Skip to main content

Near-Infrared Fluorescence Labeling of Iron Nanoparticles and Applications for Cell Labeling and In Vivo Imaging

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 906))

Abstract

In recent years, the near-infrared fluorescence (NIRF) labeled iron nanoparticles were synthesized and applied to labeling human cells for monitoring the engraftment process, imaging tumors, testing intracellular molecular environment surrounding the nanoparticles, and tracing biodistribution of nanoparticles in vivo. These studies demonstrated that the NIRF-labeled iron nanoparticles provided an excellent method not only for cell labeling but also for in vivo monitoring and tracing of iron nanoparticles due to the excellent in vivo imaging performance of the NIR fluorophores. However, the availability of commercial iron nanoparticles labeled with suitable NIRF dyes is limited. Optimal wavelength for in vivo imaging is centered at 800 nm, where tissue autofluorescence is minimal. Here we describe the manufacture of 12-nm 3-dimercaptosuccinic acid-coated Fe3O4 magnetic nanoparticles, their labeling with a new near-infrared fluorophore, IRDye800CW (excitation/emission: 778/806 nm), and their applications for cell labeling and in vivo imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8:649–654

    Article  PubMed  CAS  Google Scholar 

  2. Hergt R, Dutz S (2007) Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311:187–192

    Article  CAS  Google Scholar 

  3. Lin BL, Shen XD, Cui S (2007) Application of nanosized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties. Biomed Mater 2:132–134

    Article  PubMed  CAS  Google Scholar 

  4. Shubayev VI, Pisanic TR II, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    Article  PubMed  CAS  Google Scholar 

  5. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  6. Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R (2008) Perturbational profiling of nanomaterial biologic activity. Proc Natl Acad Sci 105:7387–7392

    Article  PubMed  CAS  Google Scholar 

  7. Bacon BR, Stark DD, Park CH, Saini S, Groman EV, Hahn PF, Compton CC, Ferrucci JT Jr (1987) Ferrite particles: a new magnetic resonance imaging contrast agent. Lack of acute or chronic hepatotoxicity after intravenous administration. J Lab Clin Med 110:164–171

    PubMed  CAS  Google Scholar 

  8. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–173

    PubMed  CAS  Google Scholar 

  9. Lacava LM, Lacava ZGM, Azevedo RB, Chaves SB, Garcia VAP, Silva O, Pelegrini F, Buske N, Gansau C, Da Silva MF, Morais PC (2002) Use of magnetic resonance to study biodistribution of dextran-coated magnetic fluid intravenously administered in mice. J Magn Magn Mater 252:367–369

    Article  CAS  Google Scholar 

  10. Lacava LM, Garcia VAP, Kuckelhaus S, Azevedo RB, Lacava ZGM, Silva O, Pelegrini F, Gansau C, Buske N, Morais PC (2003) Magnetic resonance and light microscopy investigation of a dextran coated magnetic fluid. J Appl Phys 93:7563–7565

    Article  CAS  Google Scholar 

  11. Briley-Saebo K, Bjornerud A, Grant D, Ahlstrom H, Berg T, Kindberg GM (2004) Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res 316:315–323

    Article  PubMed  CAS  Google Scholar 

  12. Kalber TL, Smith CJ, Howe FA, Griffiths JR, Ryan AJ, Waterton JC, Robinson SP (2005) A longitudinal study of R2* and R2 magnetic resonance imaging relaxation rate measurements in murine liver after a single administration of 3 different iron oxide-based contrast agents. Invest Radiol 40:784–791

    Article  PubMed  CAS  Google Scholar 

  13. Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6

    Article  PubMed  Google Scholar 

  14. Lee PW, Hsu SH, Wang JJ, Tsai JS, Lin KJ, Wey SP, Chen FR, Lai CH, Yen TC, Sung HW (2010) The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles. Biomaterials 31:1316–1324

    Article  PubMed  CAS  Google Scholar 

  15. Laemmel E, Genet M, Le Goualher G, Perchant A, Le Gargasson JF, Vicaut E (2004) Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J Vasc Res 41:400–411

    Article  PubMed  Google Scholar 

  16. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Selection of quantum dot wavelengths for biomedical assays and imaging. Mol Imaging 2:50–64

    Article  PubMed  CAS  Google Scholar 

  17. Hatanaka S, Matsushita N, Abe M, Nishimura K, Hasegawa M, Handa H (2003) Direct immobilization of fluorescent dyes onto ferrite nanoparticles during their synthesis from aqueous solution. J Appl Phys 93:7569–7570

    Article  CAS  Google Scholar 

  18. Yoon TJ, Kim JS, Kim BG, Yu KN, Cho MH, Lee JK (2005) Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew Chem Int Ed Engl 44:1068–1071

    Article  PubMed  CAS  Google Scholar 

  19. Guo J, Yang W, Deng Y, Wang C, Fu S (2005) Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM microcapsules. Small 1:737–743

    Article  PubMed  CAS  Google Scholar 

  20. Kwon JT, Kim DS, Minai-Tehrani A, Hwang SK, Chang SH, Lee ES, Xu CX, Lim HT, Kim JE, Yoon BI, An GH, Lee KH, Lee JK, Cho MH (2009) Inhaled fluorescent magnetic nanoparticles induced extramedullary hematopoiesis in the spleen of mice. J Occup Health 51:423–431

    Article  PubMed  CAS  Google Scholar 

  21. Bertorelle F, Wilhelm C, Roger J, Gazeau F, Menager C, Cabuil V (2006) Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 22:5385–5391

    Article  PubMed  CAS  Google Scholar 

  22. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347

    Article  PubMed  CAS  Google Scholar 

  23. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634

    Article  PubMed  CAS  Google Scholar 

  24. Achilefu S (2004) Lighting up tumors with receptor-specific optical molecular probes. Technol Cancer Res Treat 3:393–409

    PubMed  CAS  Google Scholar 

  25. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  26. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  PubMed  CAS  Google Scholar 

  27. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  PubMed  CAS  Google Scholar 

  28. Sevick-Muraca EM, Houston JP, Gurfinkel M (2002) Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents. Curr Opin Chem Biol 6:642–650

    Article  PubMed  CAS  Google Scholar 

  29. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  PubMed  CAS  Google Scholar 

  30. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, Prasad PN (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4:699–708

    Article  PubMed  CAS  Google Scholar 

  31. Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2:2075–2084

    Article  PubMed  CAS  Google Scholar 

  32. Maxwell DJ, Bonde J, Hess DA, Hohm SA, Lahey R, Zhou P, Creer MH, Piwnica-Worms D, Nolta JA (2008) Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stein cells. Stem Cells 26:517–524

    Article  PubMed  CAS  Google Scholar 

  33. McCann CM, Waterman P, Figueiredo JL, Aikawa E, Weissleder R, Chen JW (2009) Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neuroimage 45:360–369

    Article  PubMed  Google Scholar 

  34. Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R (2002) Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 13:554–560

    Article  PubMed  CAS  Google Scholar 

  35. Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92

    PubMed  Google Scholar 

  36. Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336

    Article  PubMed  CAS  Google Scholar 

  37. Jaffer FA, Sosnovik DE, Nahrendorf M, Weissleder R (2006) Molecular imaging of myocardial infarction. J Mol Cell Cardiol 41:921–933

    Article  PubMed  CAS  Google Scholar 

  38. Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L (2005) Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 7:904–911

    Article  PubMed  CAS  Google Scholar 

  39. Marshall MV, Draney D, Sevick-Muraca EM, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 12:583–594

    Article  PubMed  Google Scholar 

  40. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3:668–677

    Article  PubMed  CAS  Google Scholar 

  41. Adams KE, Ke S, Kwon S, Liang F, Fan Z, Lu Y, Hirschi K, Mawad ME, Barry MA, Sevick-Muraca EM (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12:024017

    Article  PubMed  Google Scholar 

  42. Tanaka E, Ohnishi S, Laurence RG, Choi HS, Humblet V, Frangioni JV (2007) Real-time intraoperative ureteral guidance using invisible near-infrared fluorescence. J Urol 178:2197–2202

    Article  PubMed  CAS  Google Scholar 

  43. Foster AE, Kwon S, Ke S, Lu A, Eldin K, Sevick-Muraca E, Rooney CM (2008) In vivo fluorescent optical imaging of cytotoxic T lymphocyte migration using IRDye800CW near-infrared dye. Appl Opt 47:5944–5952

    Article  PubMed  CAS  Google Scholar 

  44. Kovar JL, Volcheck W, Sevick-Muraca E, Simpson MA, Olive DM (2009) Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models. Anal Biochem 384:254–262

    Article  PubMed  CAS  Google Scholar 

  45. Wang GJ, Liu Y, Qin A, Shah SV, Deng ZB, Xiang X, Cheng Z, Liu C, Wang J, Zhang L, Grizzle WE, Zhang HG (2008) Thymus exosomes-like particles induce regulatory T cells. J Immunol 181:5242–5248

    PubMed  CAS  Google Scholar 

  46. Duysen EG, Lockridge O (2008) Whole body and tissue imaging of the butyrylcholinesterase knockout mouse injected with near infrared dye labeled butyrylcholinesterase. Chem Biol Interact 175:119–124

    Article  PubMed  CAS  Google Scholar 

  47. Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13:1671–1681

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the National Important Science Research Program of China (2006CB933205; 2011CB933503), and US-China international S & T cooperation project (2009DFA31990).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinke Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, J., Liu, Y., Hou, Y., Chen, Z., Gu, N. (2012). Near-Infrared Fluorescence Labeling of Iron Nanoparticles and Applications for Cell Labeling and In Vivo Imaging. In: Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 906. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-953-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-953-2_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-952-5

  • Online ISBN: 978-1-61779-953-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics