Skip to main content

Lipase and Phospholipase Biosensors: A Review

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 861))

Abstract

Recent advances in the field of biology, electronics, and nanotechnology have improved the development of biosensors. A biosensor is a device composed of a biological recognition element and a sensor element. Biosensor applications are becoming increasingly important in areas such as biotechnology, pharmaceutics, food, and environment. Lipases and phospholipases are enzymes which have been used widely in food industry, oleochemical industry, biodegradable polymers, detergents, and other applications. In the medical industry, lipases and phospholipases are used as diagnostic tools to detect triglycerides, cholesterol, and phospholipids levels in blood samples. Therefore, the development of lipase and phospholipase biosensors is of paramount importance in the clinical area. This chapter introduces the reader into the preliminaries of biosensor and reviews recent developments of lipase and phospholipase biosensors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  PubMed  CAS  Google Scholar 

  2. Mohanty SP, Kougianos (2006) Biosensors: a tutorial review. IEEE Potentials 25:35–40

    Google Scholar 

  3. Serna CL, Zetty AAM, Ayala AA (2009) Use of enzymatic biosensors as quality indices: a synopsis of present and future trends in the food industry. Chil J Agric Res 69:270–280

    Google Scholar 

  4. Ferreira LS, De Souza Jr MB, Trierweiler JO, Broxtermann O, Folly ROM, Hitzmann B (2003) Aspects concerning the use of biosensors for process control: experimental and simulation investigations. Comput Chem Eng 27:1165–1173

    Article  CAS  Google Scholar 

  5. Rogers KR (1995) Biosensors for environmental applications. Biosens Bioelectron 10:533–541

    Article  CAS  Google Scholar 

  6. Rodriguez-Mozaz S, Maria-Pilar M, de Lopez AM, Barceló D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 76:723–752

    Article  CAS  Google Scholar 

  7. Fei J, Wu Y, Ji X, Wang J, Hu S, Gao Z (2003) An amperometric biosensor for glucose based on electrodeposited polymer/glucose oxidase film on a gold electrode. Anal Sci 19:1259–1263

    Article  PubMed  CAS  Google Scholar 

  8. Pizzariello A, Stredansky M, Stredanska S, Miertus S (2001) Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator. Talanta 54:763–772

    Article  PubMed  CAS  Google Scholar 

  9. Park JK, Yee HJ, Lee KS, Lee WY, Shin MC, Kim TH, Kim SR (1999) Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase. Anal Chim Acta 390:83–91

    Article  CAS  Google Scholar 

  10. Castillo J, Gáspár S, Leth S, Niculescu M, Mortari M, Bontidean I, Soukharev V, Dorneanu SA, Ryabov AD, Csöregi E (2004) Biosensors for life quality design, development and applications. Sensor Actuat B Chem 102:179–194

    Article  Google Scholar 

  11. Ivnitsky D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    Article  Google Scholar 

  12. Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500

    Article  PubMed  CAS  Google Scholar 

  13. Jaeger KE, Eggert T (2002) Lipases for ­biotechnology. Curr Opin Biotechnol 13:390–397

    Article  PubMed  CAS  Google Scholar 

  14. De Maria L, Vind J, Oxenboll KM, Svendsen A, Patkar S (2007) Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74:290–300

    Article  PubMed  CAS  Google Scholar 

  15. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  16. Azonano News (2008) Biosensors Market to Reach $6.1 Billion by 2012. http://www.aznano.com/news.aspx?newsID=8571. Accessed 10 April 2011

  17. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  PubMed  Google Scholar 

  18. Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84:1–12

    Article  Google Scholar 

  19. Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnosis. Fresenius J Anal Chem 366:540–551

    Article  PubMed  CAS  Google Scholar 

  20. Vo-Dinh T, Allain L (2000) Biosensors for medical applications. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Florida

    Google Scholar 

  21. Starodub NF (2006) Biosensors for the evaluation of lipase activity. J Mol Catal B Enzym 40:155–160

    Article  CAS  Google Scholar 

  22. Pohanka M, Skládal P (2008) Electrochemical biosensors – principles and applications. J Appl Biomed 6:57–64

    CAS  Google Scholar 

  23. Buck RP, Lindner E (1994) Recommendation for nomenclature of ion-selective electrodes (IUPAC recommendations 1994). Pure Appl Chem 66:2527–2536

    Google Scholar 

  24. Khanna VK (2007) Advances in chemical sensors, biosensors and microsystems based on ion-sensitive field-effect transistors. Indian J Pure Appl Phys 45:345–353

    CAS  Google Scholar 

  25. Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical bionsensors. Anal Sci 20:1113–1126

    Article  PubMed  CAS  Google Scholar 

  26. González-Rumayor V, García-Iglesias E, Ruíz-Gálan O, Gago-Cabezas L (2005) Aplicaciones de biosensores en la industria agroalimentaria. CEIM Dirección General de Universidades e Investigación, Colección Vigilancia Tecnológica, Madrid

    Google Scholar 

  27. Weetall HH (1996) Biosensors technology what? Where? When and why. Biosens Bioelectron 11:1–5

    Article  Google Scholar 

  28. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

    Article  PubMed  CAS  Google Scholar 

  29. Mulchandani A (1998) Principles of enzyme biosensors. In: Mulchandani A, Rogers KR (eds) Enzyme and microbial biosensors: techniques and protocols. Springer, New Jersey

    Chapter  Google Scholar 

  30. Hall RH (2002) Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect 4:425–432

    Article  PubMed  Google Scholar 

  31. Kissinger PT (2005) Biosensors – a perspective. Biosens Bioelectron 20:25812–2516

    Article  Google Scholar 

  32. Zhao Z, Jiang H (2010) Enzyme-based electrochemical biosensors. In: Serra PA (ed) Biosensors. INTECH, Croatia

    Google Scholar 

  33. Dsouza SF (1999) Immobilized enzymes in bioprocess. Curr Sci India 77:69–79

    CAS  Google Scholar 

  34. Arya SK, Datta M, Malhotra B (2008) Recent advances in cholesterol biosensor. Biosens Bioelectron 23:1083–1100

    Article  PubMed  CAS  Google Scholar 

  35. Nunes GS, Marty JL (2006). Immobilization of enzymes on electrodes. In: Guisan JM (ed) Immobilization of enzymes and cells. Springer Humana Press Inc, New Jersey

    Google Scholar 

  36. Zhang S, Wright G, Yang Y (2000) Materials and techniques for electrochemical biosensor design and construction. Biosens Bioelectron 15:273–282

    Article  PubMed  CAS  Google Scholar 

  37. Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechn biosens. Biotechnol adv 22:505–518

    Article  PubMed  Google Scholar 

  38. Li H, Liu s, Dai Z, Bao J, Yang X (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561

    Google Scholar 

  39. Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensor Actuat B Chem 123:1195–1205

    Article  Google Scholar 

  40. Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trend Anal Chem 25:480–489

    Article  CAS  Google Scholar 

  41. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  PubMed  CAS  Google Scholar 

  42. Petry S, Karl-Heinz B, Schoenafinger K, Jung C, Kleine H, Müller G (2004) High-throughput screening of hormone-sensitive lipase and subsequent computer-assisted compound optimization. In: Müller G, Petry S (eds) Lipases and phospholipases in drug development, 1st edn. Wiley, Weinheim

    Google Scholar 

  43. Deeth HC, Touch V (2000) Methods for detecting lipase activity in milk and milk products. Aust J Dairy Technol 55:153–168

    CAS  Google Scholar 

  44. Wahler D, Reymond JL (2000) Novel methods for biocatalyst screening. Curr Opin Chem Biol 5:152–158

    Article  Google Scholar 

  45. Ge K, Liu D, Chen K, Nie L, Yao S (1995) Assay of pancreatic lipase with the surface acoustic wave sensor system. Anal Biochem 10:207–211

    Article  Google Scholar 

  46. Rejeb IB, Arduini F, Amine A, Gargouri M, Palleschi G (2007) Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination. Anal Chim Acta 594:1–8

    Article  PubMed  Google Scholar 

  47. Wei W, Wang RH, Nie LH, Yao SZ (1997) Rapid determination of dimethoate with a surface acoustic wave impedance sensor system. Anal Lett 30:2641–2653

    CAS  Google Scholar 

  48. Okazaki M, Komoriya N, Tomoike H, Inowe N, Itoh S, Hoosaki S (1998) Quantitative detection method of triglycerides in serum lipoproteins and serum free glycerol by high performance liquid chromatography. J Chromatogr B Biomed Sci Appl 709:179–87

    Article  PubMed  CAS  Google Scholar 

  49. Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9:69–85

    Article  CAS  Google Scholar 

  50. Torbicz W, Pijanowska DG (2007) Microsystems in biochemical diagnosis. Biocybern Biomed Eng 27:33–43

    Google Scholar 

  51. Pijanowska DG, Torbicz W (2001) The pH-detection of triglycerides. Sensor Actuat B Chem 78:263–266

    Article  Google Scholar 

  52. Reddy RR, Chadha A, Bhattacharya E (2001) Porous silicon based potentiometric triglyceride biosensor. Biosens Bioelectron 16:313–317

    Article  PubMed  CAS  Google Scholar 

  53. Laurinavicius V, Kurtinaitiene B, Gureviciene V, Boguslavsky L, Geng L, Skotheim T (1996) Amperometric glyceride biosensor. Anal Chim Acta 330:159–166

    Article  CAS  Google Scholar 

  54. Wu LC, Cheng CM (2005) Flow-injection enzymatic analysis for glycerol and triacylglycerol. Anal Biochem 346:234–240

    Article  PubMed  CAS  Google Scholar 

  55. Narang J, Minakshi BM, Pundir CS (2010) Determination of serum triglyceride by enzyme electrode using covalently immobilized enzyme on egg shell membrane. Int J Biol Macromol 47:691–695

    Article  PubMed  CAS  Google Scholar 

  56. Vijayalakshmi A, Tarunashree Y, Baruwati B, Manorama SV, Narayana BL, Johnson REC, Rao NM (2008) Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles. Biosens Bioelectron 23:1708–1714

    Article  PubMed  CAS  Google Scholar 

  57. Dhand C, Solanki PR, Datta M, Malhotra BD (2010) Polyaniline/single-walled carbon nanotubes composite based triglyceride biosensor. Electroanal 22:2683–2693

    Article  CAS  Google Scholar 

  58. Solanki PR, Dhand C, Kaushik A, Ansari AA, Sood KN, Malhotra BD (2009) Nonoestructured cerium oxide film for triglyceride sensor. Sensor Actuat B Chem 141:551–556

    Article  Google Scholar 

  59. Ganjali MR, Faridbod F, Nasli-Esfahani E, Larijani B, Rashedi H, Nourozi P (2010) FFT continuous cyclic voltammetry trygliceride dual enzyme biosensor based on MWCNTs-CeO2 nanoparticles. Int J Electrochem Sci 5:1422–1433

    CAS  Google Scholar 

  60. Shu-Yi H, Bartling B, Wang C, Fuh-Sheng S, Chung-Chiun L (2010) Enzymatic determination of diglyceride using an iridium. Nano-particle based single use, disposable biosensor. Sensors 10:5758–5773

    Article  Google Scholar 

  61. Fernandez RE, Hareesh V, Bhattacharya E, Chadha A (2009) Comparison of a potentiometric and a micromechanical triglyceride biosensor. Biosens Bioelectron 24:1276–1280

    Article  PubMed  CAS  Google Scholar 

  62. Charpentier L, Murr N (1995) Amperometric determination of cholesterol in serum with use of a renewable surface peroxidase electrode. Anal Chim Acta 318:89–93

    Article  CAS  Google Scholar 

  63. Situmorang M, Alexander PW, Hibbert DB (1999) Flow injection potentiometry for enzymatic assay of cholesterol with a tungsten electrode sensor. Talanta 49:639–649

    Google Scholar 

  64. Foster R, Cassidy J, O’Donoghue E (2000) Electrochemical diagnostic strip device for total cholesterol and its subfractions. Electroanal 12:716–721

    Article  CAS  Google Scholar 

  65. Malik V, Pundir CS (2002) Determination of total cholesterol in serum by cholesterol esterase and cholesterol oxidase immobilized and co-immobilized on to arylamine glass. Biotechnol Appl Biochem 35:191–197

    Article  PubMed  CAS  Google Scholar 

  66. Martin SP, Lamb DJ, Lynch JM, Reddy SM (2003) Enzyme-based determination of cholesterol using the quartz crystal acoustic wave sensor. Anal Chim Acta 487:91–100

    Google Scholar 

  67. Suman PCS (2003) Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase onto alkylamine glass beads for measurement of total cholesterol in serum. Curr Appl Phys 3:129–133

    Article  Google Scholar 

  68. Basu AK, Chattopadhyay P, Chakraborty R (2007) Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Bioelectrochemistry 70:375–379

    Article  PubMed  CAS  Google Scholar 

  69. Hooda V, Gahlaut A, Kumar H, Pundir CS (2009) Biosensor based on enzyme coupled PVC reaction cell for electrochemical measurement of serum total cholesterol. Sensor Actuat B Chem 136:235–241

    Article  Google Scholar 

  70. Wei-Chung S, Mei-Chun LMS (2009) Development of disposable lipid biosensors for the determination of total cholesterol. Biosens Bioelectron 24:1679–1684

    Article  Google Scholar 

  71. Yoneyama Y, Yonemori Y, Murata M, Ohnuki H, Hibi K, Hayashi T, Ren H, Endo H (2009) Wireless biosensor system for real-time cholesterol monitoring in fish “Nile tilapia”. Talanta 80:909–915

    Article  PubMed  CAS  Google Scholar 

  72. Safavi A, Farjami F (2011) Electrodeposition of gold–platinum alloy nanoparticles on ionic liquid–chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens Bioelectron 26:2547–2552

    Google Scholar 

  73. Fang C, He J, Chen Z (2011) A disposable amperometric biosensor for determining total choresterol in whole blood. Sensor Actuat B Chem 155:545–550

    Google Scholar 

  74. Dhand C, Solanki PR, Sood KN, Datta M, Malhotra BD (2009) Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem Commun 11:1482–1486

    Article  CAS  Google Scholar 

  75. Agarwal N, Pitchumoni CS (1991) Assessment of severity in acute pancreatitis. Am J Gastroenterol 86:1385–1391

    PubMed  CAS  Google Scholar 

  76. Oei HHS, van der Meer IM, Hofman A, Koudstaal PJ, Stijnen T, Breteler MMB, Witteman JCM (2005) Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke—the Rotterdam study. Circulation 111:570–575

    Article  PubMed  CAS  Google Scholar 

  77. Vrbová E, Kroupová I, Valentová O, Novotná Z, Káš J, Thévenot C (1993) Determination of phospholipase D activity with a choline biosensor. Anal Chim Acta 280:43–48

    Article  Google Scholar 

  78. Marazuela MD, Moreno-Bondi MC (1998) Determination of choline-containing phospholipids in serum with a fiber-optic biosensor. Anal Chim Acta 374:19–29

    Article  CAS  Google Scholar 

  79. Serradilla-Razola S, Pochet S, Grosfils K, Kauffmann JM (2003) Amperometric determination of choline released from rat submandibular gland acinar cells using a choline oxidase biosensor. Biosens Bioelectron 18:185–191

    Article  Google Scholar 

  80. Yang M, Yang Y, Yang Y, Shen G, Yu R (2004) Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode. Anal Biochem 334:127–134

    Article  PubMed  CAS  Google Scholar 

  81. Pati S, Palmisano F, Quinto M, Zambonin PG (2005) Quantitation of major choline fractions in milk and dietary supplements using a phospholipase D bioreactor coupled to a choline amperometric biosensor. J Agric Food Chem 53:6974–6979

    Article  PubMed  CAS  Google Scholar 

  82. End P, Gout I, Fry MJ, Panayotou G, Dhand R, Yonezawa K, Kasuga M, Waterfield MD (1993) A biosensor approach to probe the structure and function of the p85α subunit of the phosphatidylinositol 3-kinase complex. J Biol Chem 268:10066–10075

    Google Scholar 

  83. Mirsky VM, Mass M, Krause C, Wolfbeis OW (1998) Capacitive approach to determine phospholipase A2 activity toward artificial and natural substrates. Anal Chem 70:3674–3678

    Article  PubMed  CAS  Google Scholar 

  84. Uesugi Y, Arima J, Iwabuchi M, Hatanaka T (2007) Sensor of phospholipids in Streptomyces phospholipase D. FEBS J 274:2672–2681

    Article  PubMed  CAS  Google Scholar 

  85. Wei-Yin L, Chung-Chiun L, Wang C (2008) Detection of lipoprotein-associated phospholipase A2 using a nano-iridium particle catalyst-based biosensor. Sensor Actuat B Chem 134:993–999

    Article  Google Scholar 

  86. Hartono D, Lai SL, Kun-Lin Y, Lin-Yue LY (2009) A liquid crystal-based sensor for real-time and label-free identification of phospholipase-like toxins and their inhibitors. Biosens Bioelectron 24:2289–2293

    Article  PubMed  CAS  Google Scholar 

  87. Aili D, Mager M, Roche D, Stevens MM (2011) Hybrid nanoparticle-liposome detection of phospholipase activity. Nano Lett 11:1401–1405

    Google Scholar 

  88. Wichmann O, Gelb MH, Schultz C (2007) Probing phospholipase A2 with fluorescent phospholipid substrates. Chem Bio Chem 8:1555–1569

    PubMed  CAS  Google Scholar 

  89. Nishioka T, Frohman MA, Matsuda M, Kiyokawa E (2010) Heterogeneity of phosphatidic acid levels and distribution at the plasma membrane in living cells as visualized by a Förster Resonance Energy Transfer (FRET) biosensor. J Biol Chem 285:35979–35987

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Herrera-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Herrera-López, E.J. (2012). Lipase and Phospholipase Biosensors: A Review. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_30

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics