Skip to main content

Barrier Modulation in Drug Delivery to the Retina

  • Protocol
  • First Online:
Retinal Degeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 935))

Abstract

The inner blood–retina barrier (iBRB) is essential in restricting the movement of systemic components such as enzymes, anaphylatoxins, or pathogens that could otherwise enter the neural retina and cause extensive damage. The barrier has evolved to confer protection to the delicate microenvironment of the retina, and the tight junctions located between adjacent microvascular endothelial cells can restrict the passage of up to 98% of clinically validated low-molecular-weight therapeutics which could hold significant promise for a range of degenerative retinal conditions. Here, we describe a method for the selective RNAi-mediated targeting of one component of the tight junction, claudin-5. We outline the generation of a doxycycline inducible adeno-associated viral vector for the localized, inducible, and size-selective modulation of the iBRB and describe how this vector can be used in ophthalmology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardridge WM (2005) Molecular biology of the blood–brain barrier. Mol Biotechnol 30(1):57–70

    Article  PubMed  CAS  Google Scholar 

  2. Campbell M, Humphries MM, Kiang A-S, Nguyen ATH, Gobbo OL, Tam LCS, Suzuki M, Hanrahan F, Ozaki E, Farrar G-J, Kenna PF, Humphries P (2011) Systemic low molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol Med 3:235–245

    Article  PubMed  CAS  Google Scholar 

  3. Campbell M, Nguyen ATH, Kiang AS, Tam LCS, Gobbo OL, Kerskens C, Ni Dhubhghaill S, Humphries MM, Farrar GJ, Kenna PF, Humphries P (2009) An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci U S A 106(42):17817–17822

    Article  PubMed  CAS  Google Scholar 

  4. Campbell M, Kiang AS, Kenna PF, Kerskens C, Blau C, O’Dwyer L, Tivnan A, Kelly JA, Brankin B, Farrar GJ, Humphries P (2008) RNAi-mediated reversible opening of the blood–brain barrier. J Gene Med 10(8):930–947

    Article  PubMed  CAS  Google Scholar 

  5. Tam LC, Kiang AS, Campbell M, Keaney J, Farrar GJ, Humphries MM, Kenna PF, Humphries P (2010) Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Hum Mol Genet 19(22):4421–4436

    Article  PubMed  CAS  Google Scholar 

  6. Hammond SM, Caudy AA, Hammon GJ (2001) Post-transcriptional gene silencing by double-sranded RNA. Nat Rev Genet 2:110–119

    Article  PubMed  CAS  Google Scholar 

  7. Sharp PA (2001) RNA interference—2001. Genes Dev 15(5):485–490

    Article  PubMed  CAS  Google Scholar 

  8. Hutvangner G, Zamore PD (2002) RNAi: nature abhors a double-strand. Curr Opin Genet Dev 12(2):225–232

    Article  Google Scholar 

  9. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16(8):948–958

    Article  PubMed  CAS  Google Scholar 

  10. Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20(5):505–508

    Article  PubMed  CAS  Google Scholar 

  11. Yu J-Y, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 99(9):6047–6052

    Article  PubMed  CAS  Google Scholar 

  12. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20(5):500–505

    PubMed  CAS  Google Scholar 

  13. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  14. Kunkel GR, Pederson T (1989) Transcription of a human U6 small nuclear RNA gene in vivo withstands deletion of intragenic sequences but not of an up-stream TATATA box. Nucleic Acid Res 17:7371–7379

    Article  PubMed  CAS  Google Scholar 

  15. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline responsive promoters. Proc Natl Acad Sci U S A 89(12):5547–5551

    Article  PubMed  CAS  Google Scholar 

  16. Gossen M, Bonin AL, Bujard H (1993) Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem Sci 18:471–475

    Article  PubMed  CAS  Google Scholar 

  17. Gossen M, Bonin AL, Freundlieb S, Bujard H (1994) Inducible gene expression systems for higher eukaryotic cells. Curr Opin Biotechnol 5:516–520

    Article  PubMed  CAS  Google Scholar 

  18. Wigzgall R, O’Leary E, Leaf A, Onaldi D, Bonventre JV (1994) The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci U S A 91(10):4514–4518

    Article  Google Scholar 

  19. Gossen M, Bujard H (1995) Efficacy of tetracycline-controlled gene expression is influenced by cell type. Bio Techniques 19(2):213–215

    CAS  Google Scholar 

  20. Freundlieb S, Schirra-Muller C, Bujard H (1999) A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1:4–12

    Article  PubMed  CAS  Google Scholar 

  21. pTet-tTS Vector (1999) Clontechniques XIV(2):10–11

    Google Scholar 

  22. Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77(16):8957–8961

    Article  PubMed  CAS  Google Scholar 

  23. pTRE-Tight Vectors (2003) Clontechniques XVIII(2):10–11

    Google Scholar 

  24. Knockout Single Vector System for Inducible RNAi (2006) Clontechniques XXI(3):2–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Campbell, M., Humphries, M.M., Humphries, P. (2012). Barrier Modulation in Drug Delivery to the Retina. In: Weber, B., LANGMANN, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 935. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-080-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-080-9_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-079-3

  • Online ISBN: 978-1-62703-080-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics