Skip to main content

Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 974))

Abstract

Fourier transform infrared (FTIR) spectroscopy is widely used in structural characterization of proteins or peptides. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or upon intermolecular interactions. Sensitivity of vibrational frequencies to atomic masses has led to development of “isotope-edited” FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein–nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, and molecular architecture of membrane pore or channel forming proteins and peptides. The purpose of this article was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv Protein Chem 38:181–364

    Article  PubMed  CAS  Google Scholar 

  2. Brauner JW, Dugan C, Mendelsohn R (2000) 13C isotope labeling of hydrophobic peptides. Origin of the anomalous intensity distribution in the infrared amide I spectral region of β-sheet structures. J Am Chem Soc 122:677–683

    Article  CAS  Google Scholar 

  3. Vedantham G, Sparks HG, Sane SU, Tzannis S, Przybycien TM (2000) A holistic approach for protein secondary structure estimation from infrared spectra in H2O solutions. Anal Biochem 285:33–49

    Article  PubMed  CAS  Google Scholar 

  4. Hsu SL, Moore WH, Krimm S (1976) Vibrational spectrum of the unordered polypeptide chain: a Raman study of feather keratin. Biopolymers 15:1513–1528

    Article  PubMed  CAS  Google Scholar 

  5. Naik VM (1992) Vibrational spectroscopic studies of L, D-alternating valine peptides. Vib Spectrosc 3:105–113

    Article  Google Scholar 

  6. Barnett SM, Edwards CM, Butler IS, Levin IW (1997) Pressure-induced transmembrane αII- to αI-helical conversion in bacteriorhodopsin: an infrared spectroscopic study. J Phys Chem B 101:9421–9424

    Article  CAS  Google Scholar 

  7. Tamm LK, Tatulian SA (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys 30:365–429

    Article  PubMed  CAS  Google Scholar 

  8. Fringeli UP (1993) In situ infrared attenuated total reflection membrane spectroscopy. In: Mirabella FM Jr (ed) Internal reflection spectroscopy. Theory and applications. Marcel Dekker, New York, pp 255–324

    Google Scholar 

  9. Fringeli UP, Günthard HH (1981) Infrared membrane spectroscopy. In: Grell E (ed) Membrane spectroscopy. Springer, Berlin, pp 270–332

    Chapter  Google Scholar 

  10. Venyaminov SY, Prendergast FG (1997) Water (H2O and D2O) molar absorptivity in the 1000–4000 cm-1 range and quantitative infrared spectroscopy of aqueous solutions. Anal Biochem 248:234–245

    Article  PubMed  CAS  Google Scholar 

  11. Arrondo JLR, Goñi FM (1993) Infrared spectroscopic studies of lipid-protein interactions in membranes. In: Watts A (ed) Protein-lipid interactions. Elsevier Science Publishers B.V, Amsterdam, pp 321–349

    Chapter  Google Scholar 

  12. Tatulian SA (2003) Attenuated total reflection Fourier transform infrared spectroscopy: a method of choice for studying membrane proteins and lipids. Biochemistry 42:11898–11907

    Article  PubMed  CAS  Google Scholar 

  13. Tatulian SA (2001) Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): Membrane surface properties and membrane-induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J 80:789–800

    Article  PubMed  CAS  Google Scholar 

  14. Tatulian SA, Cortes DM, Perozo E (1998) Structural dynamics of the Streptomyces lividans K+ channel (SKC1): secondary structure characterization from FTIR spectroscopy. FEBS Lett 423:205–212

    Article  PubMed  CAS  Google Scholar 

  15. Tatulian SA, Tamm LK (2000) Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry 39:496–507

    Article  PubMed  CAS  Google Scholar 

  16. Tatulian SA (2003) Structural effects of covalent inhibition of phospholipase A2 suggest allosteric coupling between membrane binding and catalytic sites. Biophys J 84:1773–1783

    Article  PubMed  CAS  Google Scholar 

  17. Tatulian SA, Biltonen RL, Tamm LK (1997) Structural changes in a secretory phospholipase A2 induced by membrane binding: a clue to interfacial activation? J Mol Biol 268:809–815

    Article  PubMed  CAS  Google Scholar 

  18. Pande AH, Moe D, Nemec KN, Qin S, Tan S, Tatulian SA (2004) Modulation of human 5-lipoxygenase activity by membrane lipids. Biochemistry 43:14653–14666

    Article  PubMed  CAS  Google Scholar 

  19. Tatulian SA, Qin S, Pande AH, He X (2005) Positioning membrane proteins by novel protein engineering and biophysical approaches. J Mol Biol 351:939–947

    Article  PubMed  CAS  Google Scholar 

  20. Glasoe PK, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem 64:188–190

    Article  CAS  Google Scholar 

  21. Makhatadze GI, Clore GM, Gronenborn AM (1995) Solvent isotope effect and protein stability. Nat Struct Biol 2:852–855

    Article  PubMed  CAS  Google Scholar 

  22. Nemec KN, Pande AH, Qin S, Bieber Urbauer RJ, Tan S, Moe D, Tatulian SA (2006) Structural and functional effects of tryptophans inserted into the membrane-binding and substrate-binding sites of human group IIA phospholipase A2. Biochemistry 45:12448–12460

    Article  PubMed  CAS  Google Scholar 

  23. Marley J, Lu M, Bracken C (2001) A method for efficient isotope labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  PubMed  CAS  Google Scholar 

  24. Hill JM (2008) NMR screening for rapid protein characterization in structural proteomics. Methods Mol Biol 426:437–446

    Article  PubMed  CAS  Google Scholar 

  25. Kandori H, Nakamura H, Yamazaki Y, Mogi T (2005) Redox-induced protein structural changes in cytochrome bo revealed by Fourier transform infrared spectroscopy and [13C]Tyr Labeling. J Biol Chem 280:32821–32826

    Article  PubMed  CAS  Google Scholar 

  26. Cheong JJ, Hwang I, Rhee S, Moon TW, Choi YD, Kwon HB (2007) Complementation of an E. coli cysteine auxotrophic mutant for the structural modification study of 3'(2'),5'-bisphosphate nucleotidase. Biotechnol Lett 29:913–918

    Article  PubMed  CAS  Google Scholar 

  27. Strømgaard A, Jensen AA, Strømgaard K (2004) Site-specific incorporation of unnatural amino acids into proteins. Chembiochem 5:909–916

    Article  PubMed  CAS  Google Scholar 

  28. Hendrickson TL, de Crécy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    Article  PubMed  CAS  Google Scholar 

  29. Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9:548–554

    Article  PubMed  CAS  Google Scholar 

  30. Seyedsayamdost MR, Stubbe J (2009) Replacement of Y730 and Y731 in the α2 subunit of Escherichia coli ribonucleotide reductase with 3-aminotyrosine using an evolved suppressor tRNA/tRNA-synthetase pair. Methods Enzymol 462:45–76

    Article  PubMed  CAS  Google Scholar 

  31. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444

    Article  PubMed  CAS  Google Scholar 

  32. Anderson RD 3rd, Zhou J, Hecht SM (2002) Fluorescence resonance energy transfer between unnatural amino acids in a structurally modified dihydrofolate reductase. J Am Chem Soc 124:9674–9675

    Article  PubMed  CAS  Google Scholar 

  33. Sisido M, Ninomiya K, Ohtsuki T, Hohsaka T (2005) Four-base codon/anticodon strategy and non-enzymatic aminoacylation for protein engineering with non-natural amino acids. Methods 36:270–278

    Article  PubMed  CAS  Google Scholar 

  34. Qin S, Pande AH, Nemec KN, He X, Tatulian SA (2005) Evidence for the regulatory role of the N-terminal helix of secretory phospholipase A2 from studies on native and chimeric proteins. J Biol Chem 280:36773–36783

    Article  PubMed  CAS  Google Scholar 

  35. Venyaminov SY, Hedstrom JF, Prendergast FG (2001) Analysis of the segmental stability of helical peptides by isotope-edited infrared spectroscopy. Proteins 45:81–89

    Article  PubMed  CAS  Google Scholar 

  36. Huang R, Kubelka J, Barber-Armstrong W, Silva RA, Decatur SM, Keiderling TA (2004) Nature of vibrational coupling in helical peptides: an isotopic labeling study. J Am Chem Soc 126:2346–2354

    Article  PubMed  CAS  Google Scholar 

  37. Petty SA, Decatur SM (2005) Intersheet rearrangement of polypeptides during nucleation of β-sheet aggregates. Proc Natl Acad Sci U S A 102:14272–14277

    Article  PubMed  CAS  Google Scholar 

  38. Ramajo AP, Petty SA, Starzyk A, Decatur SM, Volk M (2005) The α-helix folds more rapidly at the C-terminus than at the N-terminus. J Am Chem Soc 127:13784–13785

    Article  CAS  Google Scholar 

  39. Lewis RN, McElhaney RN (2009) The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim Biophys Acta 1788:2069–2079

    Article  PubMed  CAS  Google Scholar 

  40. Qin S, Pande AH, Nemec KN, Tatulian SA (2004) The N-terminal α-helix of pancreatic phospholipase A2 determines productive-mode orientation of the enzyme at the membrane surface. J Mol Biol 344:71–89

    Article  PubMed  CAS  Google Scholar 

  41. Pande AH, Qin S, Tatulian SA (2005) Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys J 88:4084–4094

    Article  PubMed  CAS  Google Scholar 

  42. Renthal R (2006) An unfolding story of helical transmembrane proteins. Biochemistry 45:14559–14566

    Article  PubMed  CAS  Google Scholar 

  43. Sanders CR, Sönnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40

    Article  PubMed  CAS  Google Scholar 

  44. Vinogradova O, Sönnichsen F, Sanders CR 2nd (1998) On choosing a detergent for solution NMR studies of membrane proteins. J Biomol NMR 11:381–386

    Article  PubMed  CAS  Google Scholar 

  45. Tatulian SA, Hinterdorfer P, Baber G, Tamm LK (1995) Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy. EMBO J 14:5514–5523

    PubMed  CAS  Google Scholar 

  46. Tatulian SA, Chen B, Li J, Negash S, Middaugh CR, Bigelow DJ, Squier TC (2002) The inhibitory action of phospholamban involves stabilization of α-helices within the Ca2+-ATPase. Biochemistry 41:741–751

    Article  PubMed  CAS  Google Scholar 

  47. Axelsen PH, Citra MJ (1996) Orientational order determination by internal reflection infrared spectroscopy. Prog Biophys Mol Biol 66:227–253

    Article  PubMed  CAS  Google Scholar 

  48. Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta 1422:105–185

    Article  PubMed  CAS  Google Scholar 

  49. Silvestro L, Axelsen PH (2000) Membrane-induced folding of cecropin A. Biophys J 79:1465–1477

    Article  PubMed  CAS  Google Scholar 

  50. Citra MJ, Axelsen PH (1996) Determination of molecular order in supported lipid membranes by internal reflection Fourier transform infrared spectroscopy. Biophys J 71:1796–1805

    Article  PubMed  CAS  Google Scholar 

  51. Silvestro L, Axelsen PH (1999) Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding. Biochemistry 38:113–121

    Article  PubMed  CAS  Google Scholar 

  52. Vigano C, Goormaghtigh E, Ruysschaert JM (2003) Detection of structural and functional asymmetries in P-glycoprotein by combining mutagenesis and H/D exchange measurements. Chem Phys Lipids 122:121–135

    Article  PubMed  CAS  Google Scholar 

  53. Beevers AJ, Kukol A (2006) The transmembrane domain of the oncogenic mutant ErbB-2 receptor: a structure obtained from site-specific infrared dichroism and molecular dynamics. J Mol Biol 361:945–953

    Article  PubMed  CAS  Google Scholar 

  54. Marsh D, Müller M, Schmitt F-J (2000) Orientation of the infrared transition moments for an α-helix. Biophys J 78:2499–2510

    Article  PubMed  CAS  Google Scholar 

  55. Marsh D, Páli T (2001) Infrared dichroism from the X-ray structure of bacteriorhodopsin. Biophys J 80:305–312

    Article  PubMed  CAS  Google Scholar 

  56. Páli T, Marsh D (2001) Tilt, twist, and coiling in β-barrel membrane proteins: relation to infrared dichroism. Biophys J 80:2789–2797

    Article  PubMed  Google Scholar 

  57. Harrick NJ (1987) Internal reflection spectroscopy. Harrick Scientific Corporation, Ossining, NY

    Google Scholar 

  58. Marsh D (2000) Infrared dichroism of twisted β-sheet barrels. The structure of E. coli outer membrane proteins. J Mol Biol 297:803–808

    Article  PubMed  CAS  Google Scholar 

  59. Marsh D (1999) Quantitation of secondary structure in ATR infrared spectroscopy. Biophys J 77:2630–2637

    Article  PubMed  CAS  Google Scholar 

  60. Arkin IT (2006) Isotope-edited IR spectroscopy for the study of membrane proteins. Curr Opin Chem Biol 10:394–401

    Article  PubMed  CAS  Google Scholar 

  61. Decatur SM (2006) Elucidation of residue-level structure and dynamics of polypeptides via isotope-edited infrared spectroscopy. Acc Chem Res 39:169–175

    Article  PubMed  CAS  Google Scholar 

  62. Flach CR, Cai P, Dieudonné D, Brauner JW, Keough KM, Stewart J, Mendelsohn R (2003) Location of structural transitions in an isotopically labeled lung surfactant SP-B peptide by IRRAS. Biophys J 85:340–349

    Article  PubMed  CAS  Google Scholar 

  63. Paul C, Wang J, Wimley WC, Hochstrasser RM, Axelsen PH (2004) Vibrational coupling, isotopic editing, and β-sheet structure in a membrane-bound polypeptide. J Am Chem Soc 126:5843–5850

    Article  PubMed  CAS  Google Scholar 

  64. Tatulian SA (2010) Structural analysis of proteins by isotope-edited FTIR spectroscopy. Spectroscopy Int J 24:37–43

    Article  CAS  Google Scholar 

  65. Barber-Armstrong W, Donaldson T, Wijesooriya H, Silva RA, Decatur SM (2004) Empirical relationships between isotope-edited IR spectra and helix geometry in model peptides. J Am Chem Soc 126:2339–2345

    Article  PubMed  CAS  Google Scholar 

  66. Ludlam CF, Arkin IT, Liu XM, Rothman MS, Rath P, Aimoto S, Smith SO, Engelman DM, Rothschild KJ (1996) Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophys J 70:1728–1736

    Article  PubMed  CAS  Google Scholar 

  67. Arkin IT, MacKenzie KR, Brünger AT (1997) Site-directed dichroism as a method for obtaining rotational and orientational constraints for oriented polymers. J Am Chem Soc 119:8973–8980

    Article  CAS  Google Scholar 

  68. Marsh D (2004) Infrared dichroism of isotope-edited α-helices and β-sheets. J Mol Biol 338:353–367

    Article  PubMed  CAS  Google Scholar 

  69. Torres J, Adams PD, Arkin IT (2000) Use of a new label, 13C=18O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data. J Mol Biol 300:677–685

    Article  PubMed  CAS  Google Scholar 

  70. Torres J, Kukol A, Goodman JM, Arkin IT (2001) Site-specific examination of secondary structure and orientation determination in membrane proteins: the peptidic 13C=18O group as a novel infrared probe. Biopolymers 59:396–401

    Article  PubMed  CAS  Google Scholar 

  71. Kukol A, Torres J, Arkin IT (2002) A structure for the trimeric MHC class II-associated invariant chain transmembrane domain. J Mol Biol 320:1109–1117

    Article  PubMed  CAS  Google Scholar 

  72. Brewer SH, Song B, Raleigh DP, Dyer RB (2007) Residue specific resolution of protein folding dynamics using isotope-edited infrared temperature jump spectroscopy. Biochemistry 46:3279–3285

    Article  PubMed  CAS  Google Scholar 

  73. Amunson KE, Ackels L, Kubelka J (2008) Site-specific unfolding thermodynamics of a helix-turn-helix protein. J Am Chem Soc 130:8146–8147

    Article  PubMed  CAS  Google Scholar 

  74. Londergan CH, Wang J, Axelsen PH, Hochstrasser RM (2006) Two-dimensional infrared spectroscopy displays signatures of structural ordering in peptide aggregates. Biophys J 90:4672–4685

    Article  PubMed  CAS  Google Scholar 

  75. Kim YS, Liu L, Axelsen PH, Hochstrasser RM (2008) Two-dimensional infrared spectra of isotopically diluted amyloid fibrils from Abeta40. Proc Natl Acad Sci U S A 105:7720–7725

    Article  PubMed  CAS  Google Scholar 

  76. Kim YS, Liu L, Axelsen PH, Hochstrasser RM (2009) 2D IR provides evidence for mobile water molecules in beta-amyloid fibrils. Proc Natl Acad Sci U S A 106:17751–17756

    Article  PubMed  CAS  Google Scholar 

  77. Shim SH, Gupta R, Ling YL, Strasfeld DB, Raleigh DP, Zanni MT (2009) Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proc Natl Acad Sci U S A 106:6614–6619

    Article  PubMed  CAS  Google Scholar 

  78. Zanni MT, Hochstrasser RM (2001) Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures. Curr Opin Struct Biol 11:516–522

    Article  PubMed  CAS  Google Scholar 

  79. Haris PI, Robillard GT, van Dijk AA, Chapman D (1992) Potential of 13C and 15N labeling for studying protein-protein interactions using Fourier transform infrared spectroscopy. Biochemistry 31:6279–6284

    Article  PubMed  CAS  Google Scholar 

  80. Zhang M, Fabian H, Mantsch HH, Vogel HJ (1994) Isotope-edited Fourier transform infrared spectroscopy studies of calmodulin’s interaction with its target peptides. Biochemistry 33:10883–10888

    Article  PubMed  CAS  Google Scholar 

  81. Das KP, Choo-Smith LP, Petrash JM, Surewicz WK (1999) Insight into the secondary structure of non-native proteins bound to a molecular chaperone α-crystallin. An isotope-edited infrared spectroscopic study. J Biol Chem 274:33209–33212

    Article  PubMed  CAS  Google Scholar 

  82. Haris PI (2010) Can infrared spectroscopy provide information on protein-protein interactions? Biochem Soc Trans 38:940–946

    Article  PubMed  CAS  Google Scholar 

  83. Tam JP, Yu Q, Miao Z (1999) Orthogonal ligation strategies for peptide and protein. Biopolymers 51:311–332

    Article  PubMed  CAS  Google Scholar 

  84. Camarero JA, Muir TW (2001) Native chemical ligation of polypeptides. Curr Protoc Protein Sci Ch. 18:Unit18.4

    Google Scholar 

  85. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438

    Article  PubMed  CAS  Google Scholar 

  86. Muir TW (2008) Studying protein structure and function using semisynthesis. Biopolymers 90:743–750

    Article  PubMed  CAS  Google Scholar 

  87. Tatulian SA (2008) Determination of helix orientations in proteins. Comput Biol Chem 32:370–374

    Article  PubMed  CAS  Google Scholar 

  88. Blume A, Hübner W, Messner G (1988) Fourier transform infrared spectroscopy of 13C=O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 27:8239–8249

    Article  PubMed  CAS  Google Scholar 

  89. Hübner W, Mantsch HH, Paltauf F, Hauser H (1994) Conformation of phosphatidylserine in bilayers as studied by Fourier transform infrared spectroscopy. Biochemistry 33:320–326

    Article  PubMed  Google Scholar 

  90. Lewis RN, McElhaney RN (1993) Studies of mixed-chain diacyl phosphatidylcholines with highly asymmetric acyl chains: a Fourier transform infrared spectroscopic study of interfacial hydration and hydrocarbon chain packing in the mixed interdigitated gel phase. Biophys J 65:1866–1877

    Article  PubMed  CAS  Google Scholar 

  91. Lewis RN, McElhaney RN, Pohle W, Mantsch HH (1994) Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J 67:2367–2375

    Article  PubMed  CAS  Google Scholar 

  92. Dibble AR, Hinderliter AK, Sando JJ, Biltonen RL (1996) Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys J 71:1877–1890

    Article  PubMed  CAS  Google Scholar 

  93. Moore DJ, Gioioso S, Sills RH, Mendelsohn R (1999) Some relationships between membrane phospholipid domains, conformational order, and cell shape in intact human erythrocytes. Biochim Biophys Acta 1415:342–348

    Article  PubMed  CAS  Google Scholar 

  94. Binder H, Gawrisch K (2001) Dehydration induces lateral expansion of polyunsaturated 18:0–22:6 phosphatidylcholine in a new lamellar phase. Biophys J 81:969–982

    Article  PubMed  CAS  Google Scholar 

  95. Mimeault M, Bonenfant D (2002) FTIR spectroscopic analyses of the temperature and pH influences on stratum corneum lipid phase behaviors and interactions. Talanta 56:395–405

    Article  PubMed  CAS  Google Scholar 

  96. Fidorra M, Heimburg T, Seeger HM (2009) Melting of individual lipid components in binary lipid mixtures studied by FTIR spectroscopy, DSC and Monte Carlo simulations. Biochim Biophys Acta 1788:600–607

    Article  PubMed  CAS  Google Scholar 

  97. Gorcea M, Hadgraft J, Moore DJ, Lane ME (2011) Fourier transform infrared spectroscopy studies of lipid domain formation in normal and ceramide deficient stratum corneum lipid models. Int J Pharm. doi:10.1016/j.ijpharm.2011.11.004

  98. Dwivedi AM, Krimm S (1984) Vibrational analysis of peptides, polypeptides, and proteins. XVIII. Conformational sensitivity of the alpha-helix spectrum: alpha I- and alpha II-poly(L-alanine). Biopolymers 23:923–943

    Article  PubMed  CAS  Google Scholar 

  99. Venyaminov SY, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in α-, β-, and random coil conformations. Biopolymers 30:1259–1271

    Article  PubMed  CAS  Google Scholar 

  100. Jackson M, Haris PI, Chapman D (1989) Conformational transitions in poly(L-lysine): studies using Fourier transform infrared spectroscopy. Biochim Biophys Acta 998:75–79

    Article  CAS  Google Scholar 

  101. de Jongh HH, Goormaghtigh E, Ruysschaert JM (1996) The different molar absorptivities of the secondary structure types in the amide I region: an attenuated total reflection infrared study on globular proteins. Anal Biochem 242:95–103

    Article  PubMed  Google Scholar 

  102. Stuart B (1997) Biological applications of infrared spectroscopy. Wiley, Chichester

    Google Scholar 

  103. Némethy G, Phillips DC, Leach SJ, Scheraga HA (1967) A second right-handed helical structure with the parameters of the Pauling-Corey α-helix. Nature 214:363–365

    Article  PubMed  Google Scholar 

  104. Heimburg T, Schuenemann J, Weber K, Geisler N (1996) Specific recognition of coiled coils by infrared spectroscopy: analysis of the three structural domains of type III intermediate filament proteins. Biochemistry 35:1375–1382

    Article  PubMed  CAS  Google Scholar 

  105. Reisdorf WC, Krimm S (1996) Infrared amide I’ band of the coiled coil. Biochemistry 35:1383–1386

    Article  PubMed  CAS  Google Scholar 

  106. Kennedy DF, Crisma M, Toniolo C, Chapman D (1991) Studies of peptides forming 310- and α-helices and beta-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy. Biochemistry 30:6541–6548

    Article  PubMed  CAS  Google Scholar 

  107. Martinez G, Millhauser G (1995) FTIR spectroscopy of alanine-based peptides: assignment of the amide I’ modes for random coil and helix. J Struct Biol 114:23–27

    Article  PubMed  CAS  Google Scholar 

  108. Miick SM, Martinez GV, Fiori WR, Todd AP, Millhauser GL (1992) Short alanine-based peptides may form 310-helices and not α-helices in aqueous solution. Nature 359:653–655

    Article  PubMed  CAS  Google Scholar 

  109. Naik VM, Krimm S (1986) Vibrational analysis of the structure of gramicidin A. I. Normal mode analysis. Biophys J 49:1131–1145

    Article  PubMed  CAS  Google Scholar 

  110. Naik VM, Krimm S (1986) Vibrational analysis of the structure of gramicidin A. II. Vibrational spectra. Biophys J 49:1147–1154

    Article  PubMed  CAS  Google Scholar 

  111. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120

    Article  PubMed  CAS  Google Scholar 

  112. Papanikolopoulou K, Mills-Henry I, Thol SL, Wang Y, Gross AA, Kirschner DA, Decatur SM, King J (2008) Formation of amyloid fibrils in vitro by human γD-crystallin and its isolated domains. Mol Vis 14:81–89

    PubMed  CAS  Google Scholar 

  113. Itkin A, Dupres V, Dufrêne YF, Bechinger B, Ruysschaert JM, Raussens V (2011) Calcium ions promote formation of amyloid β-peptide (1–40) oligomers causally implicated in neuronal toxicity of Alzheimer’s disease. PLoS One 6:e18250

    Article  PubMed  CAS  Google Scholar 

  114. Karjalainen EL, Ravi HK, Barth A (2011) Simulation of the amide I absorption of stacked β-sheets. J Phys Chem B 115:749–757

    Article  PubMed  CAS  Google Scholar 

  115. Pauling L, Corey RB (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci U S A 37:251–256

    Article  PubMed  CAS  Google Scholar 

  116. Armen RS, DeMarco ML, Alonso DO, Daggett V (2004) Pauling and Corey’s α-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci U S A 101:11622–11627

    Article  PubMed  CAS  Google Scholar 

  117. Daggett V (2006) Alpha-sheet: the toxic conformer in amyloid diseases? Acc Chem Res 39:594–602

    Article  PubMed  CAS  Google Scholar 

  118. Wu H, Canfield A, Adhikari J, Huo S (2010) Quantum mechanical studies on model α-pleated sheets. J Comput Chem 31:1216–1223

    Article  PubMed  CAS  Google Scholar 

  119. Venyaminov SY, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30:1243–1257

    Article  PubMed  CAS  Google Scholar 

  120. Chirgadze YN, Fedorov OV, Trushina NP (1975) Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers 14:679–694

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Experimental data presented in this article have been obtained and published elsewhere by Kathleen N. Nemec, Shan Qin, Abhay H. Pande, and Pranav Garg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suren A. Tatulian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tatulian, S.A. (2013). Structural Characterization of Membrane Proteins and Peptides by FTIR and ATR-FTIR Spectroscopy. In: Kleinschmidt, J. (eds) Lipid-Protein Interactions. Methods in Molecular Biology, vol 974. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-275-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-275-9_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-274-2

  • Online ISBN: 978-1-62703-275-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics