Skip to main content

Genomic Analysis of Nitrogen Fixation

  • Protocol
  • First Online:
Book cover Nitrogen Fixation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 766))

Abstract

Advances in sequencing technology in the past decade have enabled the sequencing of genomes of thousands of organisms including diazotrophs. Genomics have enabled thorough analysis of the gene organization of nitrogen-fixing species, the identification of new genes involved in nitrogen fixation, and the identification of new diazotrophic species. This chapter reviews key characteristics of nitrogen-fixing genomes and methods to identify and analyze genomes of new diazotrophs using genome scanning. This chapter refers to Azotobacter vinelandii, a well-studied nitrogen-fixing organism, as a model for studying nitrogen-fixing genomes. We discuss the main nitrogen fixation genes as well as accessory genes that contribute to diazotrophy. We also review approaches that can be used to modify genomes in order to study nitrogen fixation at the genetic, biochemical, and biophysical level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Postgate JR (1982) The nitrogen cycle. Philos Trans R Soc Lond B 296:375–385

    Article  CAS  Google Scholar 

  2. Hill S, Kennedy C, Kavanagh E et al (1981) Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in Klebsiella pneumoniae. Nature 290:424–426

    Article  PubMed  CAS  Google Scholar 

  3. Weidner S, Puhler A, Kuster H (2003) Genomics insights into symbiotic nitrogen fixation. Curr Opin Biotechnol 14:200–205

    Article  PubMed  CAS  Google Scholar 

  4. Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  PubMed  CAS  Google Scholar 

  5. Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum- dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633

    Article  PubMed  CAS  Google Scholar 

  6. Cummings SP, Gyaneshwar P, Vinuesa P et al (2009) Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ Microbiol 11:2510–2525

    Article  PubMed  CAS  Google Scholar 

  7. Mohamed NM, Colman AS, Tal Y et al (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921

    Article  PubMed  CAS  Google Scholar 

  8. Zehr JP, Jenkins BD, Short SM et al (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  PubMed  CAS  Google Scholar 

  9. Dedysh SN, Ricke P, Liesack W (2004) NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150:1301–1313

    Article  PubMed  CAS  Google Scholar 

  10. Raymond J, Siefert JL, Staples CR et al (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  PubMed  CAS  Google Scholar 

  11. Henson BJ, Watson LE, Barnum SR (2004) The evolutionary history of nitrogen fixation, as assessed by NifD. J Mol Evol 58:390–399

    Article  PubMed  CAS  Google Scholar 

  12. Betancourt DA, Loveless TM, Brown JW et al (2008) Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Appl Environ Microbiol 74:3471–3480

    Article  PubMed  CAS  Google Scholar 

  13. Brigle KE, Weiss CM, Newton WE et al (1987) Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifH and nifK. J Bacteriol 169:1547–1553

    PubMed  CAS  Google Scholar 

  14. Wolfinger ED, Bishop PE (1991) Nucleotide sequence and mutational analysis of the vnfENX region of Azotobacter vinelandii. J Bacteriol 173:7565–7572

    PubMed  CAS  Google Scholar 

  15. Watzlich D, Brocker MJ, Uliczka F et al (2009) Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J Biol Chem 284:15530–15540

    Article  PubMed  Google Scholar 

  16. Yamamoto H, Kurumiya S, Ohashi R et al (2009) Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 50:1663–1673

    Article  PubMed  CAS  Google Scholar 

  17. Kennedy C, Rudnick P, MacDonald ML et al (2005) Genus III. Azotobacter Beijerinck 1901, 567al. In: Brenner DJ, Noel RK, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology—The Proteobacteria, pp. 384–402. Springer, New York, NY

    Google Scholar 

  18. Setubal JC, Dos Santos PC, Goldman BS et al (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545

    Article  PubMed  CAS  Google Scholar 

  19. Yan Y, Yang J, Dou Y et al (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105:7564–7569

    Article  PubMed  CAS  Google Scholar 

  20. Lalucat J, Bennasar A, Bosch R et al (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547

    Article  PubMed  CAS  Google Scholar 

  21. Desnoues N, Lin M, Guo X et al (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251–2262

    Article  PubMed  CAS  Google Scholar 

  22. Dingler C, Kuhla J, Wassink H et al (1988) Levels and activities of nitrogenase proteins in Azotobacter vinelandii grown at different dissolved oxygen concentrations. J Bacteriol 170:2148–2152

    PubMed  CAS  Google Scholar 

  23. Oelze J (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev 24:321–333

    Article  PubMed  CAS  Google Scholar 

  24. Curatti L, Brown CS, Ludden PW et al (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci USA 102:6291–6296

    Article  PubMed  CAS  Google Scholar 

  25. Wu G, Hill S, Kelly MJ et al (1997) The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an Fnr- like protein. Microbiology 143:2197–2207

    Article  PubMed  CAS  Google Scholar 

  26. Kelly MJ, Poole RK, Yates MG et al (1990) Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019

    PubMed  CAS  Google Scholar 

  27. Jacobson MR, Brigle KE, Bennett LT et al (1989) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 171:1017–1027

    PubMed  CAS  Google Scholar 

  28. Joerger RD, Bishop PE (1988) Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol 170:1475–1487

    PubMed  CAS  Google Scholar 

  29. Joerger RD, Loveless TM, Pau RN et al (1990) Nucleotide-sequences and mutational analysis of the structural genes for nitrogenase-2 of Azotobacter vinelandii. J Bacteriol 172:3400–3408

    PubMed  CAS  Google Scholar 

  30. Joerger RD, Jacobson MR, Premakumar R et al (1989) Nucleotide-sequence and mutational analysis of the structural genes (anfhdgk) for the 2nd alternative nitrogenase from Azotobacter vinelandii. J Bacteriol 171:1075–1086

    PubMed  CAS  Google Scholar 

  31. Jacobson MR, Cash VL, Weiss MC et al (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57

    Article  PubMed  CAS  Google Scholar 

  32. Rodriguez-Quinones F, Bosch R, Imperial J (1993) Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol 175:2926–2935

    PubMed  CAS  Google Scholar 

  33. Lee CC, Hu Y, Ribbe MW (2009) Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. Proc Natl Acad Sci USA 106:9209–9214

    Article  PubMed  CAS  Google Scholar 

  34. Woodley P, Buck M, Kennedy C (1996) Identification of sequences important for recognition of vnf genes by the VnfA transcriptional activator in Azotobacter vinelandii. FEMS Microbiol Lett 135:213–221

    Article  PubMed  CAS  Google Scholar 

  35. Walmsley J, Toukdarian A, Kennedy C (1994) The role of regulatory genes nifA, vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three nitrogenases of Azotobacter vinelandii. Arch Microbiol 162:422–429

    Article  PubMed  CAS  Google Scholar 

  36. Ruttimann-Johnson C, Rubio LM, Dean DR et al (2003) VnfY is required for full activity of the vanadium-containing dinitrogenase in Azotobacter vinelandii. J Bacteriol 185:2383–2386

    Article  PubMed  CAS  Google Scholar 

  37. Ruttimann-Johnson C, Staples CR, Rangaraj P et al (1999) A vanadium and iron cluster accumulates on VnfX during iron-vanadium- cofactor synthesis for the vanadium nitrogenase in Azotobacter vinelandii. J Biol Chem 274:18087–18092

    Article  PubMed  CAS  Google Scholar 

  38. Pau RN, Eldridge ME, Lowe DJ et al (1993) Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochemistry 293:101–107

    CAS  Google Scholar 

  39. Premakumar R, Loveless TM, Bishop PE (1994) Effect of amino acid substitutions in a potential metal-binding site of AnfA on expression from the anfH promoter in Azotobacter vinelandii. J Bacteriol 176:6139–6142

    PubMed  CAS  Google Scholar 

  40. Mylona PV, Premakumar R, Pau RN et al (1996) Characteristics of orf1 and orf2 in the anfHDGK genomic region encoding nitrogenase 3 of Azotobacter vinelandii. J Bacteriol 178:204–208

    PubMed  CAS  Google Scholar 

  41. Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231:494–498

    Article  PubMed  CAS  Google Scholar 

  42. Lei S, Pulakat L, Gavini N (1999) Regulated expression of the nifM of Azotobacter vinelandii in response to molybdenum and vanadium supplements in Burk’s nitrogen-free growth medium. Biochem Biophys Res Commun 264:186–190

    Article  PubMed  CAS  Google Scholar 

  43. Dixon R (1998) The oxygen-responsive NIFL-NIFA complex: A novel two-component regulatory system controlling nitrogenase synthesis in gamma- proteobacteria. Arch Microbiol 169:371–380

    Article  PubMed  CAS  Google Scholar 

  44. Martinez-Argudo I, Little R, Shearer N et al (2004) The NifL-NifA system: A multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 186:601–610

    Article  PubMed  CAS  Google Scholar 

  45. Premakumar R, Jacobson MR, Loveless TM et al (1992) Characterization of transcripts expressed from nitrogenase-3 structural genes of Azotobacter vinelandii. Can J Microbiol 38:929–936

    Article  PubMed  CAS  Google Scholar 

  46. Luque F, Mitchenall LA, Chapman M et al (1993) Characterization of genes involved in molybdenum transport in Azotobacter vinelandii. Mol Microbiol 7:447–459

    Article  PubMed  CAS  Google Scholar 

  47. Knosp O, von Tigerstrom M, Page WJ (1984) Siderophore-mediated uptake of iron in Azotobacter vinelandii. J Bacteriol 159:341–347

    PubMed  CAS  Google Scholar 

  48. Schmehl M, Jahn A, Meyer zu Vilsendorf A et al (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615

    Article  PubMed  CAS  Google Scholar 

  49. Moshiri F, Kim JW, Fu C et al (1994) The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen- mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol 14:101–114

    Article  PubMed  CAS  Google Scholar 

  50. Page W, Von Tigerstrom M (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061

    PubMed  CAS  Google Scholar 

  51. Bishop PE, Premakumar R, Dean DR et al (1986) Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92–94

    Article  PubMed  CAS  Google Scholar 

  52. Brigle KE, Setterquist RA, Dean DR (1987) Site-directed mutagenesis of the nitrogenase MoFe protein of Azotobacter vinelandii. Proc Natl Acad Sci USA 84:7066–7069

    Article  PubMed  CAS  Google Scholar 

  53. Morgan TV, Lundell DJ, Burgess BK (1988) Azotobacter vinelandii ferredoxin I: cloning, sequencing, and mutant analysis. J Biol Chem 263:1370–1375

    PubMed  CAS  Google Scholar 

  54. Robinson AC, Burgess BK, Dean DR (1986) Activity, reconstitution, and accumulation of nitrogenase components in Azotobacter vinelandii mutant strains containing defined deletions within the nitrogenase structural gene-cluster. J Bacteriol 166:180–186

    PubMed  CAS  Google Scholar 

  55. Johnson DC, Unciuleac MC, Dean DR (2006) Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol 188:7551–7561

    Article  PubMed  CAS  Google Scholar 

  56. Suh MH, Pulakat L, Gavini N (2003) Functional expression of a fusion-dimeric MoFe protein of nitrogenase in Azotobacter vinelandii. J Biol Chem 278:5353–5360

    Article  PubMed  CAS  Google Scholar 

  57. Wang SZ, Dean DR, Chen JS et al (1991) The N-terminal and C-terminal portions of NifV are encoded by two different genes in Clostridium pasteurianum. J Bacteriol 173:3041–3046

    PubMed  CAS  Google Scholar 

  58. Christiansen J, Goodwin PJ, Lanzilotta WN et al (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37:12611–12623

    Article  PubMed  CAS  Google Scholar 

  59. Hu Y, Corbett MC, Fay AW et al (2006) FeMo cofactor maturation on NifEN. Proc Natl Acad Sci USA 103:17119–17124

    Article  PubMed  CAS  Google Scholar 

  60. Raulfs EC, O‘Carroll IP, Dos Santos PC et al (2008) In vivo iron-sulfur cluster formation. Proc Natl Acad Sci USA 105:8591–8596

    Article  PubMed  CAS  Google Scholar 

  61. Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  PubMed  CAS  Google Scholar 

  62. Hu Y, Fay AW, Lee CC et al (2008) Assembly of nitrogenase MoFe protein. Biochemistry 47:3973–3981

    Article  PubMed  CAS  Google Scholar 

  63. Jones CW, Brice JM, Wright V et al (1973) Respiratory protection of nitrogenase in Azotobacter vinelandii. FEBS Lett 29:77–81

    Article  PubMed  CAS  Google Scholar 

  64. Goodwin PJ, Agar JN, Roll JT et al (1998) The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 37:10420–10428

    Article  PubMed  CAS  Google Scholar 

  65. Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci USA 102:3236–3241

    Article  PubMed  CAS  Google Scholar 

  66. Soboh B, Igarashi RY, Hernandez JA et al (2006) Purification of a nifEN protein complex that contains bound Mo and a FeMo-co precursor from an Azotobacter vinelandii delta nifHDK strain. J Biol Chem 281:36701–36709

    Article  PubMed  CAS  Google Scholar 

  67. Curatti L, Ludden PW, Rubio LM (2006) NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA 103:5297–5301

    Article  PubMed  CAS  Google Scholar 

  68. Johnson DC, Dos Santos PC, Dean DR (2005) NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii. Biochem Soc Trans 33:90–93

    Article  PubMed  CAS  Google Scholar 

  69. Dos Santos PC, Johnson DC, Ragle BE et al (2007) Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J Bacteriol 189:2854–2862

    Article  PubMed  CAS  Google Scholar 

  70. Mouncey NJ, Mitchenall LA, Pau RN (1995) Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis and processing in Azotobacter vinelandii. J Bacteriol 177:5294–5302

    PubMed  CAS  Google Scholar 

  71. Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia C. Dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

O’Carroll, I.P., Dos Santos, P.C. (2011). Genomic Analysis of Nitrogen Fixation. In: Ribbe, M. (eds) Nitrogen Fixation. Methods in Molecular Biology, vol 766. Humana Press. https://doi.org/10.1007/978-1-61779-194-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-194-9_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-193-2

  • Online ISBN: 978-1-61779-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics