Skip to main content

Measuring Larval Zebrafish Behavior: Locomotion, Thigmotaxis, and Startle

  • Protocol
  • First Online:
Book cover Zebrafish Protocols for Neurobehavioral Research

Part of the book series: Neuromethods ((NM,volume 66))

Abstract

Larval zebrafish are genetically tractable, easy to manipulate, and can be generated in large numbers. Their small size also makes them ideal for high-throughput screens for genes or pharmacological compounds that affect behavior. Thus, larval zebrafish are an ideal model system to investigate locomotion and locomotion-based behaviors such as thigmotaxis and startle. In this chapter, I present methods to measure locomotion, thigmotaxis, and response to a startle stimulus in larval zebrafish. These methods use a Zebrabox and Zebralab software (from ViewPoint Life Sciences) in a manner which is suitable for high-throughput analyses. I compare the locomotion and thigmotaxis of several widely available wild-type strains to demonstrate that these protocols are sensitive enough to detect behavioral differences in different genetic backgrounds. I also measure the difference in startle response between AB wild-type and r × 3−/− mutant fish. These protocols will help to standardize analyses of larval zebrafish locomotion and may provide a starting point for behavioral measurement of the large number of zebrafish mutants which have already been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fero K, Yokogawa T, Burgess HA (2010) The behavioral repertoire of larval zebrafish. In: Kalueff AV, Cachat JM (eds) Zebrafish models in neurobehavioral research, vol 52. Cambridge University Press, UK, pp 249–291

    Chapter  Google Scholar 

  2. Fetcho JR, Liu KS (1998) Zebrafish as a model system for studying neuronal circuits and behavior. Ann N Y Acad Sci 860:333–345

    Article  PubMed  CAS  Google Scholar 

  3. Saint-Amant L, Drapeau P (2003) Whole-cell patch-clamp recordings from identified spinal neurons in the zebrafish embryo. Methods Cell Sci 25:59–64

    Article  PubMed  Google Scholar 

  4. Del Bene F, Wyart C, Robles E, Tran A, Looger L, Scott EK et al (2010) Filtering of visual information in the tectum by an identified neural circuit. Science 330:669–673

    Article  PubMed  Google Scholar 

  5. Liu KS, Fetcho JR (1999) Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron 23:325–335

    Article  PubMed  CAS  Google Scholar 

  6. McLean DL, Fetcho JR (2011) Movement, technology and discovery in the zebrafish. Curr Opin Neurobiol 21:110–115

    Article  PubMed  CAS  Google Scholar 

  7. Muto A, Ohkura M, Kotani T, Higashijima S, Nakai J, Kawakami K (2011) Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish. Proc Natl Acad Sci U S A 108:5425–5430

    Article  PubMed  CAS  Google Scholar 

  8. Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F (2010) Monitoring neural activity with bioluminescence during natural behavior. Nat Neurosci 13:513–520

    Article  PubMed  CAS  Google Scholar 

  9. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S et al (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351

    Article  PubMed  CAS  Google Scholar 

  10. Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R et al (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6:231–237

    Article  PubMed  CAS  Google Scholar 

  11. Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E (2002) Development of the locomotor network in zebrafish. Prog Neurobiol 68:85–111

    Article  PubMed  CAS  Google Scholar 

  12. Buss RR, Drapeau P (2002) Activation of embryonic red and white muscle fibers during fictive swimming in the developing zebrafish. J Neurophysiol 87:1244–1251

    PubMed  Google Scholar 

  13. McLean DL, Fan J, Higashijima S, Hale ME, Fetcho JR (2007) A topographic map of recruitment in spinal cord. Nature 446:71–75

    Article  PubMed  CAS  Google Scholar 

  14. Burgess HA, Schoch H, Granato M (2010) Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Curr Biol 20:381–386

    Article  PubMed  CAS  Google Scholar 

  15. Budick SA, O’Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203:2565–2579

    PubMed  CAS  Google Scholar 

  16. Saint-Amant L, Drapeau P (1998) Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol 37:622–632

    Article  PubMed  CAS  Google Scholar 

  17. Saint-Amant L, Drapeau P (2001) Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron 31:1035–1046

    Article  PubMed  CAS  Google Scholar 

  18. Saint-Amant L, Drapeau P (2000) Motoneuron activity patterns related to the earliest behavior of the zebrafish embryo. J Neurosci 20:3964–3972

    PubMed  CAS  Google Scholar 

  19. McDearmid JR, Drapeau P (2006) Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. J Neurophysiol 95:401–417

    Article  PubMed  CAS  Google Scholar 

  20. Brustein E, Drapeau P (2005) Serotoninergic modulation of chloride homeostasis during maturation of the locomotor network in zebrafish. J Neurosci 25:10607–10616

    Article  PubMed  CAS  Google Scholar 

  21. Downes GB, Granato M (2006) Supraspinal input is dispensable to generate glycine-mediated locomotive behaviors in the zebrafish embryo. J Neurobiol 66:437–451

    Article  PubMed  CAS  Google Scholar 

  22. Gabriel JP, Mahmood R, Kyriakatos A, Soll I, Hauptmann G, Calabrese RL et al (2009) Serotonergic modulation of locomotion in zebrafish: endogenous release and synaptic mechanisms. J Neurosci 29:10387–10395

    Article  PubMed  CAS  Google Scholar 

  23. Thirumalai V, Cline HT (2008) Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae. J Neurophysiol 100:1635–1648

    Article  PubMed  CAS  Google Scholar 

  24. Sharma S, Coombs S, Patton P, Burt de Perera T (2009) The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol 195:225–240

    Article  Google Scholar 

  25. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962

    Article  PubMed  CAS  Google Scholar 

  26. Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61:59–64

    Article  PubMed  CAS  Google Scholar 

  27. Lockwood B, Bjerke S, Kobayashi K, Guo S (2004) Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol Biochem Behav 77:647–654

    Article  PubMed  CAS  Google Scholar 

  28. Peitsaro N, Kaslin J, Anichtchik OV, Panula P (2003) Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem 86:432–441

    Article  PubMed  CAS  Google Scholar 

  29. Koch M (1999) The neurobiology of startle. Prog Neurobiol 59:107–128

    Article  PubMed  CAS  Google Scholar 

  30. Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A, Goldsmith P et al (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33:1206–1215

    Article  PubMed  CAS  Google Scholar 

  31. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539

    Article  PubMed  Google Scholar 

  32. O’Malley DM, Kao YH, Fetcho JR (1996) Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17:1145–1155

    Article  PubMed  Google Scholar 

  33. Fetcho JR, Faber DS (1988) Identification of motoneurons and interneurons in the ­spinal network for escapes initiated by the mauthner cell in goldfish. J Neurosci 8: 4192–4213

    PubMed  CAS  Google Scholar 

  34. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed., Univ. of Oregon Press, Eugene

    Article  PubMed  CAS  Google Scholar 

  35. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189

    Article  PubMed  CAS  Google Scholar 

  36. Loosli F, Staub W, Finger-Baier KC, Ober EA, Verkade H, Wittbrodt J et al (2003) Loss of eyes in zebrafish caused by mutation of chokh/rx3. EMBO Rep 4:894–899

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am extremely grateful to my supervisor, Dr. Laure Bally-Cuif, for her support of this project. The zebrafish embryos used in this study were kindly provided by Sebastian Bedu. I am also indebted to my colleagues Marion Coolen, Merlin Lange, and Jakob von Trotha for commenting on an earlier version of this chapter and to Katharina Stumpenhorst for help with behavioral experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. J. Norton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Norton, W.H.J. (2012). Measuring Larval Zebrafish Behavior: Locomotion, Thigmotaxis, and Startle. In: Kalueff, A., Stewart, A. (eds) Zebrafish Protocols for Neurobehavioral Research. Neuromethods, vol 66. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-597-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-597-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-596-1

  • Online ISBN: 978-1-61779-597-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics