Skip to main content

The Comet Assay: A Sensitive Genotoxicity Test for the Detection of DNA Damage and Repair

  • Protocol
  • First Online:
DNA Repair Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 920))

Abstract

The comet assay (single-cell gel electrophoresis) is a simple and sensitive method for studying DNA damage and repair. In this microgel electrophoresis technique, a small number of cells suspended in a thin agarose gel on a microscope slide is lysed, electrophoresed, and stained with a fluorescent DNA-binding dye. Cells with increased DNA damage display increased migration of chromosomal DNA from the nucleus towards the anode, which resembles the shape of a comet. The assay has manifold applications in fundamental research for DNA damage and repair, in genotoxicity testing of novel chemicals and pharmaceuticals, environmental biomonitoring, and human population monitoring. This chapter describes a standard protocol of the alkaline comet assay and points to some useful modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhawan A, Bajpayee M, Parmar D (2009) Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 25:5–32

    Article  PubMed  CAS  Google Scholar 

  2. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J-C, Sasaki YF (2000) The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  PubMed  CAS  Google Scholar 

  3. Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR (2003) Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 18:45–51

    Article  PubMed  CAS  Google Scholar 

  4. Brendler-Schwaab S, Hartmann A, Pfuhler S, Speit G (2005) The in vivo comet assay: use and status in genotoxicity testing. Mutagenesis 20:245–254

    Article  PubMed  CAS  Google Scholar 

  5. Burlinson B, Tice RR, Speit G, Brendler-Schwaab SY, Collins AR et al (2007) Fourth International Workshop on Genotoxicity Testing: results of the in vivo Comet assay workgroup. Mutat Res 627:31–35

    Article  PubMed  CAS  Google Scholar 

  6. Collins AR (2009) Investigating oxidative DNA damage and its repair using the comet assay. Mutat Res 681:24–32

    Article  PubMed  CAS  Google Scholar 

  7. Jah AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23:207–221

    Article  Google Scholar 

  8. Frenzilli G, Nigro M, Lyons BP (2009) The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutat Res 681:80–92

    Article  PubMed  CAS  Google Scholar 

  9. Dusinska M, Collins AR (2008) The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis 23:191–205

    Article  PubMed  CAS  Google Scholar 

  10. Valverde M, Rojas E (2009) Environmental and occupational biomonitoring using the Comet assay. Mutat Res 681:93–109

    Article  PubMed  CAS  Google Scholar 

  11. Baumgartner A, Cemeli E, Anderson D (2009) The comet assay in male reproductive toxicology. Cell Biol Toxicol 25:81–98

    Article  PubMed  CAS  Google Scholar 

  12. Olive PL (2009) Impact of the comet assay in radiobiology. Mutat Res 681:13–23

    Article  PubMed  CAS  Google Scholar 

  13. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  14. Olive PL (1989) Cell proliferation as a requirement for development of contact effect in Chinese hamster V79 spheroids. Radiat Res 117:79–92

    Article  PubMed  CAS  Google Scholar 

  15. Klaude M, Erikson S, Nygren J, Ahnström G (1996) The comet assay: mechanisms and technical considerations. Mutat Res 363:89–96

    Article  PubMed  Google Scholar 

  16. Frieauff W, Hartmann A, Suter W (2001) Automatic analysis of slides processed in the comet assay. Mutagenesis 16:133–137

    Article  PubMed  CAS  Google Scholar 

  17. Wood DK, Weingeist DM, Bhatia SN, Engelward BP (2010) Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci U S A 107:10008–10013

    Article  PubMed  CAS  Google Scholar 

  18. Stang A, Brendamour M, Schunck C, Witte I (2010) Automated analysis of DNA damage in the high-throughput version of the comet assay. Mutat Res 698:1–5

    Article  PubMed  CAS  Google Scholar 

  19. Speit G, Hartmann A (1995) The contribution of excision repair to the DNA-effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10:555–559

    Article  PubMed  CAS  Google Scholar 

  20. Collins AR, Duthie SJ, Dobson VL (1993) Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 14:1733–1735

    Article  PubMed  CAS  Google Scholar 

  21. Dennog C, Hartmann A, Frey G, Speit G (1996) Detection of DNA damage after hyperbaric oxygen (HBO) therapy. Mutagenesis 11:605–609

    Article  PubMed  CAS  Google Scholar 

  22. Speit G, Schütz P, Bonzheim I, Trenz K, Hoffmann H (2004) Sensitivity of the FPG protein towards alkylation damage in the comet assay. Toxicol Lett 146:151–158

    Article  PubMed  CAS  Google Scholar 

  23. Pfuhler S, Wolf HU (1996) Detection of DNA-crosslinking agents with the alkaline comet assay. Environ Mol Mutagen 27:196–201

    Article  PubMed  CAS  Google Scholar 

  24. Merk O, Speit G (1999) Detection of crosslinks with the comet assay in relationship to genotoxicity and cytotoxicity. Environ Mol Mutagen 33:167–172

    Article  PubMed  CAS  Google Scholar 

  25. Fuscoe JC, Afshari AJ, George MH, DeAngelo AB, Tice RR, Salman T, Allen JW (1996) In vivo genotoxicity of dichloroacetic acid: evaluation with the mouse peripheral blood micronucleus assay and the single cell gel assay. Environ Mol Mutagen 27:1–9

    Article  PubMed  CAS  Google Scholar 

  26. Collins AR, Ai-guo A, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336:69–77

    Article  PubMed  CAS  Google Scholar 

  27. Collins AR, Dusinska M, Horvathova E, Munro E, Savio M, Stetina R (2001) Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 16:297–301

    Article  PubMed  CAS  Google Scholar 

  28. Hartmann A, Speit G (1996) The effect of arsenic and cadmium on the persistence of mutagen-induced DNA lesions in human cells. Environ Mol Mutagen 27:98–104

    Article  PubMed  CAS  Google Scholar 

  29. Hartmann A, Speit G (1995) Genotoxic effects of chemicals in the single cell gel (SCG) test with human blood cells in relation to the induction of sister chromatid exchanges (SCE). Mutat Res 346:49–56

    Article  PubMed  CAS  Google Scholar 

  30. Langie S, Knaapen AD, Brauers K, van Berlo D, van Schooten F-J, Godschalk WL (2006) Development and validation of a modified comet assay to phenotypically assess nucleotide excision repair. Mutagenesis 21:153–158

    Article  PubMed  CAS  Google Scholar 

  31. Gaivao I, Piasek A, Brevik A, Shaposhnikov S, Collins AR (2009) Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol Toxicol 25:45–52

    Article  PubMed  CAS  Google Scholar 

  32. Collins AR, Harrington V, Drew J, Melvin R (2003) Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis 24:511–515

    Article  PubMed  CAS  Google Scholar 

  33. Gedik CM, Ewen SWB, Collins AR (1992) Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int J Radiat Biol 62:313–320

    Article  PubMed  CAS  Google Scholar 

  34. Green MHL, Lowe JE, Harcourt SA, Akinluyi P, Rowe T, Cole J, Anstey AV, Arlett CF (1992) UV-C sensitivity of unstimulated and stimulated human lymphocytes from normal and xeroderma pigmentosum donors in the comet assay: a potential diagnostic technique. Mutat Res 273:137–144

    Article  PubMed  CAS  Google Scholar 

  35. Helbig R, Speit G (1997) DNA effects in repair-deficient V79 Chinese hamster cells studied with the comet assay. Mutat Res 377:279–286

    Article  PubMed  CAS  Google Scholar 

  36. Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH, Cleaver JE, Pedersen RA (1999) Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 208:513–529

    Article  PubMed  CAS  Google Scholar 

  37. Shaposhnikov S, Frengen E, Collins AR (2009) Increasing resolution of the comet assay using fluorescent in situ hybridization—a review. Mutagenesis 24:383–389

    Article  PubMed  CAS  Google Scholar 

  38. Glei M, Hovhannisyan G, Pool-Zobel BL (2009) Use of Comet-FISH in the study of DNA damage and repair: review. Mutat Res 681:33–43

    Article  PubMed  CAS  Google Scholar 

  39. Spivak G, Cox RA, Hanawalt PC (2009) New applications of the Comet assay: Comet-FISH and transcription-coupled DNA repair. Mutat Res 681:44–50

    Article  PubMed  CAS  Google Scholar 

  40. Lovell DP, Omori T (2008) Statistical issues in the use of the comet assay. Mutagenesis 23:171–182

    Article  PubMed  CAS  Google Scholar 

  41. Wiklund SJ, Agurell E (2003) Aspects of design and statistical analysis in the Comet assay. Mutagenesis 18:167–175

    Article  PubMed  CAS  Google Scholar 

  42. Speit G, Trenz K, Schütz P, Rothfuss A, Merk O (1999) The influence of temperature during alkaline treatment and electrophoresis on results obtained with the comet assay. Toxicol Lett 110:73–78

    Article  PubMed  CAS  Google Scholar 

  43. Hartmann A, Speit G (1997) The contribution of cytotoxicity to effects seen in the alkaline comet assay. Toxicol Lett 90:183–188

    Article  PubMed  CAS  Google Scholar 

  44. Hartmann A, Kiskinis E, Fjaellman A, Suter W (2001) Influence of cytotoxicity and compound precipitation on test results in the alkaline comet assay. Mutat Res 497:199–212

    Article  PubMed  CAS  Google Scholar 

  45. Kiskinis E, Suter W, Hartmann A (2002) High-throughput comet assay using 96-well plates. Mutagenesis 17:37–43

    Article  PubMed  CAS  Google Scholar 

  46. Henderson L, Wolfreys A, Fedyk J, Bourner C, Windebank S (1998) The ability of the comet assay to discriminate between gentoxins and cytotoxins. Mutagenesis 13:89–94

    Article  PubMed  CAS  Google Scholar 

  47. Olive PL, Banath JP (1995) Sizing highly fragmented DNA in individual apoptotic cells using the comet assay and a DNA crosslinking agent. Exp Cell Res 221:19–26

    Article  PubMed  CAS  Google Scholar 

  48. Kiffe M, Christen P, Arni P (2003) Characterization of cytotoxic and genotoxic effects of different compounds in CHO K5 cells with the comet assay (single-cell gel electrophoresis assay). Mutat Res 537:151–168

    Article  PubMed  CAS  Google Scholar 

  49. Meintieres S, Nesslany F, Pallardy M, Marzin D (2003) Detection of ghost cells in the standard alkaline comet assay is not a good measure of apoptosis. Environ Mol Mutagen 41:260–269

    Article  PubMed  CAS  Google Scholar 

  50. Rundell MS, Wagner ED, Plewa MJ (2003) The comet assay: genotoxic damage or nuclear fragmentation? Environ Mol Mutagen 42:61–67

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Speit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Speit, G., Rothfuss, A. (2012). The Comet Assay: A Sensitive Genotoxicity Test for the Detection of DNA Damage and Repair. In: Bjergbæk, L. (eds) DNA Repair Protocols. Methods in Molecular Biology, vol 920. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-998-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-998-3_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-997-6

  • Online ISBN: 978-1-61779-998-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics