Skip to main content

Protein kinase G (PKG): Involvement in Promoting Neural Cell Survival, Proliferation, Synaptogenesis, and Synaptic Plasticity and the Use of New Ultrasensitive Capillary-Electrophoresis-Based Methodologies for Measuring PKG Expression and Molecular Actions

  • Protocol
  • First Online:
Protein Kinase Technologies

Part of the book series: Neuromethods ((NM,volume 68))

Abstract

Cyclic GMP-dependent protein kinase (protein kinase G, PKG) plays an important role as a key protein kinase mediating the neuroprotective effects of nitric oxide (NO) at low, physiological levels (10 pM–10 nM) and by the natriuretic peptides, atrial natriuretic peptide (ANP) and brain (B-type) natriuretic peptide (BNP). The NO-, ANP-, and BNP-induced stimulation of PKG kinase (serine/threonine-phosphorylating) activity promotes the survival of neural cells, preventing or minimizing both spontaneous apoptosis and the apoptosis induced by neurotoxins [e.g., minimizing the apoptotic cell death caused by high/toxic levels of NO (>100 nM NO)]. PKG is also involved in promoting/regulating cell proliferation and migration of neural progenitor cells and neural cancer cells, synaptogenesis (promoting formation of filopodia and regulating the guidance of growth cones), synaptic plasticity [contributing to memory consolidation, including long-term potentiation (LTP) in hippocampus and long-term depression (LTD) in cerebellum], nociception, and circadian rhythm. Studies from our laboratory suggest that the pro-growth and pro-survival actions of PKG, specifically the PKG-Iα isoform, involve the downstream phosphorylation of specific target proteins, including BAD (an apoptosis-regulating protein), CREB (a transcription factor involved in memory consolidation and neuroprotection), c-Src (a tyrosine kinase that promotes cell proliferation and survival in both normal and cancerous cells), and vasodilator-stimulated phosphoprotein (VASP, a protein that regulates actin filament formation and focal adhesions). This chapter highlights the use of capillary electrophoresis (CE), coupled with either LED-induced fluorescence or chemoluminescence detection, for providing ultrasensitive, highly quantitative measurements of (1) apoptotic DNA fragmentation, (2) RT-PCR products (determining mRNA expression levels) in a multiplexed analysis, and (3) levels of protein expression and site-specific phosphorylation. The ultrasensitive measurement of protein expression/phosphorylation levels utilizes the recently developed NanoPro100 system [ProteinSimple (originally named Cell Biosciences, Inc.), Santa Clara, CA, USA], an automated CE-chemoluminescence-based immunoquantification instrument, which provides exceedingly high sensitivity (e.g., femtogram quantities of protein) and much better phosphoprotein resolving power and quantification, compared with conventional Western blot analysis. These novel methodologies can now provide neuroscientists with valuable new tools for studying the expression and phosphorylation of lower abundance proteins, such as PKG, which in the past have been difficult to measure because of the relatively low-level sensitivity and inadequate quantification of conventional techniques. These new CE-based methodologies also allow the accurate quantification of apoptotic DNA fragmentation, multiplexed mRNA levels, and protein expression/phosphorylation levels in very small biological samples, potentially containing fewer than 1,000 mammalian cells, thus ideal for studies of primary cell cultures and isolated stem/progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Francis SH, Busch JL, Corbin JD, Sibley D (2010) cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 62:525–563

    Article  PubMed  CAS  Google Scholar 

  2. Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    Article  PubMed  CAS  Google Scholar 

  3. Lincoln TM, Dey N, Sellak H (2001) Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91:1421–1430

    PubMed  CAS  Google Scholar 

  4. Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93:1034–1046

    Article  PubMed  CAS  Google Scholar 

  5. Barnstable CJ, Wei JY, Han MH (2004) Modulation of synaptic function by cGMP and cGMP-gated cation channels. Neurochem Int 45:875–884

    Article  PubMed  CAS  Google Scholar 

  6. Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41

    PubMed  CAS  Google Scholar 

  7. Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    Article  PubMed  CAS  Google Scholar 

  8. Kleppisch T, Feil R (2009) cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Handb Exp Pharmacol 191:549–579

    Article  PubMed  CAS  Google Scholar 

  9. Wang X, Robinson PJ (1997) Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J Neurochem 68:443–456

    Article  PubMed  CAS  Google Scholar 

  10. Fiscus RR (1988) Molecular mechanisms of endothelium-mediated vasodilation. Semin Thromb Hemost 14(Suppl):12–22

    PubMed  Google Scholar 

  11. Fiscus RR (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11:175–190

    Article  PubMed  CAS  Google Scholar 

  12. Fiscus RR, Yuen JP, Chan SL, Kwong JH, Chew SB (2002) Nitric oxide and cyclic GMP as pro- and anti-apoptotic agents. J Card Surg 17:336–339

    Article  PubMed  Google Scholar 

  13. Fiscus RR, Murad F (1988) cGMP-dependent protein kinase activation in intact tissues. Methods Enzymol 159:150–159

    Article  PubMed  CAS  Google Scholar 

  14. Fung E, Fiscus RR, Yim AP, Angelini GD, Arifi AA (2005) The potential use of type-5 phosphodiesterase inhibitors in coronary artery bypass graft surgery. Chest 128:3065–3073

    Article  PubMed  CAS  Google Scholar 

  15. Barger SW, Fiscus RR, Ruth P, Hofmann F, Mattson MP (1995) Role of cyclic GMP in the regulation of neuronal calcium and survival by secreted forms of beta-amyloid precursor. J Neurochem 64:2087–2096

    Article  PubMed  CAS  Google Scholar 

  16. Barger SW, Mattson MP (1995) The secreted form of the Alzheimer’s beta-amyloid precursor protein stimulates a membrane-associated guanylate cyclase. Biochem J 311(Pt 1):45–47

    PubMed  CAS  Google Scholar 

  17. Fiscus RR, Tu AW, Chew SB (2001) Natriuretic peptides inhibit apoptosis and prolong the survival of serum-deprived PC12 cells. Neuroreport 12:185–189

    Article  PubMed  CAS  Google Scholar 

  18. Johlfs MG, Fiscus RR (2010) Protein kinase G type-Ialpha phosphorylates the apoptosis-regulating protein Bad at serine 155 and protects against apoptosis in N1E-115 cells. Neurochem Int 56:546–553

    Article  PubMed  CAS  Google Scholar 

  19. Cheng Chew SB, Leung PY, Fiscus RR (2003) Preincubation with atrial natriuretic peptide protects NG108-15 cells against the toxic/proapoptotic effects of the nitric oxide donor S-nitroso-N-acetyl. Histochem Cell Biol 120:163–171

    Article  PubMed  Google Scholar 

  20. Lohmann SM, Walter U, Miller PE, Greengard P, De Camilli P (1981) Immunohistochemical localization of cyclic GMP-dependent protein kinase in mammalian brain. Proc Natl Acad Sci U S A 78:653–657

    Article  PubMed  CAS  Google Scholar 

  21. Ariano MA (1983) Distribution of components of the guanosine 3′,5′-phosphate system in rat caudate-putamen. Neuroscience 10:707–723

    Article  PubMed  CAS  Google Scholar 

  22. Feil S, Zimmermann P, Knorn A, Brummer S, Schlossmann J, Hofmann F, Feil R (2005) Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience 135:863–868

    Article  PubMed  CAS  Google Scholar 

  23. Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD (1994) Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639

    Article  PubMed  CAS  Google Scholar 

  24. Ota KT, Monsey MS, Wu MS, Schafe GE (2010) Synaptic plasticity and NO-cGMP-PKG signaling regulate pre- and postsynaptic alterations at rat lateral amygdala synapses following fear conditioning. PLoS One 5:e11236

    Article  PubMed  Google Scholar 

  25. Contestabile A, Monti B, Ciani E (2003) Brain nitric oxide and its dual role in neurodegeneration/neuroprotection: understanding molecular mechanisms to devise drug approaches. Curr Med Chem 10:2147–2174

    Article  PubMed  CAS  Google Scholar 

  26. Tegenge MA, Bicker G (2009) Nitric oxide and cGMP signal transduction positively regulates the motility of human neuronal precursor (NT2) cells. J Neurochem 110:1828–1841

    Article  PubMed  CAS  Google Scholar 

  27. Wang L, Gang Zhang Z, Lan Zhang R, Chopp M (2005) Activation of the PI3-K/Akt pathway mediates cGMP enhanced-neurogenesis in the adult progenitor cells derived from the subventricular zone. J Cereb Blood Flow Metab 25:1150–1158

    Article  PubMed  CAS  Google Scholar 

  28. Yoneyama M, Kawada K, Shiba T, Ogita K (2011) Endogenous nitric oxide generation linked to ryanodine receptors activates cyclic GMP/protein kinase G pathway for cell proliferation of neural stem/progenitor cells derived from embryonic hippocampus. J Pharmacol Sci 115:182–195

    Article  PubMed  CAS  Google Scholar 

  29. Firestein BL, Bredt DS (1998) Regulation of sensory neuron precursor proliferation by cyclic GMP-dependent protein kinase. J Neurochem 71:1846–1853

    Article  PubMed  CAS  Google Scholar 

  30. Andoh T, Chiueh CC, Chock PB (2003) Cyclic GMP-dependent protein kinase regulates the expression of thioredoxin and thioredoxin peroxidase-1 during hormesis in response to oxidative stress-induced apoptosis. J Biol Chem 278:885–890

    Article  PubMed  CAS  Google Scholar 

  31. Qian Y, Chao DS, Santillano DR, Cornwell TL, Nairn AC, Greengard P, Lincoln TM, Bredt DS (1996) cGMP-dependent protein kinase in dorsal root ganglion: relationship with nitric oxide synthase and nociceptive neurons. J Neurosci 16:3130–3138

    PubMed  CAS  Google Scholar 

  32. Sung YJ, Chiu DT, Ambron RT (2006) Activation and retrograde transport of protein kinase G in rat nociceptive neurons after nerve injury and inflammation. Neuroscience 141:697–709

    Article  PubMed  CAS  Google Scholar 

  33. Fiscus RR, Torphy TJ, Mayer SE (1984) Cyclic GMP-dependent protein kinase activation in canine tracheal smooth muscle by methacholine and sodium nitroprusside. Biochim Biophys Acta 805:382–392

    Article  PubMed  CAS  Google Scholar 

  34. Fiscus RR, Mayer SE (1982) Neural regulation of cyclic AMP, cyclic AMP-dependent protein kinase, and phosphorylase in bullfrog ventricular myocardium. Circ Res 51:551–559

    Article  PubMed  CAS  Google Scholar 

  35. Fiscus RR, Rapoport RM, Murad F (1983) Endothelium-dependent and nitrovasodilator-induced activation of cyclic GMP-dependent protein kinase in rat aorta. J Cyclic Nucleotide Protein Phosphor Res 9:415–425

    PubMed  Google Scholar 

  36. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  37. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  38. Fiscus RR, Rapoport RM, Waldman SA, Murad F (1985) Atriopeptin II elevates cyclic GMP, activates cyclic GMP-dependent protein kinase and causes relaxation in rat thoracic aorta. Biochim Biophys Acta 846:179–184

    Article  PubMed  CAS  Google Scholar 

  39. Murad F, Rapoport RM, Fiscus R (1985) Role of cyclic-GMP in relaxations of vascular smooth muscle. J Cardiovasc Pharmacol 7(Suppl 3):S111–S118

    PubMed  CAS  Google Scholar 

  40. Bellamy TC, Griffiths C, Garthwaite J (2002) Differential sensitivity of guanylyl cyclase and mitochondrial respiration to nitric oxide measured using clamped concentrations. J Biol Chem 277:31801–31807

    Article  PubMed  CAS  Google Scholar 

  41. Fernhoff NB, Derbyshire ER, Marletta MA (2009) A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci U S A 106:21602–21607

    Article  PubMed  CAS  Google Scholar 

  42. Ridnour LA, Thomas DD, Switzer C, Flores-Santana W, Isenberg JS, Ambs S, Roberts DD, Wink DA (2008) Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 19:73–76

    Article  PubMed  CAS  Google Scholar 

  43. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45:18–31

    Article  PubMed  CAS  Google Scholar 

  44. Sato M, Nakajima T, Goto M, Umezawa Y (2006) Cell-based indicator to visualize picomolar dynamics of nitric oxide release from living cells. Anal Chem 78:8175–8182

    Article  PubMed  CAS  Google Scholar 

  45. Batchelor AM, Bartus K, Reynell C, Constantinou S, Halvey EJ, Held KF, Dostmann WR, Vernon J, Garthwaite J (2010) Exquisite sensitivity to subsecond, picomolar nitric oxide transients conferred on cells by guanylyl cyclase-coupled receptors. Proc Natl Acad Sci U S A 107:22060–22065

    Article  PubMed  CAS  Google Scholar 

  46. Nausch LW, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci U S A 105:365–370

    Article  PubMed  CAS  Google Scholar 

  47. Francis SH, Woodford TA, Wolfe L, Corbin JD (1988) Types I alpha and I beta isozymes of cGMP-dependent protein kinase: alternative mRNA splicing may produce different inhibitory domains. Second Messengers Phosphoproteins 12:301–310

    PubMed  CAS  Google Scholar 

  48. Lincoln TM, Thompson M, Cornwell TL (1988) Purification and characterization of two forms of cyclic GMP-dependent protein kinase from bovine aorta. J Biol Chem 263:17632–17637

    PubMed  CAS  Google Scholar 

  49. Ruth P, Landgraf W, Keilbach A, May B, Egleme C, Hofmann F (1991) The activation of expressed cGMP-dependent protein kinase isozymes I alpha and I beta is determined by the different amino-termini. Eur J Biochem 202:1339–1344

    Article  PubMed  CAS  Google Scholar 

  50. Leung EL, Wong JC, Johlfs MG, Tsang BK, Fiscus RR (2010) Protein kinase G type Ialpha activity in human ovarian cancer cells significantly contributes to enhanced Src activation and DNA synthesis/cell proliferation. Mol Cancer Res 8:578–591

    Article  PubMed  CAS  Google Scholar 

  51. Wong JC, Fiscus RR (2010) Protein kinase G activity prevents pathological-level nitric oxide-induced apoptosis and promotes DNA synthesis/cell proliferation in vascular smooth muscle cells. Cardiovasc Pathol 19:e221–e231

    Article  PubMed  CAS  Google Scholar 

  52. Wong JC, Fiscus RR (2011) Essential roles of the nitric oxide (NO)/cGMP/protein kinase G type-Ialpha (PKG-Ialpha) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Ialpha autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells. J Cell Biochem 112:829–839

    Article  PubMed  CAS  Google Scholar 

  53. Chan SL, Fiscus RR (2003) Guanylyl cyclase inhibitors NS2028 and ODQ and protein kinase G (PKG) inhibitor KT5823 trigger apoptotic DNA fragmentation in immortalized uterine epithelial cells: anti-apoptotic effects of basal cGMP/PKG. Mol Hum Reprod 9:775–783

    Article  PubMed  CAS  Google Scholar 

  54. Deguchi A, Thompson WJ, Weinstein IB (2004) Activation of protein kinase G is sufficient to induce apoptosis and inhibit cell migration in colon cancer cells. Cancer Res 64:3966–3973

    Article  PubMed  CAS  Google Scholar 

  55. Liu L, Li H, Underwood T, Lloyd M, David M, Sperl G, Pamukcu R, Thompson WJ (2001) Cyclic GMP-dependent protein kinase activation and induction by exisulind and CP461 in colon tumor cells. J Pharmacol Exp Ther 299:583–592

    PubMed  CAS  Google Scholar 

  56. Cornwell TL, Arnold E, Boerth NJ, Lincoln TM (1994) Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 267:C1405–C1413

    PubMed  CAS  Google Scholar 

  57. Mottig H, Kusch J, Zimmer T, Scholle A, Benndorf K (2001) Molecular regions controlling the activity of CNG channels. J Gen Physiol 118:183–192

    Article  PubMed  CAS  Google Scholar 

  58. Chan GH, Fiscus RR (2004) Exaggerated production of nitric oxide (NO) and increases in inducible NO-synthase mRNA levels induced by the pro-inflammatory cytokine interleukin-1beta in vascular smooth muscle cells of elderly rats. Exp Gerontol 39:387–394

    Article  PubMed  CAS  Google Scholar 

  59. Ahern GP, Klyachko VA, Jackson MB (2002) cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci 25:510–517

    Article  PubMed  CAS  Google Scholar 

  60. Gow AJ, Chen Q, Hess DT, Day BJ, Ischiropoulos H, Stamler JS (2002) Basal and stimulated protein S-nitrosylation in multiple cell types and tissues. J Biol Chem 277:9637–9640

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura T, Lipton SA (2010) Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis 15:1354–1363

    Article  PubMed  CAS  Google Scholar 

  62. Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A 104:12312–12317

    Article  PubMed  CAS  Google Scholar 

  63. Seth D, Stamler JS (2011) The SNO-proteome: causation and classifications. Curr Opin Chem Biol 15:129–136

    Article  PubMed  CAS  Google Scholar 

  64. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  65. Leung EL, Fraser M, Fiscus RR, Tsang BK (2008) Cisplatin alters nitric oxide synthase levels in human ovarian cancer cells: involvement in p53 regulation and cisplatin resistance. Br J Cancer 98:1803–1809

    Article  PubMed  CAS  Google Scholar 

  66. Fraser M, Chan SL, Chan SS, Fiscus RR, Tsang BK (2006) Regulation of p53 and suppression of apoptosis by the soluble guanylyl cyclase/cGMP pathway in human ovarian cancer cells. Oncogene 25:2203–2212

    Article  PubMed  CAS  Google Scholar 

  67. Dostmann WR, Tegge W, Frank R, Nickl CK, Taylor MS, Brayden JE (2002) Exploring the mechanisms of vascular smooth muscle tone with highly specific, membrane-permeable inhibitors of cyclic GMP-dependent protein kinase Ialpha. Pharmacol Ther 93:203–215

    Article  PubMed  CAS  Google Scholar 

  68. Taylor MS, Okwuchukwuasanya C, Nickl CK, Tegge W, Brayden JE, Dostmann WR (2004) Inhibition of cGMP-dependent protein kinase by the cell-permeable peptide DT-2 reveals a novel mechanism of vasoregulation. Mol Pharmacol 65:1111–1119

    Article  PubMed  CAS  Google Scholar 

  69. Burkhardt M, Glazova M, Gambaryan S, Vollkommer T, Butt E, Bader B, Heermeier K, Lincoln TM, Walter U, Palmetshofer A (2000) KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem 275:33536–33541

    Article  PubMed  CAS  Google Scholar 

  70. Valtcheva N, Nestorov P, Beck A, Russwurm M, Hillenbrand M, Weinmeister P, Feil R (2009) The commonly used cGMP-dependent protein kinase type I (cGKI) inhibitor Rp-8-Br-PET-cGMPS can activate cGKI in vitro and in intact cells. J Biol Chem 284:556–562

    Article  PubMed  CAS  Google Scholar 

  71. Gladwin MT, Kim-Shapiro DB (2008) The functional nitrite reductase activity of the heme-globins. Blood 112:2636–2647

    Article  PubMed  CAS  Google Scholar 

  72. Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro DB, Gladwin MT (2011) Human neuroglobin functions as a redox regulated nitrite reductase. J Biol Chem 286(20):18277–18289

    Article  PubMed  CAS  Google Scholar 

  73. Zhu Y, Sun Y, Jin K, Greenberg DA (2002) Hemin induces neuroglobin expression in neural cells. Blood 100:2494–2498

    Article  PubMed  CAS  Google Scholar 

  74. Fiscus RR, Robles BT, Waldman SA, Murad F (1987) Atrial natriuretic factors stimulate accumulation and efflux of cyclic GMP in C6-2B rat glioma and PC12 rat pheochromocytoma cell cultures. J Neurochem 48:522–528

    Article  PubMed  CAS  Google Scholar 

  75. Paul C, Stratil C, Hofmann F, Kleppisch T (2010) cGMP-dependent protein kinase type I promotes CREB/CRE-mediated gene expression in neurons of the lateral amygdala. Neurosci Lett 473:82–86

    Article  PubMed  CAS  Google Scholar 

  76. Kwiatkowski AV, Rubinson DA, Dent EW, Edward van Veen J, Leslie JD, Zhang J, Mebane LM, Philippar U, Pinheiro EM, Burds AA, Bronson RT, Mori S, Fassler R, Gertler FB (2007) Ena/VASP is required for neuritogenesis in the developing cortex. Neuron 56:441–455

    Article  PubMed  CAS  Google Scholar 

  77. Fiscus RR, Leung CP, Yuen JP, Chan HC (2001) Quantification of apoptotic DNA fragmentation in a transformed uterine epithelial cell line, HRE-H9, using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF). Cell Biol Int 25:1007–1011

    Article  PubMed  CAS  Google Scholar 

  78. O’Neill RA, Bhamidipati A, Bi X, Deb-Basu D, Cahill L, Ferrante J, Gentalen E, Glazer M, Gossett J, Hacker K, Kirby C, Knittle J, Loder R, Mastroieni C, Maclaren M, Mills T, Nguyen U, Parker N, Rice A, Roach D, Suich D, Voehringer D, Voss K, Yang J, Yang T, Vander Horn PB (2006) Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc Natl Acad Sci U S A 103:16153–16158

    Article  PubMed  Google Scholar 

  79. Fan AC, Deb-Basu D, Orban MW, Gotlib JR, Natkunam Y, O’Neill R, Padua RA, Xu L, Taketa D, Shirer AE, Beer S, Yee AX, Voehringer DW, Felsher DW (2009) Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens. Nat Med 15:566–571

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by startup funding for the Fiscus Laboratory in the Center for Diabetes & Obesity Prevention, Treatment, Research & Education at the Roseman University of Health Sciences (formerly the University of Southern Nevada), Henderson and Las Vegas, NV, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Fiscus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fiscus, R.R., Johlfs, M.G. (2012). Protein kinase G (PKG): Involvement in Promoting Neural Cell Survival, Proliferation, Synaptogenesis, and Synaptic Plasticity and the Use of New Ultrasensitive Capillary-Electrophoresis-Based Methodologies for Measuring PKG Expression and Molecular Actions. In: Mukai, H. (eds) Protein Kinase Technologies. Neuromethods, vol 68. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-824-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-824-5_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-823-8

  • Online ISBN: 978-1-61779-824-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics