Skip to main content

Bacterial Mutation Assays

  • Protocol
  • First Online:
Genotoxicity Assessment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1044))

Abstract

Bacterial mutagenicity tests, specifically the Salmonella and E. coli reverse mutation (Ames) test, are widely used and are usually required before a chemical, drug, pesticide, or food additive can be registered for use. The tests are also widely used for environmental monitoring to detect mutagens in air or water. Their use is based on the showing that a positive result in the test was highly predictive for carcinogenesis. This chapter describes the Salmonella and E. coli tests, presents protocols for their use, and addresses data interpretation and reporting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ames BN, Durston WE, Yamasaki E et al (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70:2281–2285

    Article  PubMed  CAS  Google Scholar 

  2. Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci USA 70:782–786

    Article  PubMed  CAS  Google Scholar 

  3. McCann J, Yamasaki E, Ames BN (1975) Detection of carcinogens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72:5135–5139

    Article  PubMed  CAS  Google Scholar 

  4. Sugimura T, Sato S, Nagao M et al (1976) Overlapping of carcinogens and mutagens. In: Magee PN, Takayama S, Sugimura T et al (eds) Fundamentals of cancer prevention. University Park Press, Baltimore, pp 191–215

    Google Scholar 

  5. Heddle JA, Bruce WR (1977) Comparison of tests for mutagenicity or carcinogenicity using assays for sperm abnormalities, formation of micronuclei, and mutations in Salmonella. In: Hiatt HH, Watson JD, Winsten JA (eds) Origins of human cancer, Book, C. Cold Spring Harbor, Cold Spring Harbor, pp 1549–1557

    Google Scholar 

  6. Purchase IFH, Longstaff E, Ashby J et al (1978) An evaluation of 6 short–term tests for detecting organic chemical carcinogens. Br J Cancer 37:873–959

    Article  PubMed  CAS  Google Scholar 

  7. Dunkel VC, Zeiger E, Brusick D et al (1985) Reproducibility of microbial mutagenicity assays: II. Testing of carcinogens and noncarcinogens in Salmonella typhimurium and Escherichia coli. Environ Mutagen 7(Suppl 5):1–248

    Article  PubMed  CAS  Google Scholar 

  8. Tennant RW, Margolin BH, Shelby MD et al (1987) Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science 236:933–941

    Article  PubMed  CAS  Google Scholar 

  9. Zeiger E, Haseman JK, Shelby MD et al (1990) Evaluation of four in vitro genetic toxicity tests for predicting rodent carcinogenicity: confirmation of earlier results with 41 additional chemicals. Environ Mol Mutagen 16(Suppl 18):1–14

    Article  PubMed  CAS  Google Scholar 

  10. Zeiger E (1998) Identification of rodent carcinogens and noncarcinogens using genetic toxicity tests: premises, promises and performance. Regul Toxicol Pharmacol 28:85–95

    Article  PubMed  CAS  Google Scholar 

  11. Kirkland D, Aardema M, Henderson L (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non–carcinogens. I. Sensitivity, specificity and relative predictivity. Mutat Res 584:1–256

    Article  PubMed  CAS  Google Scholar 

  12. Margolin BH, Risko KJ, Shelby MD et al (1984) Sources of variability in Ames' Salmonella typhimurium tester strains: analysis of the International Collaborative Study on “Genetic Drift”. Mutat Res 130:11–25

    Article  PubMed  CAS  Google Scholar 

  13. Piegorsch WW, Zeiger E (1991) Measuring intra–assay agreement for the Ames Salmonella assay. In: Hothorn L (ed) Statistical methods in toxicology, lecture notes in medical informatics, vol 43. Springer, Heidelberg, pp 35–41

    Chapter  Google Scholar 

  14. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  PubMed  CAS  Google Scholar 

  15. Zeiger E, Mortelmans K (1999) The Salmonella (Ames) test for mutagenicity. In: Maines MD et al (eds) Current protocols in toxicology. Wiley, New York, pp 3.1.1–3.1.29

    Google Scholar 

  16. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  PubMed  CAS  Google Scholar 

  17. Claxton LD, Allen J, Auletta A et al (1987) Guide for the Salmonella typhimurium/mammalian microsome tests for bacterial mutagenicity. Mutat Res 189:83–91

    Article  PubMed  CAS  Google Scholar 

  18. Claxton LD, Umbuzeiro G deA, DeMarini DM (2010) The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ Health Perspect 118:1515–1522

    Google Scholar 

  19. Dillon D, Combes R, Zeiger E (1998) The effectiveness of Salmonella strains TA100, TA102, and TA104 for detecting the mutagenicity of some aldehydes and peroxides. Mutagenesis 13:19–26

    Article  PubMed  CAS  Google Scholar 

  20. Gatehouse D, Haworth S, Cebula T et al (1994) Recommendations for the performance of bacterial mutation assays. Mutat Res 312:217–233

    Article  PubMed  CAS  Google Scholar 

  21. Kado NY, Langley D, Eisenstadt E (1983) A simple modification of the Salmonella liquid incubation assay: increased sensitivity for detecting mutagens in human urine. Mutat Res 122:25–32

    Article  Google Scholar 

  22. Kamber M, Flückiger-Isler S, Engelhardt G et al (2009) Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity. Mutagenesis 24:359–366

    Article  PubMed  CAS  Google Scholar 

  23. Ku WW, Bigger A, Brambilla G et al (2007) Strategy for genotoxicity testing – metabolic considerations. Mutat Res 627:59–77

    Article  PubMed  CAS  Google Scholar 

  24. Margolin BH, Kaplan N, Zeiger E (1981) Statistical analysis of the Ames Salmonella/microsome test. Proc Natl Acad Sci USA 78:3779–3783

    Article  PubMed  CAS  Google Scholar 

  25. Margolin BH, Kim BS, Smith MG et al (1994) Some comments on potency measures in mutagenicity research. Environ Health Perspect 102(Suppl 1):91–94

    Article  PubMed  Google Scholar 

  26. Maron D, Katzenellenbogen K, Ames BN (1981) Compatibility of organic solvents with the Salmonella/microsome test. Mutat Res 88:342–350

    Google Scholar 

  27. Pagano DA, Zeiger E (1985) The stability of mutagenic chemicals stored in solution. Environ Mutagen 7:293–302

    Article  PubMed  CAS  Google Scholar 

  28. Prival MJ, Zeiger E (1998) Chemicals mutagenic in Salmonella typhimurium strain TA1535 but not in TA100. Mutat Res 412:251–260

    Article  PubMed  CAS  Google Scholar 

  29. Waleh NS, Rapport SJ, Mortelmans KE (1982) Development of a toxicity test to be coupled to the Ames Salmonella assay and the method of construction of the required strains. Mutat Res 97:247–256

    Article  PubMed  CAS  Google Scholar 

  30. Yanofsky C (1971) Mutagenesis studies with Escherichia coli mutants with known amino acid (and base–pair) changes. In: Hollaender A (ed) Chemical mutagens: principles and methods for their detection, vol 1. Plenum, New York, pp 283–287

    Chapter  Google Scholar 

  31. Zeiger E (2004) History and rational of genetic toxicity testing: an impersonal, and sometimes personal, view. Environ Mol Mutagen 44:363–371

    Article  PubMed  CAS  Google Scholar 

  32. Zeiger E (2007) Guest editorial. What is needed for an acceptable antimutagenicity manuscript? Mutat Res 626:1–3

    Article  PubMed  CAS  Google Scholar 

  33. Zeiger E (2010) Historical development of the genetic toxicity test battery in the United States. Environ Mol Mutagen 51:781–791

    Article  PubMed  CAS  Google Scholar 

  34. Ames BN, Hartman PE (1963) The histidine operon. Cold Spring Harbor Symp Quant Biol 28:349–356

    Article  CAS  Google Scholar 

  35. Hartman PE, Hartman Z, Stahl RC et al (1971) Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella. Adv Genetics 16:1–34

    Article  CAS  Google Scholar 

  36. Ong TM, Mukhtar H, Wolf CR et al (1980) Differential effects of cytochrome P450–inducers on promutagen activation capabilities and enzymatic activities of S–9 from rat liver. J Environ Pathol Toxicol 4:55–65

    PubMed  CAS  Google Scholar 

  37. Beaune P, Lemestre-Cornet R, Kremers P et al (1985) The Salmonella/microsome mutagenicity test: comparison of human and rat livers as activating systems. Mutat Res 156:139–146

    Article  PubMed  CAS  Google Scholar 

  38. Hakura A, Suzuki S, Satoh T (1999) Advantage of the use of human liver S9 in the Ames test. Mutat Res 438:29–36

    Article  PubMed  CAS  Google Scholar 

  39. Hakura A, Shimada H, Nakajima M et al (2005) Salmonella/human S9 mutagenicity test: a collaborative study with 58 compounds. Mutagenesis 20:217–228

    Article  PubMed  CAS  Google Scholar 

  40. Mortelmans K, Riccio E (2000) The bacterial tryptophan reverse mutation assay with Escherichia coli WP2. Mutat Res 455:61–69

    Article  PubMed  CAS  Google Scholar 

  41. Ames BN (1971) The detection of chemical mutagens with enteric bacteria. In: Hollaender A (ed) Chemical mutagens: principles and methods for their detection, vol 1. Plenum, New York, pp 267–282

    Chapter  Google Scholar 

  42. Levin DE, Yamasaki E, Ames BN (1982) A new Salmonella tester strain for the detection of frameshift mutagens: a run of cytosines as a mutational hot–spot. Mutat Res 94:315–330

    Article  PubMed  CAS  Google Scholar 

  43. Levin DE, Hollstein MC, Christman EA et al (1982) A new Salmonella tester strain (TA102) with A:T base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci USA 79:7445–7449

    Article  PubMed  CAS  Google Scholar 

  44. Gee P, Maron DM, Ames BN (1994) Detection and classification of mutagens: a set of base-specific Salmonella tester strains. Proc Natl Acad Sci USA 91:11606–11610

    Article  PubMed  CAS  Google Scholar 

  45. Gee P, Sommers CH, Melick AS et al (1998) Comparison of responses of base-specific Salmonella tester strains with the traditional strains for identifying mutagens: the results of a validation study. Mutat Res 412:115–130

    Article  PubMed  CAS  Google Scholar 

  46. Hagiwara Y, Watanabe M, Oda Y et al (1993) Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat Res 291:171–180

    Article  PubMed  CAS  Google Scholar 

  47. Kushida H, Fujita K, Suzuki A et al (2000) Development of a Salmonella tester strain sensitive to promutagenic N–nitrosamines: expression of recombinant CYP2A6 and human NADPH–cytochrome P450 reductase in S. typhimurium YG7108. Mutat Res 471:135–143

    Article  PubMed  CAS  Google Scholar 

  48. Fujita K, Nakayama K, Yamazaki Y et al (2001) Construction of Salmonella typhimurium YG7108 strains, each co–expressing a form of human cytochrome P450 with NADPH–cytochrome P450 reductase. Environ Mol Mutagen 38:329–38

    Article  PubMed  CAS  Google Scholar 

  49. Matsui K, Yamada M, Imai M et al (2006) Specificity of replicative and SOS–inducible DNA polymerases in frameshift mutagenesis: mutability of Salmonella typhimurium strains overexpressing SOS–inducible DNA polymerases to 30 chemical mutagens. DNA Repair 5:465–478

    Article  PubMed  CAS  Google Scholar 

  50. Zeiger E, Pagano DA, Robertson IGC (1981) A rapid and simple scheme for confirmation of Salmonella tester strain phenotype. Environ Mutagen 3:205–209

    Article  PubMed  CAS  Google Scholar 

  51. Organization for Economic Co-operation and Development (OECD). (2012) OECD guideline for the testing of chemicals. No. 471. Bacterial reverse mutation test. http://www.oecd.org/document/55/0,3343,en_2649_34377_2349687_1_1_1_1,00.htmL

  52. Araki A, Noguchi T, Kato F et al (1994) Improved method for mutagenicity testing of gaseous compounds by using a gas sampling bag. Mutat Res 307:335–344

    Article  PubMed  CAS  Google Scholar 

  53. Hughes TJ, Simmons DM, Monteith LG et al (1987) Vaporization technique to measure mutagenic activity of volatile organic chemicals in the Ames/Salmonella assay. Environ Mutagen 9:421–441

    Article  PubMed  CAS  Google Scholar 

  54. Zeiger E, Anderson B, Haworth S et al (1992) Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals. Environ Mol Mutagen 19(Suppl 21):1–141

    Google Scholar 

  55. Gatehouse DG, Delow GF (1979) The development of a ‘Microtitre’ fluctuation test for the detection of indirect mutagens, and its use in the evaluation of mixed enzyme induction of the liver. Mutat Res 60:239–252

    Article  PubMed  CAS  Google Scholar 

  56. Green MHL, Muriel WJ, Bridges BA (1976) Use of a simplified fluctuation test to detect low levels of mutagens. Mutat Res 38:33–42

    Article  PubMed  CAS  Google Scholar 

  57. Prival MJ, Mitchell VD (1982) Analysis of a method for testing azo dyes for mutagenic activity in Salmonella typhimurium in the presence of flavin mononucleotide and hamster liver S9. Mutat Res 97:103–116

    Article  PubMed  CAS  Google Scholar 

  58. Reid TM, Morton KC, Wang CY et al (1984) Mutagenicity of azo dyes following metabolism by different reductive/oxidative systems. Environ Mutagen 6:705–717

    Article  PubMed  CAS  Google Scholar 

  59. Fetterman BA, Kim BS, Margolin BH et al (1997) Predicting rodent carcinogenicity from mutagenic potency measured in the Ames Salmonella assay. Environ Mol Mutagen 29:312–322

    Article  PubMed  CAS  Google Scholar 

  60. Zeiger E (2001) Mutagens that are not carcinogens: faulty theory or faulty tests? Mutat Res 492:29–38

    Article  PubMed  CAS  Google Scholar 

  61. Pagano DA, Zeiger E (1992) Conditions for detecting the mutagenicity of divalent metals in Salmonella typhimurium. Environ Mol Mutagen 19:139–146

    Article  PubMed  CAS  Google Scholar 

  62. Zeiger E, Risko KJ, Margolin BH (1985) Strategies to reduce the cost of mutagenicity screening using the Salmonella/microsome assay. Environ Mutagen 7:901–911

    Article  PubMed  CAS  Google Scholar 

  63. Food and Drug Administration (FDA). (2012) 21CFR58. Good laboratory practice for nonclinical laboratory studies. http://www.wrtolbert.com/Download%20Documents/21CFR58.pdf

  64. Environmental Protection Agency (EPA). (2012) 40CFR792. Good laboratory practice standards. http://www.access.gpo.gov/nara/cfr/waisidx_99/40cfr792_99.htmL

  65. Organization for Economic Co-operation and Development (OECD). (2012) OECD series on principles of good laboratory practice and compliance monitoring. http://www.oecd.org/document/63/0,3343,en_2649_34381_2346175_1_1_1_1,00.htmL

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Zeiger, E. (2013). Bacterial Mutation Assays. In: Dhawan, A., Bajpayee, M. (eds) Genotoxicity Assessment. Methods in Molecular Biology, vol 1044. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-529-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-529-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-528-6

  • Online ISBN: 978-1-62703-529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics