological study. Brain 86:501–524

    Article  PubMed  CAS  Google Scholar 

  • McDonald WI, Sears TA (1970) The effects of experimental demyelination on conduction in the central nervous system. Brain 93:583–598

    Article  PubMed  CAS  Google Scholar 

  • McManis PG, Low PA, Lagerlund TD (1993) Microenvironment of nerve: blood flow and ischaemia. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 433–440

    Google Scholar 

  • McManis PG, Low PA, Lagerlund TD (2005) Nerve blood flow and microenvironment. In: Dyke PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 30, p 671

    Google Scholar 

  • Melzack R, Wall PD (1962) On the nature of cutaneous sensory mechanisms. Brain 85:331–356

    Article  PubMed  CAS  Google Scholar 

  • Mense S (1977) Nervous outflow from skeletal muscle following chemical noxious stimulation. J Physiol (Lond) 267:75–88

    CAS  Google Scholar 

  • Mense S, Schmidt RF (1974) Activation of group IV afferent units from muscle by algesic agents. Brain Res 72:305–310

    Article  PubMed  CAS  Google Scholar 

  • Mirsky R, Jessen KR (2005) Molecular signalling in Schwann cell development. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 16, pp 341–376

    Chapter  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic qualities of single neurones of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1980) In: Mountcastle VB (ed) Medical physiology, 14th edn. CV Mosby, St. Louis, pp 61–63

    Google Scholar 

  • Nathan PW, Smith MC (1958) The centrifugal pathway for micturition within the spinal cord. J Neurol Neurosurg Psychiatry 21:177–189

    Article  PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MS, Cook AW (1986) Sensory effects in man of lesions of the posterior columns and some other afferent pathways. Brain 109:1003–1041

    Article  PubMed  Google Scholar 

  • Norris AH, Shock NW, Wagman IH (1953) Age changes in the maximum conduction velocity of motor fibres of human ulnar nerves. J Appl Physiol 5:589–593

    PubMed  CAS  Google Scholar 

  • Oberlin C, Beal D, Bhatia A, Dauge MC (1995) Nerf cubital (ulnaire), neurotisation du muscle biceps. In: Alnot J-Y, Narakas A.(eds) Les Paralysies du plexus brachial, 2nd edn. Monographie de la Société Française de Chirurgie de la Main, pp 46–49

    Google Scholar 

  • Ochoa J, Mair WGP (1969) The normal sural nerve in man. II. Changes in the axons and Schwann cells due to ageing. Acta Neuropathol (Berlin) 13:217–239

    Article  CAS  Google Scholar 

  • Ochs S, Brimijoin WS (1993) Axonal transport. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 331–360

    Google Scholar 

  • Omer G (1980) Range of conduction velocities. In: Omer GE, Spinner M (eds) Management of peripheral nerve problem. WB Saunders, Philadelphia, pp 6–7

    Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Petrie S, Collins J, Solomonow M, Wink C, Chuinard R (1997) Mechano receptors in the palmar wrist ligaments. J Bone Joint Surg 79B:494–496

    Article  Google Scholar 

  • Pomeranz B, Wall PD, Weber WV (1968) Cord cells responding to fine myelinated afferents from viscera, muscle and skin. J Physiol (Lond) 199:511–532

    CAS  Google Scholar 

  • Price DD, Meyer DJ (1974) Physiological laminar organisation of the dorsal horn of M. Mulatta. Brain Res 79:321–325

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran VS, Hirstein W (1998) The perception of phantom limbs. The DO Hebb lecture. Brain 9(121):1603–1630

    Article  Google Scholar 

  • Ranson SW (1915) Unmyelinated nerve fibres as conductors of protopathic sensation. Brain 38:381–389

    Article  Google Scholar 

  • Rasminsky M (1985) Conduction in normal and pathological nerve fibres. In: Swash M, Kennard C (eds) Scientific basis of clinical neurology, vol 28. Churchill Livingstone, Edinburgh, pp 390–399

    Google Scholar 

  • Rexed B (1952) The cytoarchitectonic organisation of the spinal cord in the cat. J Comp Neurol 96:415–495

    Article  Google Scholar 

  • Rexed B (1954) A cytoarchitectonic organisation of the spinal cord in the cat. J Comp Neurol 100:297–379

    Article  Google Scholar 

  • Ruffini A (1897) Observations on sensory nerve-endings in voluntary muscle. Brain 20:367–374

    Article  Google Scholar 

  • Saldanha G, Bar K, Yiangou Y, Anand P, Birch R, Carlstedt T, Burrin JM (2000) Marked increase of interleukin – 6 in injured human nerves and dorsal root ganglia. J Neurol Neurosurg Psychiatry 69:693–694

    Article  PubMed  CAS  Google Scholar 

  • Sanchez D, Anand V, Gorelik J, Benham CD, Bountra C, Lab M, Klenerman D, Birch R, Anand P, Korchev Y (2007) Localized and non-contact mechanical stimulation of dorsal root ganglion sensory neurons using scanning ion conductance microscopy. J Neurosci Methods 159:26–34

    Article  Google Scholar 

  • Sanders FK (1942) The repair of large gaps in the peripheral nerves. Brain 65:281–337

    Article  Google Scholar 

  • Schenker M, Birch R (2000) Intact myelinated fibres in biopsies of ventral spinal roots after preganglionic traction injury to the brachial plexus. A proof that Sherrington’s “wrong way afferents” exist in man? J Anat 197:383–391

    Article  PubMed  Google Scholar 

  • Schenker M, Birch R (2001) Diagnosis of level of intradural ruptures of the rootlets in traction lesions of the brachial plexus. J Bone Joint Surg 83B:916–920

    Article  Google Scholar 

  • Scherer SS, Arroyo EJ (2002) Recent progress on the molecular organisation of myelinated axons. 3 rd Bunge Memorial lecture. J Peripher Nerv Syst 7:1–12

    Article  PubMed  CAS  Google Scholar 

  • Scholz A, Reid G, Vogel W, Bostock H (1993) Ion channels in human axons. J Neurophysiol 70:1274–1279

    PubMed  CAS  Google Scholar 

  • Schott GD (1994) Visceral afferents: their contribution to “sympathetic-dependent” pain. Brain 117:397–413

    Article  PubMed  Google Scholar 

  • Schwann T (1839) Mikroskopiche Untersuchungen über die Übereinstimmung in der Strukter und dem Wachstum der Tiere und Pflanzen. Sander, Berlin

    Google Scholar 

  • Scott JJA (2005) The Golgi tendon organ. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 7, pp 151–161

    Chapter  Google Scholar 

  • Seddon HJ (1975) Surgical disorders of peripheral nerves. Churchill Livingstone, 2nd edn. Edinburgh, London/New York, pp 267–270

    Google Scholar 

  • Selander D, Sjostrand J (1978) Longitudinal spread of intraneurally injected local anaesthetics. An experimental study of the initial distribution following intraneural injections. Acta Anaesthesiol Scand 22:622–634

    Article  PubMed  CAS  Google Scholar 

  • Sharrard WJW (1955) The distribution of the permanent paralysis in the lower limb in poliomyelitis. J Bone Joint Surg 37B:540–558

    Google Scholar 

  • Sherrington CS (1894) On the anatomical constitution of nerves of skeletal muscles: with remarks on recurrent fibres in the ventral spinal nerve-root. J Physiol 17:211–258

    Google Scholar 

  • Sherrington CS (1897) The synapse in: the central nervous system. In: Foster M, Sherrington CS A textbook of physiology, vol 3, 7th edn. Macmillan, London, p 929

    Google Scholar 

  • Sherrington CS, Leyton ASF (1917) Observations on the excitable cortex of the chimpanzee, orang-utan and gorilla. Quart J Exp Physiol 11:135–222

    Google Scholar 

  • Sinclair DC (1955) Cutaneous sensation and the doctrine of specific energy. Brain 78:584–614

    Article  PubMed  CAS  Google Scholar 

  • Stacey MJ (1969) Free nerve endings in the skeletal muscle of the cat. J Anat 105:231–254

    PubMed  CAS  Google Scholar 

  • Standring S (2008) Conduction of nervous impulses. In: Standring S (ed in chief) Gray’s anatomy, 40th edn. Churchill Living stone, Elsevier, pp 63–64

    Google Scholar 

  • Stark B, Carlstedt T, Hallin RG (1998) Distribution of human pacinian corpuscles in the hand. J Hand Surg 25B:370–372

    Google Scholar 

  • Stolinski C (1995) Structure and composition of the outer connective tissue sheaths of peripheral nerve. J Anat 186:123–130

    PubMed  Google Scholar 

  • Stolinski C, Breathnach AS (1982) Freeze-fracture replication of mammalian peripheral nerve – a review. J Neurol Sci 57:1–28

    Article  PubMed  CAS  Google Scholar 

  • Sugiura Y, Terui N, Hosoya Y (1989) Difference in distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibres. J Neurophysiol 62:834–840

    PubMed  CAS  Google Scholar 

  • Sunderland S (1968) Intraneural topography. In: Sunderland S Nerve and nerve injuries. E & S Livingstone Edinburgh, London. …Median nerve pp 758–769; ulnar nerve pp 816–825; radial nerve pp 905–914; sciatic nerve pp 1029–1046

    Google Scholar 

  • Sunderland S, Lavarack JO, Ray LJ (1949) The caliber of nerve fibers in human cutaneous nerves. J Comp Neurol 91:87–101

    Article  PubMed  CAS  Google Scholar 

  • Suter U, Martini R (2005) Myelination. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter19, pp 411–431

    Chapter  Google Scholar 

  • Svensson LG (2005) Paralysis after aortic surgery: in search of lost cord function. The James IV lecture. Surgeon 3:396–405

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi T, Yamashita T, Minakiy, Ushii S (1997) Mechano sensitive afferent units in the lateral ligament of the ankle. J Bone Joint Surg 79B:490–493

    Article  Google Scholar 

  • Takebayashi T, Cavanagh JM, Kallukuri S, Chen C, Yamashita T (2006) Sympathetic afferents from lumbar intervertebral discs. J Bone Joint Surg 88B:554–557

    Google Scholar 

  • Tasaki I, Takeuchi T (1941) Der am Ranvierschen Knoten entstehende Aktionström und seine bedeutung für die Erregungsleitung. Pflügers Archiv 244:696–711

    Article  Google Scholar 

  • Tasaki I, Takeuchi T (1942) Weiters Studien über den Aktionsstrom der markhältigen Nervenfäser und über die elektrosaltatorische. Uberträgung des Nervenimpulses. Pflügers Archiv 245:764–782

    Article  Google Scholar 

  • Taylor PK (1984) Non-linear effects of age on nerve conduction in adults. J Neurol Sci 66:223–234

    Article  PubMed  CAS  Google Scholar 

  • Thomas PK (1963) The connective tissue of peripheral nerve; an electron microscope study. J Anat 97:35–42

    PubMed  CAS  Google Scholar 

  • Thomas PK, Berthold C-H, Ochoa J (1993a) Microscopic anatomy of the peripheral nervous system. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, Chapter 3, pp 28–92

    Google Scholar 

  • Thomas PK, Scaravilli J, Belai A (1993b) Pathological alterations in cell bodies of peripheral neurons in neuropathy. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, Chapter 29, pp 476–513

    Google Scholar 

  • Tillett RL, Afoke A, Hall SM, Brown RA, Phillips JB (2004) Investigating mechanical behaviour at a core-sheath interface in peripheral nerve. J Peripher Nerve Syst 9:255–262

    Article  Google Scholar 

  • Tohgi H, Tsukagoshi H, Toyokura Y (1977) Quantitative changes with age in normal sural nerves. Acta Neuropathol (Berlin) 38:213–220

    Article  CAS  Google Scholar 

  • Tomita K, Berger EJ, Berger RA, Kraisarin J, An KN (2007) Distribution of nerve endings in the human dorsal radio carpal ligament. J Hand Surg 32A:466–473

    Google Scholar 

  • Torebjörk HE, Ochoa JL (1980) Specific sensations evoked by activity in single identified sensory units in man. Acta Physiol Scand 110:445–447

    Article  PubMed  Google Scholar 

  • Torebjörk E, Schmelz M (2005) Single-unit recordings of afferent human peripheral nerves by microneurography. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. WB Saunders, London, Chapter 38, pp 1003–1014

    Chapter  Google Scholar 

  • Uziyel Y, Hall S, Cohen J (2000) Influence of laminin-2 on Schwann cell-axon interactions. Glia 32:109–121

    Article  PubMed  CAS  Google Scholar 

  • Vallbo AB, Hulliger M (1981) Independence of skeletomotor and fusimotor activity. Brain Res 223:176–180

    Article  PubMed  CAS  Google Scholar 

  • Varro A, Green T, Holmes S, Dockray GJ (1988) Calcitonin gene-related peptide in visceral afferent nerve fibres: quantification by radio immunoassay and determination of axonal transport rated. Neuroscience 26:927–932

    Article  PubMed  CAS  Google Scholar 

  • Von Frey M (1894) Beitrage zur Physiologie der Schmerzsinns. Berichte der Königliche Sächsiche Gesellschaft der Wissenschaften 46:185–196

    Google Scholar 

  • Von Frey M (1896) Untersuchungen uber die Sinnesfunktionen der menschlichen Haut. 1. 1. Druckempfindung und Schmertz. Berichte der Köningliche Sächsiche Gesellschaft der Wissenschaften 48:175–264

    Google Scholar 

  • Wall PD (1961) Two transmission systems for skin sensation. In: Roseblith WA (ed) Sensory communication. MIT press, Cambridge, pp 475–496

    Google Scholar 

  • Wall PD (1970) The sensory and motor role of impulses travelling in the dorsal columns towards the cerebral cortex. Brain 93:505–524

    Article  PubMed  CAS  Google Scholar 

  • Wall PD (1977) The presence of ineffective synapses and the circumstances which unmask them. Philos Trans R Soc Lond B278:361–372

    Article  Google Scholar 

  • Webster HdeF (1993) Development of peripheral nerve fibers. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 243–266

    Google Scholar 

  • Weddell G (1941) The pattern of cutaneous innervation in relation to cutaneous sensibility. J Anat 75:346–366

    PubMed  CAS  Google Scholar 

  • Weerasuriya A (2005) Blood-nerve interface and endoneurial homeostasis. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 29, pp 651–665

    Chapter  Google Scholar 

  • White JC, Sweet WH (1969) Pain and the neurosurgeon: a forty year experience. Charles C Thomas, Springfield, pp 895–896

    Google Scholar 

  • Wigley C, Felts P, Standring S (2008) Mechanism of synaptic activity. In: Standring S (ed in Chief) Grays anatomy, 40th edn. Churchill Livingstone, Elsevier, pp 46–48

    Google Scholar 

  • Windebank AJ, McDonald ES (2005) Neurotrophic factors in the peripheral nervous system. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 4th edn. Elsevier Saunders, Philadelphia, Chapter 17, pp 377–386

    Chapter  Google Scholar 

  • Woollam DHM, Millen JW (1958) Discussion on vascular disease of the spinal cord. Proc R Soc Med 51:540–543

    PubMed  CAS  Google Scholar 

  • Woolsey CN (1964) Cortical localization as defined by evoked potential and electrical stimulation studies. In: Scaltenbrand G, Woolsey CN (eds) Cerebral localization and organisation. University of Wisconsin Press, Madison, pp 17–32

    Google Scholar 

  • Yiangou Y, Birch R, Sangeswaram L, Eglen R, Anand P (2000) SNS/PN3 and SNS2/NaN sodium channel like immunoreactivity in human adult and neonate injuries of sensory nerves. FEBS Lett 467:249–252

    Article  PubMed  CAS  Google Scholar 

  • Yiangou Y, Facer P, Birch R, Sanganeswaran L, Eglen R, Anand P (2007) P2X3 receptor in injured human sensory neurons. Neuroreport 11:993–996

    Article  Google Scholar 

  • Young JZ (1942) Functional repair of nervous tissue. Physiol Rev 22:318–374

    Google Scholar 

  • Young JZ (1945) The history of the shape of a nerve fibre. In: Le Gros Clark WE, Medawar PB (eds) Essays on growth and form. Oxford University Press, Oxford, p 41

    Google Scholar 

  • Young JZ, Holmes W (1940) Nerve regeneration. Lancet 2:128–130

    Article  Google Scholar 

  • Zotterman Y (1939) Touch, pain and tickling: an electrophysiological investigation on cutaneous sensory nerves. J Physiol 95:1–28

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Birch, R. (2010). The Microscopic Structure of the Nervous System: Its Function. In: Surgical Disorders of the Peripheral Nerves. Springer, London. https://doi.org/10.1007/978-1-84882-108-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-108-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-107-1

  • Online ISBN: 978-1-84882-108-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics