Skip to main content

Immobilization of Enzymes: A Literature Survey

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

The term immobilized enzymes refers to “enzymes physically confined or localized in a certain defined region of space with retention of their catalytic activities, and which can be used repeatedly and continuously.”

Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes. In addition to their use in industrial processes, the immobilization techniques are the basis for making a number of biotechnology products with application in diagnostics, bioaffinity chromatography, and biosensors. At the beginning, only immobilized single enzymes were used, after 1970s more complex systems including two-enzyme reactions with cofactor regeneration and living cells were developed.

The enzymes can be attached to the support by interactions ranging from reversible physical adsorption and ionic linkages to stable covalent bonds. Although the choice of the most appropriate immobilization technique depends on the nature of the enzyme and the carrier, in the last years the immobilization technology has increasingly become a matter of rational design.

As a consequence of enzyme immobilization, some properties such as catalytic activity or thermal stability become altered. These effects have been demonstrated and exploited. The concept of stabilization has been an important driving force for immobilizing enzymes. Moreover, true stabilization at the molecular level has been demonstrated, e.g., proteins immobilized through multipoint covalent binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry. Freeman, New York, NY

    Google Scholar 

  2. Creighton TE (1984) Proteins. Freeman, Oxford

    Google Scholar 

  3. Katchalski-Katzir E (1993) Immobilized enzymes: learning from past successes and failures. Trends Biotechnol 11:471–478

    Article  PubMed  CAS  Google Scholar 

  4. Tosa T, Mori T, Fuse N, Chibata I (1966) Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia 31:214–224

    PubMed  CAS  Google Scholar 

  5. Tanaka A, Tosa T, Kobayashi T (1993) Industrial application of immobilized biocatalysts. Marcel Dekker, New York, NY

    Google Scholar 

  6. Swaisgood HE (1985) Immobilization of enzymes and some applications in the food industry. In: Laskin AI (ed) Enzymes and immobilized cells in biotechnology. Benjamin Cummings, London, pp 1–24

    Google Scholar 

  7. Guibault GG, Kauffmann JM, Patriarche GJ (1991) Immobilized enzyme electrodes as biosensors. In: Taylor RF (ed) Protein immobilization. Fundamentals and applications. Marcel Dekker, New York, NY, pp 209–262

    Google Scholar 

  8. Taylor RF (1991) Immobilized antibody- and receptor based biosensors. In: Taylor RF (ed) Protein immobilization. Fundamentals and applications. Marcel Dekker, New York, NY, pp 263–303

    Google Scholar 

  9. Chang MS (1991) Therapeutic applications of immobilized proteins and cells. In: Taylor RF (ed) Protein immobilization. Fundamentals and applications. Marcel Dekker, New York, NY, pp 305–318

    Google Scholar 

  10. Bickerstaff GF (1995) Impact of genetic technology on enzyme technology. Genet Eng Biotechnol J 15:13–30

    Google Scholar 

  11. Hartmeier W (1988) Immobilized biocatalysts. Springer, Berlin

    Book  Google Scholar 

  12. Trevan M (1980) Techniques of immobilization. In immobilized enzymes. An introduction and applications in biotechnology. Wiley, Chichester, New York, pp 1–9

    Google Scholar 

  13. Brodelius P, Mosbach K (1987) Immobilization techniques for cells/organelles. In: Mosbach K (ed) Methods in enzymology, vol 135. Academic, London, pp 173–454

    Google Scholar 

  14. Khan A, Alzohairy A (2010) Recent advances and applications of immobilized enzyme technologies: a review. Res J Biol Sci 5(8):565–575

    Article  Google Scholar 

  15. Buchholz K, Klein J (1987) Characterization of immobilized biocatalysts. In: Mosbach K (ed) Methods in enzymology, vol 135. Academic, London, pp 3–30

    Google Scholar 

  16. Cabral JMS, Kennedy JF (1991) Covalent and coordination immobilization of proteins. In: Taylor RF (ed) Protein immobilization. Fundamentals and applications. Marcel Dekker, New York, NY, pp 73–138

    Google Scholar 

  17. Gemeiner P (1992) Materials for enzyme engineering. In: Gemeiner P (ed) Enzyme engineering. Ellis Horwood, New York, NY, pp 13–119

    Google Scholar 

  18. Katchalski-Katzir E, Kraemer DM (2000) Eupergit C. A carrier for immobilization of enzymes of industrial potential. J Mol Catalysis B: Enzymatic 10:157–176

    Article  CAS  Google Scholar 

  19. Boller T, Meier C, Menzler S (2002) EUPERGIT oxirane acrylic beads: how to make enzymes fit for biocatalysis. Org Process Res Dev 6:509–519

    Article  CAS  Google Scholar 

  20. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  21. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26(11):639–646

    Article  PubMed  CAS  Google Scholar 

  22. Feng W, Ji P (2011) Enzymes immobilized on carbon nanotubes. Biotech Adv 29:889–895

    Article  CAS  Google Scholar 

  23. Ansari A, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotech Adv 30:512–523

    Article  CAS  Google Scholar 

  24. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  25. Yim TJ, Kim DY, Karajanagi SS, Lu TM, Kane R, Dordick JS (2003) Silicon nanocolumns as novel nanostructured supports for enzyme immobilization. J Nanosci Nanotechnol 3:479–482

    Article  PubMed  CAS  Google Scholar 

  26. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  PubMed  CAS  Google Scholar 

  27. Guisan JM (2006) Methods in biotechnology: immobilization of enzymes and cells, 2nd edn. Humana Press, Totowa, NJ

    Book  Google Scholar 

  28. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  29. Minteer SD (2011) Enzyme stabilization and immobilization: methods and protocols. Methods in molecular biology. Humana Press, Totowa, NJ

    Book  Google Scholar 

  30. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotech Adv 30:489–511

    Article  CAS  Google Scholar 

  31. Gupta M, Mattiasson B (1992) Unique applications of immobilized proteins in bioanalytical systems. In: Suelter CH (ed) Methods of biochemical analysis, vol 36. Wiley, New York, NY, pp 1–34

    Chapter  Google Scholar 

  32. Mattiasson B, Kaul R (1991) Determination of coupling yields and handling of labile proteins in immobilization technology. In: Taylor RF (ed) Protein immobilization. Fundamentals and applications. Marcel Dekker, New York, NY, pp 161–179

    Google Scholar 

  33. Scouten WH (1987) A survey of enzyme coupling techniques. In: Mosbach K (ed) Methods in enzymology, vol 135. Academic, London, pp 30–65

    Google Scholar 

  34. Taylor RF (1991) Commercially available supports for protein immobilization. In: Taylor RF (ed) Protein immobilization. Fundamentals and applications. Marcel Dekker, New York, NY, pp 139–160

    Google Scholar 

  35. Nilsson K, Mosbach K (1987) Tresyl chloride-activated supports for enzyme immobilization. In: Mosbach K (ed) Methods in enzymology, vol 135. Academic, London, pp 65–78

    Google Scholar 

  36. Axén R, Porath J, Ernback S (1967) Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature 214:1302–1304

    Article  PubMed  Google Scholar 

  37. Porath J, Axén R (1976) Immobilization of enzymes to agar, agarose, and sephadex supports. In: Mosbach K (ed) Methods in enzymology, vol XLIV. Academic, New York, NY, pp 19–45

    Google Scholar 

  38. Guisán JM (1988) Agarose-aldehyde gels as supports for immobilization- stabilization of enzymes. Enzyme Microb Technol 10:375–382

    Article  Google Scholar 

  39. Wilchek M, Miron T (1982) A spectrophotometric assay for soluble and immobilized N-hydroxysuccinimide esters. Anal Biochem 126:433–435

    Article  PubMed  Google Scholar 

  40. Drobníck J, Labský J, Kudlvasrová H, Saudek V, Švec F (1982) The activation of hydroxy groups of carriers with 4-nitrophenyl and N-hydroxysuccinimidyl chloroformates. Biotechnol Bioeng 24:487–493

    Article  Google Scholar 

  41. Parikh I, March S, Cuatrecasas P (1974) Topics in the methodology of substitution reactions with agarose. In: Jacoby WB, Wilchek M (eds) Methods in enzymology, vol XXXIV. Academic, New York, NY, pp 77–102

    Chapter  Google Scholar 

  42. Inman JK, Dintzis HM (1969) The derivatization of cross-linked polyacrylamide beads. Controlled introduction of functional groups for the preparation of special-purpose, biochemical adsorbents. Biochemistry 8:4074–4082

    Article  PubMed  CAS  Google Scholar 

  43. Rozprimova L, Franek F, Kubanek V (1978) Utilization of powder polyester in making insoluble antigens and pure antibodies. Cesk Epidemiol Mikrobiol Immunol 27:335–341

    CAS  Google Scholar 

  44. Ngo TT, Laidler KJ, Yam CF (1979) Kinetics of acetylcholinesterase immobilized on polyethylene tubing. Can J Biochem 57:1200–1203

    Article  PubMed  CAS  Google Scholar 

  45. Grubhofer N, Schleith L (1954) Protein coupling with diazotized polyaminostyrene. Hoppe Seylers Z Physiol Chem 297:108–112

    Article  PubMed  CAS  Google Scholar 

  46. Beitz J, Schellemberger A, Lasch J, Fischer J (1980) Catalytic properties and electrostatic potential of charged immobilized enzyme derivatives. Pyruvate decarboxylase attached to cationic polystyrene beads of different charge densities. Biochim Biophys Acta 612:451–454

    Article  PubMed  CAS  Google Scholar 

  47. Hornby WE, Goldstein L (1976) Immobilization of enzymes on nylon. In: Jacoby WB, Wilchek M (eds) Methods in enzymology, vol XXXIV. Academic, New York, NY, pp 118–134

    Google Scholar 

  48. O’Driscoll KF (1976) Techniques of enzyme entrapment in gels. In: Mosbach K (ed) Methods in enzymology, vol XLIV. Academic, New York, NY, pp 169–183

    Google Scholar 

  49. Bernfeld P, Wan J (1963) Antigens and enzymes made insoluble by entrapping them into lattices of synthetic polymers. Science 142:678–679

    Article  PubMed  CAS  Google Scholar 

  50. Dinelli D, Marconi W, Morisi F (1976) Fiber-entrapped enzymes. In: Mosbach K (ed) Methods in enzymology, vol XLIV. Academic, New York, NY, pp 227–243

    Google Scholar 

  51. Wadiack DT, Carbonell RG (1975) Kinetic behavior of microencapsulated β-galactosidase. Biotechnol Bioeng 17:1157–1181

    Article  Google Scholar 

  52. Tran D, Balkus K (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1:956–968

    Article  CAS  Google Scholar 

  53. Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  PubMed  CAS  Google Scholar 

  54. Suleka F, Perez Fernandez D, Kneza Z, Habulina M, Roger A (2011) Immobilization of horseradish peroxidase as crosslinked enzyme aggregates (CLEAs). Process Biochem 46:765–769

    Article  Google Scholar 

  55. Messing RA (1976) Adsorption and inorganic bridge formations. In: Mosbach K (ed) Methods in enzymology, vol XLIV. Academic, New York, NY, pp 148–169

    Google Scholar 

  56. Woodward J (1985) Immobilized enzymes: adsorption and covalent coupling. In: Woodward J (ed) Immobilized cells and enzymes: a practical approach. IRL, Oxford, UK, pp 3–17

    Google Scholar 

  57. Tosa T, Mori T, Fuse N, Chibata I (1967) Studies on continuous enzyme reactions I. Screening of carriers for preparation of water insoluble aminoacylase. Enzymologia 31:214–224

    Google Scholar 

  58. Sharp AK, Kay G, Lilly MD (1969) The kinetics of beta-galactosidase attached to porous cellulose sheets. Biotechnol Bioeng 11:363–380

    Article  PubMed  CAS  Google Scholar 

  59. Bahulekar R, Ayyangar NR, Ponrathnam S (1991) Polyethyleneimine in immobilization of biocatalysts. Enzyme Microb Technol 13:858–868

    Article  PubMed  CAS  Google Scholar 

  60. Goldstein L (1972) Microenvironmental effects on enzyme catalysis. A kinetic study of polyanionic and polycationic derivatives of chymotrypsin. Biochemistry 11:4072–4084

    Article  PubMed  CAS  Google Scholar 

  61. Goldman R, Kedem O, Silman I, Caplan S, Katchalski-Katzir E (1968) Papain-collodion membranes. I. Preparation and properties. Biochemistry 7:486–500

    Article  PubMed  CAS  Google Scholar 

  62. Guisan JM, Alvaro G, Rosell CM, Fernandez-Lafuente R (1994) Industrial design of enzymic processes catalysed by very active immobilized derivatives: utilization of diffusional limitations (gradients of pH) as a profitable tool in enzyme engineering. Biotechnol Appl Biochem 20:357–369

    PubMed  CAS  Google Scholar 

  63. Porath J (1987) Salting-out adsorption techniques for protein purification. Biopolymers 26:S193–S204

    Article  PubMed  Google Scholar 

  64. Caldwell K, Axén R, Bergwall M, Porath J (1976) Immobilization of enzymes based on hydrophobic interaction. I. Preparation and properties of a beta-amylase adsorbate. Biotechnol Bioeng 18:1573–1588

    Article  PubMed  CAS  Google Scholar 

  65. Caldwell K, Axén R, Bergwall M, Porath J (1976) Immobilization of enzymes based on hydrophobic interaction. II. Preparation and properties of an amyloglucosidase adsorbate. Biotechnol Bioeng 18:1589–1604

    Article  PubMed  CAS  Google Scholar 

  66. Cashion P, Lentini V, Harrison D, Javed A (1982) Enzyme immobilization on trityl-agarose: reusability of both matrix and enzyme. Bioechnol Bioeng 24:1221–1224

    Article  CAS  Google Scholar 

  67. Yon R (1974) Enzyme purification by hydrophobic chromatography: an alternative approach illustrated in the purification of aspartate transcarbamoylase from wheat germ. Biochem J 137:127–130

    PubMed  CAS  Google Scholar 

  68. Dixon J, Andrews P, Butler L (1979) Hydrophobic esters of cellulose: properties and applications in biochemical technology. Biotechnol Bioeng 21:2113–2123

    Article  PubMed  CAS  Google Scholar 

  69. Solomon B, Hollaander Z, Koppel R, Katchalski-Kazir E (1987) Use of monoclonal antibodies for the preparation of highly active immobilized enzymes. In: Mosbach K (ed) Methods in enzymology, vol 135. Academic, London, pp 160–170

    Google Scholar 

  70. Cabral JMS, Novais JM, Kennedy JF (1986) Immobilization studies of whole microbial cells on transition metal activated inorganic supports. Appl Microbiol Biotechnol 23:157–162

    Article  CAS  Google Scholar 

  71. Kennedy JF, Cabral JMS (1985) Immobilization of biocatalysts by metal-link/chelation processes. In: Woodward J (ed) Immobilized cells and enzymes. IRL, Oxford, UK, pp 19–37

    Google Scholar 

  72. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281

    Article  PubMed  CAS  Google Scholar 

  73. Kågedal L (2011) Immobilized metal ion affinity chromatography. In: Janson JC (ed) Protein purification. Wiley, New York, NY, pp 183–201

    Chapter  Google Scholar 

  74. Brena B, Rydén L, Porath J (1994) Immobilization of β-galactosidase on metal- chelated- substituted gels. Biotechnol Appl Biochem 19:217–231

    PubMed  CAS  Google Scholar 

  75. Batista-Viera F, Rydén L, Carlsson J (2011) Covalent chromatography. In: Janson JC (ed) Protein purification: principles, high-resolution methods, and applications. Wiley, New York, NY, pp 203–219

    Chapter  Google Scholar 

  76. Trevan M (1980) Effect of immobilization on enzyme activity, in Immobilized enzymes an introduction and applications in biotechnology. Wiley, Chichester-New York, pp 11–56

    Google Scholar 

  77. Boundy J, Smiley KL, Swanson CL, Hofreiter BT (1976) Exoenzymic activity of alpha-amylase immobilized on a phenol-formaldehyde resin. Carbohydr Res 48:239–244

    Article  PubMed  CAS  Google Scholar 

  78. Guisán JM, Penzol G, Armisen P, Bastida A, Blanco R, Fernández-Lafuente R, García-Junceda E (1997) Immobilization of enzymes acting on macromolecular substrates. In: Bickerstaff GF (ed) Immobilization of enzymes and cells. Humana, Totowa, NJ, pp 261–275

    Google Scholar 

  79. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microbial Technol 40:1451–1463

    Article  CAS  Google Scholar 

  80. Blanco RM, Calvete JJ, Guisán JM (1989) Immobilization-stabilization of enzymes. Variables that control the intensity of the trypsin (amine)-agarose-(aldehyde) -multipoint attachment. Enzyme Microbial Technol 11:353–359

    Article  CAS  Google Scholar 

  81. Koch-Schmidt A, Mosbach K (1977) Studies on conformation of soluble and immobilized enzymes using differential scanning calorimetry. 1. Thermal stability of nicotinamide adenine dinucleotide dependent dehydrogenases. Biochemistry 16:2101–2105

    Article  PubMed  CAS  Google Scholar 

  82. Koch-Schmidt A, Mosbach K (1977) Studies on conformation of soluble and immobilized enzymes using differential scanning calorimetry. 2. Specific activity and thermal stability of enzymes bound weakly and strongly to Sepharose CL 4B. Biochemistry 16:2105–2109

    Article  PubMed  CAS  Google Scholar 

  83. Gabel D, Steinberg I, Katchalski-Kazir E (1971) Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence. Biochemistry 10:4661–4669

    Article  PubMed  CAS  Google Scholar 

  84. Betancor L, Luckarift H (2010) Co-immobilized coupled enzyme systems in biotechnology. Biotechnol Genet Eng Rev 27:95–114

    Article  PubMed  CAS  Google Scholar 

  85. Zhu L, Yang R, Zhai J, Tian C (2007) Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotube electrode. Biosens Bioelectron 23:528–536

    Article  PubMed  CAS  Google Scholar 

  86. Jeykumari DR, Narayanan SS (2008) Fabrication of bioenzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications. Biosens Bioelectron 23(11):1686–1693

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Brena, B., González-Pombo, P., Batista-Viera, F. (2013). Immobilization of Enzymes: A Literature Survey. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics