Skip to main content

Functional Magnetic Resonance Imaging in Awake Rats: Studies Relevant to Addiction and the Reward Circuitry

  • Protocol
  • First Online:
Animal Models of Eating Disorders

Part of the book series: Neuromethods ((NM,volume 74))

  • 1073 Accesses

Abstract

Functional magnetic resonance imaging (fMRI) has been used to investigate human and laboratory animal brain reward function using a variety of experimental paradigms. The most popular functional imaging technique relies on the blood oxygen level-dependent (BOLD) contrast mechanism first reported in the anesthetized rat by Seiji Ogawa and coworkers in the early 1990s. A significant advantage of fMRI is that it allows a functional characterization of the awake rodent brain under different treatment and pharmacological conditions. We have performed fMRI of the neural actions of cocaine in awake male and female rats and the lactation stimulus in postpartum rats. Animal studies have the design flexibility to verify results with a multiplicity of invasive brain methods that can inform human work and aid in data interpretations. This review provides a summary of the methods used for fMRI experiments in rats with a special focus on awake imaging methods used in our laboratory, which can be applied to feeding behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa S et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  2. Bandettini PA et al (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    Article  PubMed  CAS  Google Scholar 

  3. Ogawa S et al (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    Article  PubMed  CAS  Google Scholar 

  4. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625

    Article  PubMed  CAS  Google Scholar 

  5. Fox PT et al (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    Article  PubMed  CAS  Google Scholar 

  6. Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    Article  PubMed  CAS  Google Scholar 

  7. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  PubMed  CAS  Google Scholar 

  8. Malonek D et al (1997) Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci USA 94:14826–14831

    Article  PubMed  CAS  Google Scholar 

  9. Thompson JK, Peterson MR, Freeman RD (2003) Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299:1070–1072

    Article  PubMed  CAS  Google Scholar 

  10. Logothetis NK et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  11. Nadasdy Z et al (1998) Extracellular recording and analysis of neuronal activity: from single cells to ensembles. In: Eichenbaum H, Davis JL (eds) Neuronal ensembles: strategies for recording and decoding, 1st edn. Wiley-Liss, New York, pp 17–56

    Google Scholar 

  12. Lee SP et al (2001) Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn Reson Med 45:791–800

    Article  PubMed  CAS  Google Scholar 

  13. Davis TL et al (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834–1839

    Article  PubMed  CAS  Google Scholar 

  14. Sheth SA et al (2004) Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42:347–355

    Article  PubMed  CAS  Google Scholar 

  15. Febo M et al (2004) Imaging cocaine-induced changes in the mesocorticolimbic dopaminergic system of conscious rats. J Neurosci Methods 139:167–176

    Article  PubMed  CAS  Google Scholar 

  16. Ludwig R et al (2004) A dual RF resonator system for high-field functional magnetic resonance imaging of small animals. J Neurosci Methods 132:125–135

    Article  PubMed  CAS  Google Scholar 

  17. Duong TQ et al (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49:1019–1027

    Article  PubMed  Google Scholar 

  18. Ye Y et al (2010) BOLD fMRI using a modified HASTE sequence. Neuroimage 49:457–466

    Article  PubMed  Google Scholar 

  19. Goense JB, Logothetis NK (2006) Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magn Reson Imaging 24:381–392

    Article  PubMed  Google Scholar 

  20. Poser BA, Norris DG (2007) Fast spin echo sequences for BOLD functional MRI. MAGMA 20:11–17

    Article  PubMed  Google Scholar 

  21. Ugurbil K et al (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281

    Article  PubMed  Google Scholar 

  22. Doty FD et al (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20:304–325

    Article  PubMed  Google Scholar 

  23. Bogdanov G, Ludwig R (2002) Coupled microstrip line transverse electromagnetic resonator model for high-field magnetic resonance imaging. Magn Reson Med 47:579–593

    Article  PubMed  CAS  Google Scholar 

  24. Purdon PL, Weisskoff RM (1998) Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Hum Brain Mapp 6:239–249

    Article  PubMed  CAS  Google Scholar 

  25. Peeters RR, Van der Linden A (2002) A data post-processing protocol for dynamic MRI data to discriminate brain activity from global physiological effects. Magn Reson Imaging 20:503–510

    Article  PubMed  CAS  Google Scholar 

  26. Bhattacharyya PK, Lowe MJ (2004) Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations. Magn Reson Imaging 22:9–13

    Article  PubMed  Google Scholar 

  27. Bandettini PA, Wong EC (1997) A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed 10:197–203

    Article  PubMed  CAS  Google Scholar 

  28. Cohen ER, Ugurbil K, Kim SG (2002) Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 22:1042–1053

    Article  PubMed  CAS  Google Scholar 

  29. Marota JJ et al (2000) Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in Rat. Neuroimage 11:13–23

    Article  PubMed  CAS  Google Scholar 

  30. Xi ZX et al (2004) Opiate tolerance by heroin self-administration: an fMRI study in rat. Magn Reson Med 52:108–114

    Article  PubMed  CAS  Google Scholar 

  31. Eger EI 2nd, Johnson BH (1987) Rates of awakening from anesthesia with I-653, halothane, isoflurane, and sevoflurane: a test of the effect of anesthetic concentration and duration in rats. Anesth Analg 66:977–982

    PubMed  CAS  Google Scholar 

  32. Desai M et al (2011) Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 105:1393–1405

    Article  PubMed  CAS  Google Scholar 

  33. Miller MJ et al (2003) fMRI of the conscious rabbit during unilateral classical eyeblink conditioning reveals bilateral cerebellar activation. J Neurosci 23:11753–11758

    PubMed  CAS  Google Scholar 

  34. Sachdev RN et al (2003) Experimental model for functional magnetic resonance imaging of somatic sensory cortex in the unanesthetized rat. Neuroimage 19:742–750

    Article  PubMed  Google Scholar 

  35. Febo M, Pira AS (2011) Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats. Brain Res 1382:1382118–1382127

    Article  CAS  Google Scholar 

  36. Freire L, Mangin JF (2001) Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage 14:709–722

    Article  PubMed  CAS  Google Scholar 

  37. Strupp JP (1996) Stimulate: a GUI based fMRI analysis software package. Neuroimage 3:S607

    Article  Google Scholar 

  38. Ferris CF et al (2008) Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111

    Article  PubMed  CAS  Google Scholar 

  39. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, Boston

    Google Scholar 

  40. Swanson LW (1999) Brain maps: structure of the rat brain. Elsevier Science, Boston

    Google Scholar 

  41. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878

    Article  PubMed  Google Scholar 

  42. Ferris CF et al (2005) Pup suckling is more rewarding than cocaine: evidence from functional magnetic resonance imaging and three-dimensional computational analysis. J Neurosci 25:149–156

    Article  PubMed  CAS  Google Scholar 

  43. Porrino LJ et al (1988) Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats. Neuropsychopharmacology 1:109–118

    Article  PubMed  CAS  Google Scholar 

  44. Stein EA, Fuller SA (1992) Selective effects of cocaine on regional cerebral blood flow in the rat. J Pharmacol Exp Ther 262:327–334

    PubMed  CAS  Google Scholar 

  45. Stein EA, Fuller SA (1993) Cocaine’s time action profile on regional cerebral blood flow in the rat. Brain Res 626:117–126

    Article  PubMed  CAS  Google Scholar 

  46. Hammer RP Jr et al (1993) Withdrawal following cocaine self-administration decreases regional cerebral metabolic rate in critical brain reward regions. Synapse 14:73–80

    Article  PubMed  CAS  Google Scholar 

  47. Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112

    PubMed  CAS  Google Scholar 

  48. Chang JY, Janak PH, Woodward DJ (1998) Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J Neurosci 18:3098–3115

    PubMed  CAS  Google Scholar 

  49. Breiter HC et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  50. Kaufman MJ et al (1998) Cocaine decreases relative cerebral blood volume in humans: a dynamic susceptibility contrast magnetic resonance imaging study. Psychopharmacology (Berl) 138:76–81

    Article  CAS  Google Scholar 

  51. Li SJ et al (2000) Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med 43:45–51

    Article  PubMed  CAS  Google Scholar 

  52. Mandeville JB (2001) Regional sensitivity and coupling of BOLD and CBV changes during stimulation of rat brain. Magn Reson Med 45:443–447

    Article  PubMed  CAS  Google Scholar 

  53. London ED et al (1986) Effects of L-cocaine on local cerebral glucose utilization in the rat. Neurosci Lett 68:73–78

    Article  PubMed  CAS  Google Scholar 

  54. Imperato A et al (1992) Chronic cocaine alters limbic extracellular dopamine Neurochemical basis for addiction. Eur J Pharmacol 212:299–300

    Article  PubMed  CAS  Google Scholar 

  55. Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine I. Dopamine axon terminals. J Neurosci 13:266–275

    PubMed  CAS  Google Scholar 

  56. Parsons LH, Koob GF, Weiss F (1996) Extracellular serotonin is decreased in the nucleus accumbens during withdrawal from cocaine self-administration. Behav Brain Res 73:225–228

    Article  PubMed  CAS  Google Scholar 

  57. Febo M, Ferris CF, Segarra AC (2005) Estrogen influences cocaine-induced blood oxygen level-dependent signal changes in female rats. J Neurosci 25:1132–1136

    Article  PubMed  CAS  Google Scholar 

  58. Hyder F, Rothman DL, Shulman RG (2002) Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci USA 99:10771–10776

    Article  PubMed  CAS  Google Scholar 

  59. Smith AJ et al (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci USA 99:10765–10770

    Article  PubMed  CAS  Google Scholar 

  60. Robbins SJ et al (1999) Comparing levels of cocaine cue reactivity in male and female outpatients. Drug Alcohol Depend 53:223–230

    Article  PubMed  CAS  Google Scholar 

  61. Kaufman MJ et al (2001) Cocaine-induced cerebral vasoconstriction differs as a function of sex and menstrual cycle phase. Biol Psychiatry 49:774–781

    Article  PubMed  CAS  Google Scholar 

  62. Febo M, Ferris CF (2007) Development of cocaine sensitization before pregnancy affects subsequent maternal retrieval of pups and prefrontal cortical activity during nursing. Neuroscience 148:400–412

    Article  PubMed  CAS  Google Scholar 

  63. Febo M, Numan M, Ferris CF (2005) Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. J Neurosci 25:11637–11644

    Article  PubMed  CAS  Google Scholar 

  64. Febo M et al (2008) Nursing stimulation is more than tactile sensation: it is a multisensory experience. Horm Behav 54:330–339

    Article  PubMed  Google Scholar 

  65. Stern JM (1990) Multisensory regulation of maternal behavior and masculine sexual behavior: a revised view. Neurosci Biobehav Rev 14:183–200

    Article  PubMed  Google Scholar 

  66. Stern JM, Yu YL, Crockett DP (2002) Dorsolateral columns of the spinal cord are necessary for both suckling-induced neuroendocrine reflexes and the kyphotic nursing posture in lactating rats. Brain Res 947:110–121

    Article  PubMed  CAS  Google Scholar 

  67. Lincoln DW et al (1980) Sleep: a prerequisite for reflex milk ejection in the rat. Exp Brain Res 38:151–162

    Article  PubMed  CAS  Google Scholar 

  68. Blyton DM, Sullivan CE, Edwards N (2002) Lactation is associated with an increase in slow-wave sleep in women. J Sleep Res 11:297–303

    Article  PubMed  CAS  Google Scholar 

  69. Tasker JG, Theodosis DT, Poulain DA (1986) Afferent projections from the mammary glands to the spinal cord in the lactating rat–I A neuroanatomical study using the transganglionic transport of horseradish peroxidase-wheatgerm agglutinin. Neuroscience 19:495–509

    Article  PubMed  CAS  Google Scholar 

  70. Dubois-Dauphin M et al (1985) Somatosensory systems and the milk-ejection reflex in the rat. II. The effects of lesions in the ventroposterior thalamic complex, dorsal columns and lateral cervical nucleus-dorsolateral funiculus. Neuroscience 15:1131–1140

    Article  PubMed  CAS  Google Scholar 

  71. Walsh CJ et al (1996) The effects of olfactory and somatosensory desensitization on Fos-like immunoreactivity in the brains of pup-exposed postpartum rats. Behav Neurosci 110:134–153

    Article  PubMed  CAS  Google Scholar 

  72. Lin SH et al (1998) Metabolic mapping of the brain in pregnant, parturient and lactating rats using fos immunohistochemistry. Brain Res 787:226–236

    Article  PubMed  CAS  Google Scholar 

  73. Lonstein JS, Wagner CK, De Vries GJ (1999) Comparison of the “nursing” and other parental behaviors of nulliparous and lactating female rats. Horm Behav 36:242–251

    Article  PubMed  CAS  Google Scholar 

  74. Lonstein JS, Stern JM (1997) Somatosensory contributions to c-fos activation within the caudal periaqueductal gray of lactating rats: effects of perioral, rooting, and suckling stimuli from pups. Horm Behav 32:155–166

    Article  PubMed  CAS  Google Scholar 

  75. Lee A et al (1999) Neuroanatomical basis of maternal memory in postpartum rats: selective role for the nucleus accumbens. Behav Neurosci 113:523–538

    Article  PubMed  CAS  Google Scholar 

  76. Xerri C, Stern JM, Merzenich MM (1994) Alterations of the cortical representation of the rat ventrum induced by nursing behavior. J Neurosci 14:1710–1721

    PubMed  CAS  Google Scholar 

  77. Lorberbaum JP et al (2002) A potential role for thalamocingulate circuitry in human maternal behavior. Biol Psychiatry 51:431–445

    Article  PubMed  Google Scholar 

  78. Chin CL et al (2011) Awake rat pharmacological magnetic resonance imaging as a translational pharmacodynamic biomarker: metabotropic glutamate 2/3 agonist modulation of ketamine-induced blood oxygenation level dependence signals. J Pharmacol Exp Ther 336:709–715

    Article  PubMed  CAS  Google Scholar 

  79. Martin C et al (2006) Investigating neural-hemodynamic coupling and the hemodynamic response function in the awake rat. Neuroimage 32:33–48

    Article  PubMed  Google Scholar 

  80. Liang Z, King J, Zhang N (2011) Uncovering intrinsic connectional architecture of functional networks in awake rat brain. J Neurosci 31:3776–3783

    Article  PubMed  CAS  Google Scholar 

  81. Zhang N et al (2010) Mapping resting-state brain networks in conscious animals. J Neurosci Methods 189:186–196

    Article  PubMed  Google Scholar 

  82. Ferris CF et al (2001) Functional imaging of brain activity in conscious monkeys responding to sexually arousing cues. Neuroreport 12:2231–2236

    Article  PubMed  CAS  Google Scholar 

  83. Ferris CF (2004) Activation of neural pathways associated with sexual arousal in non-human primates. J Magn Reson Imaging 19:168–175

    Article  PubMed  Google Scholar 

  84. Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640

    Article  PubMed  CAS  Google Scholar 

  85. Nakao Y et al (2001) Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc Natl Acad Sci USA 98:7593–7598

    Article  PubMed  CAS  Google Scholar 

  86. Greenberg DS, Houweling AR, Kerr JN (2008) Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat Neurosci 11:749–751

    Article  PubMed  CAS  Google Scholar 

  87. Imas OA et al (2004) Halothane augments event-related gamma oscillations in rat visual cortex. Neuroscience 123:269–278

    Article  PubMed  CAS  Google Scholar 

  88. Imas OA et al (2005) Volatile anesthetics enhance flash-induced gamma oscillations in rat visual cortex. Anesthesiology 102:937–947

    Article  PubMed  CAS  Google Scholar 

  89. Liu X et al (2011) Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb Cortex 21:374–384

    Article  PubMed  Google Scholar 

  90. Hartikainen KM et al (1995) Cortical reactivity during isoflurane burst-suppression anesthesia. Anesth Analg 81:1223–1228

    PubMed  CAS  Google Scholar 

  91. Angenstein F, Krautwald K, Scheich H (2010) The current functional state of local neuronal circuits controls the magnitude of a BOLD response to incoming stimuli. Neuroimage 50:1364–1375

    Article  PubMed  CAS  Google Scholar 

  92. Austin VC et al (2005) Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and alpha-chloralose anesthesia. Neuroimage 24:92–100

    Article  PubMed  CAS  Google Scholar 

  93. Masamoto K et al (2009) Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. Eur J Neurosci 30:242–250

    Article  PubMed  Google Scholar 

  94. Brevard ME et al (2003) Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions. Magn Reson Imaging 21:995–1001

    Article  PubMed  CAS  Google Scholar 

  95. Sicard K et al (2003) Regional cerebral blood flow and BOLD responses in conscious and anesthetized rats under basal and hypercapnic conditions: implications for functional MRI studies. J Cereb Blood Flow Metab 23:472–481

    Article  PubMed  CAS  Google Scholar 

  96. King JA et al (2005) Procedure for minimizing stress for fMRI studies in conscious rats. J Neurosci Methods 148:154–160

    Article  PubMed  Google Scholar 

  97. Melia KR et al (1994) Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J Neurosci 14:5929–5938

    PubMed  CAS  Google Scholar 

  98. Dhabhar FS, McEwen BS, Spencer RL (1997) Adaptation to prolonged or repeated stress–comparison between rat strains showing intrinsic differences in reactivity to acute stress. Neuroendocrinology 65:360–368

    Article  PubMed  CAS  Google Scholar 

  99. Haleem DJ (1996) Adaptation to repeated restraint stress in rats: failure of ethanol-treated rats to adapt in the stress schedule. Alcohol Alcohol 31:471–477

    PubMed  CAS  Google Scholar 

  100. Stamp J, Herbert J (2001) Corticosterone modulates autonomic responses and adaptation of central immediate-early gene expression to repeated restraint stress. Neuroscience 107:465–479

    Article  PubMed  CAS  Google Scholar 

  101. Parry TJ, McElligott JG (1993) A method for restraining awake rats using head immobilization. Physiol Behav 53:1011–1015

    Article  PubMed  CAS  Google Scholar 

  102. Barnum CJ, Blandino P Jr, Deak T (2007) Adaptation in the corticosterone and hyperthermic responses to stress following repeated stressor exposure. J Neuroendocrinol 19:632–642

    Article  PubMed  CAS  Google Scholar 

  103. Naert G et al (2011) Brain-derived neurotrophic factor and hypothalamic-pituitary-adrenal axis adaptation processes in a depressive-like state induced by chronic restraint stress. Mol Cell Neurosci 46:55–66

    Article  PubMed  CAS  Google Scholar 

  104. Kant GJ et al (1985) Habituation to repeated stress is stressor specific. Pharmacol Biochem Behav 22:631–634

    Article  PubMed  CAS  Google Scholar 

  105. Briski KP, Sylvester PW (1987) Effects of repetitive daily acute stress on pituitary LH and prolactin release during exposure to the same stressor or a second novel stress. Psychoneuroendocrinology 12:429–437

    Article  PubMed  CAS  Google Scholar 

  106. Pierzchala K, Van Loon GR (1990) Plasma native and peptidase-derivable Met-enkephalin responses to restraint stress in rats Adaptation to repeated restraint. J Clin Invest 85:861–873

    Article  PubMed  CAS  Google Scholar 

  107. Girotti M et al (2006) Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain. Neuroscience 138:1067–1081

    Article  PubMed  CAS  Google Scholar 

  108. Belda X et al (2008) A single exposure to immobilization causes long-lasting pituitary-adrenal and behavioral sensitization to mild stressors. Horm Behav 54:654–661

    Article  PubMed  CAS  Google Scholar 

  109. Thanos PK et al (2008) Differences in response to food stimuli in a rat model of obesity: in-vivo assessment of brain glucose metabolism. Int J Obes (Lond) 32:1171–1179

    Article  CAS  Google Scholar 

  110. Thanos PK et al (2008) Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ((11C) raclopride) and in-vitro ((3H) spiperone) autoradiography. Synapse 62:50–61

    Article  PubMed  CAS  Google Scholar 

  111. Zeeni N et al (2010) Peripherally injected cholecystokinin-induced neuronal activation is modified by dietary composition in mice. Neuroimage 50:1560–1565

    Article  PubMed  CAS  Google Scholar 

  112. Kuo YT et al (2010) The combined effects on neuronal activation and blood-brain barrier permeability of time and n-3 polyunsaturated fatty acids in mice, as measured in vivo using MEMRI. Neuroimage 50:1384–1391

    Article  PubMed  CAS  Google Scholar 

  113. Dodd GT et al (2009) Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat. Neuroscience 163:1192–1200

    Article  PubMed  CAS  Google Scholar 

  114. Stark JA et al (2008) 5-HT(2C) antagonism blocks blood oxygen level-dependent pharmacological-challenge magnetic resonance imaging signal in rat brain areas related to feeding. Eur J Neurosci 27:457–465

    Article  PubMed  Google Scholar 

  115. Stark JA et al (2006) Functional magnetic resonance imaging and c-Fos mapping in rats following an anorectic dose of m-chlorophenylpiperazine. Neuroimage 31:1228–1237

    Article  PubMed  Google Scholar 

  116. Stice E et al (2010) Weight gain is associated with reduced striatal response to palatable food. J Neurosci 30:13105–13109

    Article  PubMed  CAS  Google Scholar 

  117. Bragulat V et al (2010) Food-related odor probes of brain reward circuits during hunger: a pilot FMRI study. Obesity (Silver Spring) 18:1566–1571

    Article  Google Scholar 

  118. Grabenhorst F et al (2010) How the brain represents the reward value of fat in the mouth. Cereb Cortex 20:1082–1091

    Article  PubMed  Google Scholar 

  119. DelParigi A et al (2007) Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes (Lond) 31:440–448

    Article  CAS  Google Scholar 

  120. DelParigi A et al (2004) Persistence of abnormal neural responses to a meal in postobese individuals. Int J Obes Relat Metab Disord 28:370–377

    Article  PubMed  CAS  Google Scholar 

  121. Tomasi D et al (2009) Association of body mass and brain activation during gastric distention: implications for obesity. PLoS One 4:e6847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is supported by NIH grant DA019946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Febo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Febo, M. (2013). Functional Magnetic Resonance Imaging in Awake Rats: Studies Relevant to Addiction and the Reward Circuitry. In: Avena, N. (eds) Animal Models of Eating Disorders. Neuromethods, vol 74. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-104-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-104-2_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-103-5

  • Online ISBN: 978-1-62703-104-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics